Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile"

Transcript

1 Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40

2 1 L integrle come limite di somme 2 Clssi di funzioni integrbili 3 Proprietà dell integrle 4 Il teorem fondmentle del clcolo integrle 5 Metodi per l ricerc di primitive 6 Integrli generlizzti 7 Funzioni integrli ICD (Bri) Anlisi Mtemtic 2 / 40

3 Introduzione l clcolo integrle Problemi che hnno portto ll nscit del clcolo integrle: Definire e misurre l re di un figur pin contorno curvilineo. Definire e misurre l lunghezz di un curv. Fine 1600, inizio 1700: viene introdotto questo scopo il concetto di integrle come limite di somme e viene nche fornito un lgoritmo per il suo clcolo effettivo utilizzbile in csi generli. Esempio: dt f(x) = x 2, clcolimo l misur dell re compres tr l sse x e f(x) per x [0, 1]. ICD (Bri) Anlisi Mtemtic 3 / 40

4 L definizione di integrle Si f : [, b] R limitt. Considerimo l suddivisione di [, b] individut di punti ove, per ogni j = 0,..., n = x 0, x 1, x 2,... x n 1, x n = b x j = + j b n in modo che per ogni j = 1,..., n si bbi x j x j 1 = b n. ICD (Bri) Anlisi Mtemtic 4 / 40

5 L definizione di integrle Considerimo in ciscuno degli n intervlli [x j 1, x j ] un punto rbitrrio ξ j. Costruimo l somm (dett di Cuchy Riemnn): S n = n j=1 f(ξ j ) (x j x j 1 ) = b n n f(ξ j ). j=1 Pssimo l limite per n +. Si osservi che i punti ξ j scelti d ogni posso possono essere diversi d quelli scelti nei pssi precedenti o successivi. ICD (Bri) Anlisi Mtemtic 5 / 40

6 L definizione di integrle Definizione Si dice che un funzione limitt f : [, b] R è integrbile in [, b] se, dett S n un su qulsisi successione di Cuchy Riemnn, esiste finito lim n + S n e non dipende dll scelt i punti ξ j d ogni psso dell costruzione itertiv. In tl cso si pone Il simbolo lim S n = n + si chim integrle di f(x) d b. f(x)dx f(x)dx. ICD (Bri) Anlisi Mtemtic 6 / 40

7 Interpretzione geometric Si f 0 e continu. Ogni ddendo dell somm di Cuchy Riemnn rppresent l re del rettngolo vente come bse il segmento [x j 1, x j ] e come ltezz f(ξ j ). L somm S n rppresent un pprossimzione dell re dell prte di pino compreso tr l sse x, x b, e il grfico di f (trpezoide individuto d f). Pssndo l limite per n + si h S n f(x)dx che si può definire come re del trpezoide. Se f cmbi segno, l integrle rppresent un somm di ree con segno. ICD (Bri) Anlisi Mtemtic 7 / 40

8 Clssi di funzioni integrbili Teorem Si f : [, b] R un funzione continu. Allor f è integrbile. Teorem Si f : [, b] R un funzione limitt e monoton. Allor f è integrbile. Teorem Se f 1 [, b] R e f 2 : [b, c] R sono integrbili llor { f 1 (x) se x [, b) f(x) = f 2 (x) se x (b, c] (f definit in qulsisi modo in b) è integrbile in [, c]. ICD (Bri) Anlisi Mtemtic 8 / 40

9 Esempi Ogni funzione costnte f(x) = c è integrbile su qulunque intervllo [, b] e f(x)dx = c(b ). L funzione di Dirichlet f : [0, 1] R definit d { 1 se x [0, 1] Q; f(x) = 0 se x [0, 1]\Q non è integrbile. ICD (Bri) Anlisi Mtemtic 9 / 40

10 Proprietà dell integrle Proposizione (Linerità dell integrle) Sino f, g : [, b] R integrbili in [, b]. Allor per ogni α, β R nche αf + βg è integrbile e (αf(x) + βg(x)) dx = α f(x)dx + β g(x)dx. ICD (Bri) Anlisi Mtemtic 10 / 40

11 Proprietà dell integrle Proposizione (Additività dell integrle) Si f : [, b] R integrbile in [, b]. Se r b llor f è integrbile nche su [, r] e [r, b] e f(x)dx = r f(x)dx + r f(x)dx. Convenzione: Se > b si definisce f(x)dx = f(x)dx = 0. b f(x)dx. Allor l formul precedente vle qulunque si l ordinmento dei punti, b, r. ICD (Bri) Anlisi Mtemtic 11 / 40

12 Proprietà dell integrle Proposizione (Positività e monotoni dell integrle) Sino f, g : [, b] R integrbili in [, b]. Allor f g f 0 f(x)dx f(x) 0; g(x)dx. Conseguenz: f(x)dx f(x) dx. ICD (Bri) Anlisi Mtemtic 12 / 40

13 Proprietà dell integrle Teorem (dell medi) Si f : [, b] R un funzione continu in [, b]. Allor esiste c [, b] tle che 1 b f(x)dx = f(c). b Interpretzione geometric: se f 0, l re sottes dl grfico di f in [, b] è ugule ll re di un rettngolo di bse [, b] e ltezz opportun f(c). ICD (Bri) Anlisi Mtemtic 13 / 40

14 Il teorem fondmentle del clcolo integrle L definizione di integrle non è gevole d usre per il suo clcolo effettivo. Il metodo più usto per il clcolo dell integrle di un funzione richiede l uso dell nozione di primitiv. Definizione Si f : [, b] R un funzione. Un primitiv di f è un funzione G : [, b] R derivbile in [, b] e tle che G (x) = f(x) x [, b]. ICD (Bri) Anlisi Mtemtic 14 / 40

15 Proprietà delle primitive Proposizione Si f : [, b] R un funzione. se G : [, b] R è un primitiv di f, llor, per ogni c R, G + c è un primitiv di f; se G 1, G 2 : [, b] R sono due primitive di f, llor esiste c R tle che G 1 = G 2 + c. ICD (Bri) Anlisi Mtemtic 15 / 40

16 Esempi Un funzione che non mmette primitive: si f : [ 1, 1] R definit d { 1 se x [ 1, 0); f(x) = 1 se x [0, 1]. Vedremo che ogni funzione continu mmette primitive. ICD (Bri) Anlisi Mtemtic 16 / 40

17 Il teorem fondmentle del clcolo integrle Teorem Si f : [, b] R un funzione continu in [, b]. Se G : [, b] R è un primitiv di f llor f(x)dx = G(b) G(). Per indicre G(b) G() di solito si us il simbolo [G(x)] b. Si prov che ogni f : [, b] R continu mmette un primitiv. Succede tlvolt che tle primitiv non si esprimibile trmite le funzioni elementri. ICD (Bri) Anlisi Mtemtic 17 / 40

18 Integrle indefinito Definizione Si f : [, b] R. L insieme i cui elementi sono le primitive di f si chim integrle indefinito di f e si denot con il simbolo f(x)dx. Dto che le primitive di f, se esistono, differiscono per un costnte si scrive f(x)dx = G(x) + c c R (G primitiv di f). ICD (Bri) Anlisi Mtemtic 18 / 40

19 Alcune primitive Leggendo l tbell delle derivte delle funzioni elementri: kdx = kx + c k R; x p dx = xp+1 p c 1 p 1; dx = log x + c x x < 0 oppure x > 0; x dx = x log + c; e x dx = e x + c; sen xdx = cos x + c; cos xdx = sen x + c; ICD (Bri) Anlisi Mtemtic 19 / 40

20 Alcune primitive 1 cos 2 x dx = (1 + tg 2 x)dx = tg x + c; 1 dx = rctg x + c; 1 + x2 1 dx = rcsen x + c. 1 x 2 ICD (Bri) Anlisi Mtemtic 20 / 40

21 Integrzione per scomposizione Dte f e g funzioni continue e α, β R, dll linerità dell derivt segue che (αf(x) + βg(x)) dx = α f(x)dx + β g(x)dx. Quest proprietà è stt già vist per l integrle definito (vedere l proprietà di linerità dell integrle). ICD (Bri) Anlisi Mtemtic 21 / 40

22 Integrzione per sostituzione, integrle indefinito Sino Allor ϕ : [, b] R un funzione derivbile in [, b] con derivt continu tle che ϕ([, b]) I, I R intervllo; f : I R un funzione continu in I. [ f(ϕ(x))ϕ (x)dx = ] f(t)dt. t=ϕ(x) ICD (Bri) Anlisi Mtemtic 22 / 40

23 Integrzione per sostituzione, integrle definito Sino Allor ϕ : [, b] R un funzione derivbile in [, b] con derivt continu tle che ϕ([, b]) I, I R intervllo; f : I R un funzione continu in I. f(ϕ(x))ϕ (x)dx = ϕ(b) ϕ() f(x)dx. ICD (Bri) Anlisi Mtemtic 23 / 40

24 Simmetrie Si f : [ k, k] R. Se f è pri, llor k k k f(x)dx = 2 f(x)dx. 0 Se f è dispri, llor k k f(x)dx = 0. ICD (Bri) Anlisi Mtemtic 24 / 40

25 Integrzione di funzioni rzionli Clcolo di integrli del tipo Pn (x) Q m (x) dx ove P n e Q m sono polinomi di grdo n ed m rispettivmente. Se n m, eseguire l divisione tr polinomi. Se n < m, distinguimo tre csi: m = 1 (immedito); m = 2; m > 2. ICD (Bri) Anlisi Mtemtic 25 / 40

26 Integrzione di funzioni rzionli, denomintore di grdo 2 In tl cso Q m (x) Q(x) = x 2 + bx + c. Occorre distinguere tre csi: Q(x) h due rdici distinte; Q(x) è un qudrto perfetto; Q(x) non si nnull mi. ICD (Bri) Anlisi Mtemtic 26 / 40

27 Integrzione per prti Se f e g sono derivbili in [, b] si h (fg) = f g + fg ossi fg = (fg) f g. Allor prendendo l integrle indefinito di mbo i membri e osservndo che (fg) (x)dx = f(x)g(x) si trov l formul di integrzione per prti: f(x)g (x)dx = f(x)g(x) f (x)g(x)dx. ICD (Bri) Anlisi Mtemtic 27 / 40

28 Integrzione per prti Per l integrle definito vle l formul: f(x)g (x)dx = [f(x)g(x)] b f (x)g(x)dx. ICD (Bri) Anlisi Mtemtic 28 / 40

29 Integrzione di funzioni non limitte Si f : [, b) R continu e tle che lim f(x) = ±. x b Si consider il limite lim ε 0 + ε f(x)dx. (1) Definizione Se il limite (1) esiste finito si dice che f è integrbile in senso improprio in [, b) o che l integrle f(x)dx è convergente. Se il limite (1) è ugule ± l integrle si dice divergente. Se il limite (1) non esiste si dice che l integrle non esiste. ICD (Bri) Anlisi Mtemtic 29 / 40

30 Integrzione di funzioni non limitte Anloghe definizioni si hnno se f : (, b] R è continu e tle che lim f(x) = ±. x + Si consider il limite lim f(x)dx. (2) ε 0 + +ε Definizione Se il limite (2) esiste finito si dice che f è integrbile in senso improprio in (, b] o che l integrle f(x)dx è convergente. Se il limite (2) è ugule ± l integrle si dice divergente. Se il limite (2) non esiste si dice che l integrle non esiste. ICD (Bri) Anlisi Mtemtic 30 / 40

31 Integrzione di funzioni non limitte In simboli, nel primo cso si scrive nel secondo cso si scrive f(x)dx = lim ε 0 + f(x)dx = lim ε 0 + ε +ε f(x)dx, f(x)dx. ICD (Bri) Anlisi Mtemtic 31 / 40

32 Criteri di integrbilità l finito Sino f, g : [, b) R continue e tli che lim x b x b f(x) = lim g(x) = +. Criterio del confronto: Se 0 f(x) g(x) in [, b) llor g integrbile f integrbile, f non integrbile g non integrbile. ICD (Bri) Anlisi Mtemtic 32 / 40

33 Criteri di integrbilità l finito Criterio del confronto sintotico: Se f > 0 e g > 0 e f g per x b llor f integrbile g integrbile. Teorem f(x) dx convergente f(x)dx convergente. ICD (Bri) Anlisi Mtemtic 33 / 40

34 Integrzione su intervlli illimitti Si f : [, + ) R continu. Si consider il limite ω lim ω + f(x)dx. (3) Definizione Se il limite (3) esiste finito si dice che f è integrbile in senso improprio in [, + ) o che l integrle + f(x)dx è convergente. Se il limite (3) è ugule ± l integrle si dice divergente. Se il limite (3) non esiste si dice che l integrle non esiste. ICD (Bri) Anlisi Mtemtic 34 / 40

35 Integrzione su intervlli illimitti Anlogmente se f : (, b] R è continu, si consider il limite lim ω ω f(x)dx. (4) Definizione Se il limite (4) esiste finito si dice che f è integrbile in senso improprio in (, b] o che l integrle f(x)dx è convergente. Se il limite (4) è ugule ± l integrle si dice divergente. Se il limite (4) non esiste si dice che l integrle non esiste. ICD (Bri) Anlisi Mtemtic 35 / 40

36 Integrzione su intervlli illimitti In simboli, si scrive + f(x)dx = f(x)dx = Inoltre se f : R R è continu si pone + f(x)dx = c dove c R è scelto rbitrrimente. ω lim f(x)dx, ω + lim ω ω f(x)dx + f(x)dx. + c f(x)dx. ICD (Bri) Anlisi Mtemtic 36 / 40

37 Criteri di integrbilità ll infinito Sino f, g : [, + ) R continue. Criterio del confronto: Se 0 f(x) g(x) in [, + ). Allor g integrbile f integrbile, f non integrbile g non integrbile. Criterio del confronto sintotico: Se f > 0 e g > 0 e f g per x + llor f integrbile g integrbile. Teorem + f(x) dx convergente + f(x)dx convergente. ICD (Bri) Anlisi Mtemtic 37 / 40

38 Funzioni integrli Si f un funzione integrbile in un intervllo I. Si fissi x 0 I e si fcci vrire x I. È ben definito x x 0 f(t)dt e, quindi, l funzione F : x I x x 0 f(t)dt. L funzione F prende il nome di funzione integrle ssocit d f. ICD (Bri) Anlisi Mtemtic 38 / 40

39 Secondo teorem fondmentle del clcolo integrle Teorem Si f : [, b] R un funzione integrbile, si x 0 [, b] e si F (x) = Allor 1 F è continu in [, b]; x x 0 f(t)dt. 2 se f è continu in [, b], F è derivbile in [, b] e F (x) = f(x) x [, b]. ICD (Bri) Anlisi Mtemtic 39 / 40

40 Osservzioni L second prte del teorem fferm che F è un primitiv di f se f è continu. Quindi ogni funzione continu mmette un primitiv (l su funzione integrle). Regolrità: f continu, F = f F continu cioè F è derivbile con derivt continu. f derivbile con derivt continu, F = f F derivbile e F = f F continu cioè F è derivbile due volte con derivte continue. In generle l funzione integrle h sempre un grdo di regolrità in più rispetto ll funzione integrnd. ICD (Bri) Anlisi Mtemtic 40 / 40

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Il calcolo integrale: intro

Il calcolo integrale: intro Il clcolo integrle: intro Le ppliczioni del clcolo integrle sono svrite: esistono, inftti, molti cmpi, dll fisic ll ingegneri, dll iologi ll economi, in cui si f lrgo uso degli integrli. Per fornire l

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

Integrazione numerica di funzioni con singolarità

Integrazione numerica di funzioni con singolarità UNIVERSITÀ DEGLI STUDI DELLA CALABRIA Fcoltà di Scienze Mtemtiche, Fisiche e Nturli Corso di Lure in Mtemtic Integrzione numeric di funzioni con singolrità RELATORE Dr. Frncesco Dell Accio CANDIDATO Contrtese

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Dispense di MATEMATICA PER L INGEGNERIA 4

Dispense di MATEMATICA PER L INGEGNERIA 4 ispense di MATEMATICA PER L INGEGNERIA 4 Qurto trimestre del o nno del Corso di Lure in Ingegneri Elettronic ocente: Murizio Romeo Mggio 25 ii Indice Integrzione delle funzioni di più vribili. Insiemi

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

ANALISI MATEMATICA (Corso di Laurea in informatica) II MODULO A. Boccuto

ANALISI MATEMATICA (Corso di Laurea in informatica) II MODULO A. Boccuto ANALISI MATEMATICA (Corso di Lure in informtic) II MODULO A. Boccuto LIBRI CONSIGLIATI ADAMS: Clcolo differenzile, Vol. I VINTI: Lezioni di Anlisi Mtemtic, Vol. I e II ZWIRNER: Esercizi di Anlisi Mtemtic,

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Teoria dell integrazione elementare

Teoria dell integrazione elementare [versione del 5 mggio 29] Teori dell integrzione elementre Andre Crpignni Diprtimento di Mtemtic Applict Università di Pis Per tre cose vle l pen vivere: l mtemtic, l music, l more. Rento Cccioppoli Introduzione

Dettagli

Le successioni di Fibonacci

Le successioni di Fibonacci Orzio Muscto Diprtimento di Mtemtic e Informtic Università degli studi di Ctni Le successioni di Fiboncci Complementi l corso di Istituzioni di Mtemtiche, Corso di Lure Specilistic quinquennle in Architettur,

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

ANALISI VETTORIALE. Giovanni Maria Troianiello. 31 ottobre 2010. 1 Approfondimenti sull integrale di Riemann 3. 2 Integrali impropri e serie 5

ANALISI VETTORIALE. Giovanni Maria Troianiello. 31 ottobre 2010. 1 Approfondimenti sull integrale di Riemann 3. 2 Integrali impropri e serie 5 ANALISI VETTORIALE Giovnni Mri Troiniello 31 ottobre 2010 Indice 1 Approfondimenti sull integrle di Riemnn 3 2 Integrli impropri e serie 5 3 Criterio del confronto, convergenz ssolut, convergenz condiziont

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica

QUADERNI DIDATTICI. Dipartimento di Matematica Università ditorino QUADERNI DIDATTICI del Diprtimento di Mtemtic G. Zmpieri Anlisi Vettorile.. 21/22 Quderno # 1 - Novembre 21........... Getno Zmpieri - Anlisi Vettorile 1 PREFAZIONE Questo quderno

Dettagli

Il Calcolo delle Aree e l Integrale

Il Calcolo delle Aree e l Integrale Cpitolo 7 Il Clcolo delle Aree e l Integrle Il problem dell rett tngente ed il problem dell re sono i due problemi geometrici principli dell Anlisi. Come bbimo visto, il concetto di derivt, insieme lle

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A Funzioni Definizione di funzione: Sino A e B due insiemi non vuoti. Un funzione f d A B è un ssegnmento di esttmente un elemento di B d ogni elemento di A Scrivimo f() = b se b è l unico elemento dell

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

LINGUAGGI FORMALI Esercizi

LINGUAGGI FORMALI Esercizi LINGUAGGI FORMALI Esercizi PPPPPP Nicol Fnizzi LINGUAGGI DI PROGRAMMAZIONE Corso di Informtic T.P.S. Diprtimento di Informtic Università di Bri Aldo Moro [2014/01/28-13:30:23] [ 2 / 14 ] Indice 1 Introduzione

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

Problemi di Sturm-Liouville

Problemi di Sturm-Liouville Problemi di Sturm-Liouville Alberto Tibldi 11 dicembre 2012 1 Introduzione e definizioni generli Nell mbito di problemi fisici/ingegneristici, spesso si h che fre con equzioni lle derivte przili (PDE:

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

INTEGRALI: alcuni esercizi con svolgimento

INTEGRALI: alcuni esercizi con svolgimento INTEGRALI: alcuni esercizi con svolgimento. Entro certi limiti, per stendere una molla occorre applicare una forza proporzionale allo spostamento. Se lo spostamento è x la forza è F (x) = cx con c costante

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli

ELEMENTI GEOMETRIA ANALITICA SABO

ELEMENTI GEOMETRIA ANALITICA SABO ELEMENTI DI GEOMETRIA ANALITICA SABO COORDINATE CARTESIANE Ascisse dei Punti di un Rett Dt un rett orientt (verso di percorrenz positivo d sinistr verso destr per rette orizzontli; dl sso verso l lto per

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 04/ 05 Corsi di Analisi Matematica I Proff. A. Villani, R. Cirmi e F. Faraci) Prova d Esame del giorno 6 febbraio 05 Prima prova scritta compito A) Non sono consentiti formulari, appunti,

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

x 2 4.1.1 Interpolazione polinomiale, la matrice di Vandermonde

x 2 4.1.1 Interpolazione polinomiale, la matrice di Vandermonde 4.. INTERPOLAZIONE 4. Interpolzione Il problem generle è quello di determinre un espressione nlitic o grfic per un funzione fx) di cui si conoscono un numero finito di punti del grfico x i, y i ). Quindi

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Successioni e serie di funzioni A. Albanese, A. Leaci, D. Pallara In questa dispensa generalizzeremo la trattazione delle successioni e delle serie al caso in cui i termini delle stesse siano non numeri

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

ESPONENZIALI LOGARITMI

ESPONENZIALI LOGARITMI ESPONENZIALI LOGARITMI Prerequisiti: Conoscere e sper operre con potenze con esponente nturle e rzionle. Conoscere e sper pplicre le proprietà delle potenze. Sper risolvere equzioni e disequzioni. Sper

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO

Dettagli

Tassi di cambio, prezzi e

Tassi di cambio, prezzi e Tssi di cmbio, prezzi e tssi di interesse 2009 1 Introduzione L relzione tr l ndmento del livello generle dei prezzi e i tssi di cmbio: l Prità dei Poteri di Acquisto Le relzione tr i tssi di cmbio e i

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Topologia Algebrica e Analisi Complessa

Topologia Algebrica e Analisi Complessa Ginluc Occhett Note di Topologi Algeric e Anlisi Compless Diprtimento di Mtemtic Università di Trento Vi Sommrive 14 38050 - ovo (TN) Not per l lettur Queste note rccolgono gli rgomenti (lcuni vriili

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli