7 CIRCUITI ELETTRICI IN REGIME SINUSOIDALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "7 CIRCUITI ELETTRICI IN REGIME SINUSOIDALE"

Transcript

1 7 IUII ELEII IN EGIME SINUSIDALE Il primo generaore di correne coninua fu realizzao nel 83 da Faraday; queso disposiivo era cosiuio da un disco di rame poso in roazione ra le espansioni polari di una calamia. ollegando un galvanomero ra l asse del disco ed il bordo Faraday osservò la generazione di una correne cosane di inensià proporzionale alla velocià di roazione del disco. Nel 83 il cosruore di srumeni scienifici francese Hippolye Pixii ponendo in roazione un magnee permanene a forma di ferro di cavallo in prossimià di un elerocalamia realizzò il primo generaore di correne alernaa; queso rudimenale disposiivo venne migliorao nel 844 da Luigi Palmieri che sviluppò il primo generaore moderno di correne alernaa. Inorno al 88 l energia oenua araverso i generaori di correne coninua aveva acquisao un coso di mole vole inferiore a quella oenua araverso le pile eleriche uavia l indusria eleroecnica inconrava noevoli difficolà nel rasporo a disanza della correne prodoa. Nondimeno con l invenzione di homas Alva Edison della lampadina ad incandescenza nel 879 l illuminazione elerica cominciò progressivamene a sosiuire quella a gas nei cenri urbani delle grandi cià. uavia a causa della cadua di ensione lungo i cavi il sisema di elerificazione di Edison basao sulla correne coninua richiedeva l isallazione di generaori di correne a disanze di circa un chilomero l uno dall alro. onsapevole dei vanaggi della correne alernaa dovui essenzialmene alla possibilià di variarne l ampiezza con elevai rendimeni per mezzo di rasformaori nel 888 il fisico di origine croaa Nikola esla propose all imprendiore George Wesinghouse una ree elerica basaa su queso ipo di correne. onemporaneamene per garanire il funzionameno degli impiani indusriali con la correne alernaa esla perfezionò il moore a correne alernaa sviluppao da Galileo Ferraris nel 885 che uilizzava un campo magneico roane oenuo da due bobine orogonali comandae da correni opporunamene sfasae per rascinare un indoo cosiuio da un eleromagnee. La compeizione ra i due sisemi di elerificazione si concluse col favore della correne alernaa nel 895 quando fu inauguraa la prima cenrale idroelerica della poenza di poco più di 3 kw presso le cascae del Niagara collegaa ad una ree in grado di rasporare energia con Nikola esla basse perdie sino alla cià di Buffalo disane circa 35 km dall impiano. Lo sudio dei circuii solleciai araverso generaori che erogano forze eleromorici variabili sinusoidalmene nel empo olre ad essere imporane dal puno di visa praico rivese paricolare ineresse anche dal puno di visa eorico; come si vedrà nel seguio un qualsiasi segnale reale periodico può essere rappresenao come la composizione di infinii segnali sinusoidali per cui lo homas Alva Edison Inerno della cenrale elerica delle cascae del Niagara in basso a desra sono visibili i generaori di correne alernaa (alernaori) progeai da esla.

2 7- ircuii elerici in regime sinusoidale sudio delle ecciazioni sinusoidali rappresena il puno di parenza per uno sudio più generale dei circuii. Infine il meodo generalmene adoperao per l analisi dei circuii ecciai sinusoidalmene si presa ad essere facilmene applicao ad alri sisemi simolai nella sessa maniera. Per affronare ale sudio occorre fare delle ipoesi relaive alle grandezze in gioco in queso coneso; ali ipoesi uavia non risulano limiani per un ampio inervallo di frequenze e per la maggior pare dei componeni in uso in ali circuii. Si assume che in ogni isane le correni sono le sesse che vi sarebbero nel caso sazionario ossia il veore densià di correne dovrà essere considerao sinusoidale quindi varranno la legge di hm e le leggi di Kirchhoff. Si rierrà inolre che la correne cambi nel empo in modo sufficienemene leno perché ue le sue variazioni si propaghino isananeamene araverso il circuio. Infine si assume che le caraerisiche capaciive induive e resisive della ree in esame siano localizzae in regioni di esensione limiaa del circuio in esame. 7. ircuio L La ree cosiuia dalla serie di una resisenza un induanza L ed una capacià prende il nome di circuio L. Sia la differenza di poenziale presene ra le armaure del condensaore nell isane iniziale in cui viene chiuso l inerruore. Indicando con v la differenza di poenziale ai capi del condensaore al empo generico si ha: L i v ( ) dove se di L + i + v (7.) d q indica la carica sul condensaore v vale: q v + i( ξ ) dξ (7.) per cui sosiuendo nell espressione precedene si ha: di L + i + + i( ξ) dξ d e derivando ambo i membri segue: di di d L d L + + i. (7.3) Per inegrare quesa equazione differenziale poniamo i λ e α dove in generale il coefficiene α è un numero complesso; sosiuendo ale espressione della correne nella (7.3) si oiene: α α α α λe + αλe + λe L L

3 ircuii elerici in regime sinusoidale 7-3 e dividendo ambo i membri per λ e α si perviene all equazione caraerisica: α + α + L L che ha soluzioni: α ± ± L 4L L L dove si è poso: 4L L ; le corrispondeni soluzioni dell equazione differenziale e α e e α sono due soluzioni indipendeni e di conseguenza è soluzione anche una loro combinazione lineare: α α i ae + be. Si noi che siccome α e α sono complessi anche e α e i deve essere una quanià reale in quano susceibile di misura necessariamene a e b devono essere complessi. In relazione al segno di si hanno re differeni soluzioni dell equazione differenziale. Se > ovvero se > L allora α e α sono dei numeri reali negaivi così la soluzione è la somma di due esponenziali decresceni: e α lo sono così poiché α α i ae + be. Se ovvero se L allora α e α sono reali e coincideni e valgono in paricolare ( L) così si prova che: i ( ) D D> L i c+ k e. Infine se < ovvero se < L allora α e α sono complessi perano se si pone: ω L 4L è possibile scrivere: α ± jω L

4 7-4 ircuii elerici in regime sinusoidale così sosiuendo nell espressione di i si ha : poso quindi: L jω L jω i ae e + be e L L ( ω ) ( ω ) ( ω ) ( ω ) e acos + jasin + bcos jbsin ( ω ) ( ω ) e a+ b cos + j a b sin a+ b I sinφ j ( a b ) I cosφ I i( ) segue: e - I L D< L i Ie cos ω sinφ+ sin ω cosφ L ( ω φ) Ie sin +. Si osservi che indipendenemene dal segno del discriminane la correne i si annulla sempre nel limie. p /w 7. Bilanci energeici nel circuio L Il circuio L nel limie ideale in cui è nulla è deo circuio L in ale caso l equazione differenziale che lo descrive si ricava da quella del circuio L (7.3) ponendo uguale a zero: di d la cui soluzione è: con: + i L sin ( ω φ ) i I + (7.4) ω ; (7.5) L Si fa uso della formula di Eulero: e jϕ cosϕ+ jsinϕ.

5 ircuii elerici in regime sinusoidale 7-5 dove ω prende il nome di pulsazione di oscillazione libera del circuio L. Le due cosani φ e I sono ricavae a parire dalle condizioni iniziali. Assumendo che all isane iniziale la bobina non sia percorsa da correne si ha: φ. Poiché queso circuio è privo di elemeni dissipaivi il valore massimo dell energia immagazzinaa nella bobina I L deve essere uguale al valore massimo dell energia immagazzinaa nel condensaore essendo la differenza di poenziale presene all isane iniziale ra le armaure del condensaore; perano: I ω. (7.6) La differenza di poenziale ai capi del condensaore per φ si oiene dalla (7.) per sosiuendo a i la sua espressione dalla (7.4) con la posizione (7.6): di v L LIωcos( ω) Lω cos( ω) cos( ω) d così l energia immagazzinaa isananeamene nel condensaore è: Ue v cos ( ω) menre l energia immagazzinaa isananeamene nella bobina è: Um Li LI sin ( ω) sin ( ω) e l energia oale immagazzinaa isananeamene nel circuio L è: U cos ( ) sin ( ) Ue + Um ω + ω cioè pari all energia immagazzinaa nel condensaore all isane iniziale. In figura sono mosrai i grafici delle funzioni Ue Um e della loro somma U ( ). L osservazione che la scarica di una boiglia di Leyda non consise nel solo passaggio di elericià da un armaura all alra ma da una serie di oscillazioni smorzae fu faa da Henry nel 84. Sebbene non conoscesse ale sudio Hermann von Helmoholz adoò quesa ipoesi nella formulazione del principio di conservazione dell energia. Il processo di scarica fu sudiao analiicamene da homson nel 855 che uilizzando la eoria del poenziale idenificò le circosanze in cui si manifesava la scarica oscillaoria e rovò l espressione (7.5) della pulsazione di oscillazione. Infine nel 869 Helmoholz provò che si poevano oenere delle oscillazioni eleriche in una bobina collegaa alle armaure di un condensaore. U U ( ) U m ( ) U e ( )

6 7-6 ircuii elerici in regime sinusoidale 7.3 ircuio L forzao Supponiamo di aggiungere un generaore di forza eleromorice sinusoidale v di pulsazione ω alla serie dei componeni che cosiuiscono il circuio L. Se: ( ω ) v cos (7.7) v( ) L i v ( ) allora l equazione che descrive il nuovo circuio è: di L + i + v v. d Sosiuendo a v e a ha: v le loro espressioni rispeivamene dalle (7.) e (7.7) e riordinando si di + i + i ( ξ) d ξ cos( ω ) d L L L L. (7.8) L equazione che esprime la legge di variazione della differenza di poenziale ai capi del v a condensaore si ricava derivando ambo i membri dell equazione inegrale (7.) che lega i : dv i d sosiuendo i da ale equazione nella (7.8) si ha: dv dv v cos( ω) + +. (7.9) d L d L L L L equazione inegro-differenziale (7.8) che sabilisce la legge di variazione della correne araverso il circuio e l equazione differenziale (7.9) che sabilisce la legge di variazione della differenza di poenziale ai capi del condensaore definie le opporune condizioni iniziali possono essere risole facendo uso dei radizionali meodi così come si è fao per il circuio privo di solleciazione. uavia nel caso di simoli sinusoidali conviene far uso di un meodo paricolare inrodoo dall ingegnere edesco harles Proeus Seinmez nel 893 la cui applicazione si rivela paricolarmene efficace in ale ambio. harles Proeus Seinmez

7 ircuii elerici in regime sinusoidale Meodo simbolico A parire dall equazione differenziale: d y dy a + b + cy f (7.) d d consideriamo la nuova equazione che si oiene aggiungendo al secondo membro della (7.) la funzione jg ω d ω d a + b + cω f + jg. (7.) d d Si noi che si è fao uso di un simbolo diverso ω per rappresenare la soluzione di quesa equazione che in generale è diversa dalla soluzione y( ) della (7.). La funzione ω è in generale complessa e perano può essere espressa come: ω u + jv dove u e complessa di u. Sosiuendo nella (7.) si ha: v sono due funzioni reali. La funzione ω prende il nome di esensione d u d v du dv a + j b j c u jv f jg d d d d ed uguagliando quindi le pari reali e quelle immaginarie si ha: du du a + b + cu f d d dv dv a + b + cv g d d ovvero la funzione u è soluzione dell equazione originaria (7.). Quese considerazioni sono la base della regola di soluzione di equazioni differenziali dea meodo simbolico. A parire da una cera equazione (7.) scria in forma normale si cosruisce una seconda equazione (7.) sommando una funzione jg al secondo membro. L equazione (7.) è più semplice da risolvere ω è della (7.) ed è caraerizzaa dal fao che la pare reale u( ) della sua soluzione soluzione dell equazione (7.). L individuazione della forma funzionale di g( ) dipende dalla espressione di f ; se ad esempio risula: cos( ω ) f K allora è opporuno che sia

8 7-8 ircuii elerici in regime sinusoidale così: sin ( ω ) g K cos( ω ) sin ( ω ) f jg K jk Ke ω j + +. Perano in queso caso per oenere l equazione (7.) a parire dalla (7.) l applicazione del j cos ω con e ω. meodo corrisponde alla sosiuzione formale nella (7.) del ermine 7.5 Soluzione del circuio L forzao a regime Applichiamo il meodo simbolico all equazione (7.8); perano sosiuiamo formalmene j cos ω con e ω : di j I I d e ω + + ξ ξ d L L L L e deriviamo rispeo al empo: di di jω I jω e + +. (7.) d L d L L La soluzione generale di quesa equazione può essere posa nella forma I + I dove I ( ) indica la soluzione dell equazione omogenea associaa alla (7.): d I di + + I (7.3) d L d L menre I rappresena una soluzione paricolare della (7.). L equazione omogenea (7.3) uguale alla (7.3) è già saa risola nell ambio dello sudio del circuio L non forzao e in paricolare si è verificao che la corrispondene soluzione si annulla nel limie dei empi lunghi. Essendo ineressai allo sudio del circuio L a regime quando il ransiorio si può rienere esaurio non eniamo cono del ermine I. Per sabilire l espressione di I supponiamo che sia: I j I e ω sosiuendo nella (7.) si ha: jω jω jω jω ω Ie + jωie + Ie jω e L L L da cui dividendo per j e ω e sviluppando segue:

9 ircuii elerici in regime sinusoidale 7-9 I jω. (7.4) L L j L L ω + jω + ω ω j ωl L L jω L jω L jω ω Poniamo quindi: Z + j ωl ω allora indicando con Z e φ rispeivamene il modulo e l argomeno di Z : Z Z + ωl ω anφ ωl ω (7.5) l espressione di I divena: e I I e e e Z Ze Z jω jω jω j( ω φ ). jφ Alla luce dell applicazione del meodo simbolico la correne i( ) si valua deerminando la pare reale di I : j( ω φ) i e{ I } e e cos( ω φ ); Z Z La differenza di poenziale ai capi del condensaore v sesso meodo all equazione (7.9) uavia poiché: ( ξ ) v + i dξ applicando il meodo simbolico a ale relazione si ha: ( ξ ) + I dξ ; può essere deerminaa applicando lo in quesa espressione e l addendo derivane dall esremo inferiore di inegrazione deermineranno un ermine il cui effeo è limiao alla duraa del ransiorio perano non ne eniamo cono; così sosiuendo a I la sua espressione si ha:

10 7- ircuii elerici in regime sinusoidale I I d I e d I e jω jω ξ ξ jω jω ξ la cui pare reale è pari a v. A causa della scarsa preparazione maemaica degli ingegneri eleroecnici della fine del 9 secolo il meodo simbolico non fu immediaamene acceao. Per migliorarne la comprensione Seinmez a parire dal 897 pubblicò diversi manuali in cui il meodo era applicao in varie circosanze così araverso ali scrii e le lezioni enue il suo meodo fu gradualmene adoao nello sudio dei circuii ecciai sinusoidalmene. 7.6 Impedenza Nel circuio rappresenao in figura indicando con v ( ) vl e v rispeivamene le differenze di poenziale ai capi della resisenza della bobina e del condensaore risula: i v ( ) di v i vl L d v( ) L v L ( ) ( ξ ) v + i dξ. v ( ) Per la seconda legge di Kirchhoff se v è la forza eleromorice erogaa dal generaore con risula: ( ω ) v cos v v + v + v. L La descrizione del circuio in esame può essere svola equivalenemene araverso l uso del meodo simbolico; applicando direamene ale procedimeno alle espressioni di v vl e v ( ) si ha : L I jωli I ; jω sommando membro a membro se rappresena l esensione complessa di v allora: Per comodià di scriura si soinendono le dipendenze emporali delle esensioni complesse.

11 ircuii elerici in regime sinusoidale 7- + L + + jωl+ I Z I jω. La quanià Z pari a jωl ( jω) + + prende il nome di impedenza del circuio in esame. Si osservi che a differenza della resisenza di un circuio l impedenza non rappresena una caraerisica inrinseca di un circuio poiché dipende dalla pulsazione dell ecciazione sinusoidale applicaa. L unià di misura del modulo dell impedenza è l ohm. La relazione Z I che lega l esensione complessa della forza eleromorice applicaa all esensione complessa della correne araverso l impedenza è dea legge di hm generalizzaa. Dall esame della forma di Z è possibile ricavare l espressione delle impedenze associae alla resisenza alla bobina ed al condensaore: Z ZL jωl jxl (7.6) Z j jx jω ω (7.7) dove X L pari a ω L e ω prendono il nome rispeivamene di reaanza induiva e reaanza capaciiva. Alla luce dell espressione della legge di hm generalizzaa e della validià delle leggi di Kirchhoff è possibile dedurre che lo sudio delle rei soggee ad uno simolo di ipo sinusoidale procede in maniera analoga al caso degli simoli coninui purché si adoperi il conceo di impedenza per la descrizione dei componeni della ree. Perano il collegameno in serie di n impedenze Z Z Zn è equivalene ad un unica impedenza Z di valore pari a: X pari a Z n Z k k menre se le n impedenze sono connesse in parallelo risula: Z n k Z k. sserviamo infine che in generale un impedenza può essere espressa nella forma: Z + jx dove X è dea in generale reaanza. L inverso di un impedenza: Y Z

12 7- ircuii elerici in regime sinusoidale è denominao ammeenza. I re elemeni più semplici che cosiuiscono l impedenza sono la resisenza l induanza e la capacià; nel seguio analizzeremo separaamene le caraerisiche di ciascuno di quesi componeni Impedenza resisiva onsideriamo una resisenza percorsa da una correne: ( ω φ ) i I cos + i v dalla legge di hm segue: cos( ω φ) cos( ω φ ) v i I + + dove si è poso: I. Il fao che l impedenza associaa ad un resisore coincida con la sua resisenza fa si che le relazioni radizionali forniscano il legame ra correne e differenza di poenziale senza dover ricorrere al meodo simbolico. iò implica per alro che la differenza di poenziale ai capi della resisenza risula in fase con la correne che la percorre. I w + f 7.6. Impedenza induiva poso onsideriamo una bobina di induanza L percorsa dalla correne: ( ω φ ) i I cos + ; i L v L ( + ) j I Ie ω φ siccome l impedenza associaa alla bobina vale: L π j Z jωl ωle l esensione complessa della differenza di poenziale ai suoi capi è: L π π π j j ω+ φ+ j ω+ φ+ ( ) j ω + φ ω ω I Z I e Le LI e e dove si è poso: ωli.

13 ircuii elerici in regime sinusoidale 7-3 I due ermini: ( + ) j I Ie ω φ π j ω+ φ+ e w + f + p / I w + f possono essere considerai rappresenaivi di due veori che spiccano dal medesimo puno e ruoano nella sessa direzione convenzionalmene anioraria con velocià angolare pari a ω manenendosi uno sfasao in anicipo di 9 rispeo all alro I. Quese enià prendono il nome di fasori. Per ricavare la differenza di poenziale v( ) ai capi della bobina valuiamo la pare reale di : π j ω+ φ+ v { } e cos π e e ω+ φ+ ; quindi la differenza di poenziale sinusoidale ai capi della bobina ha ampiezza pari a ed è sfasaa in anicipo di 9 rispeo alla correne i( ). Dall espressione di segue inolre che: lim limωli ω ω ; lim I lim ω ω ωl v( ) i( ) ali relazioni possono essere inerpreae affermando che nel limie di uno simolo coninuo ( ω ) la bobina agisce come un corocircuio menre nel limie delle ale frequenze (ω ) la bobina si compora come un circuio apero. p / Impedenza capaciiva onsideriamo un condensaore di capacià alimenao dalla correne: ( ω φ ) i I cos + ; i v poso: ( + ) j I Ie ω φ poiché l impedenza associaa al condensaore è: π j Z j e jω ω ω l esensione complessa della differenza di poenziale ai suoi capi è:

14 7-4 ircuii elerici in regime sinusoidale π π π j j ω+ φ j ω+ φ ω φ j + I Z I e e I e e ω ω dove si è poso: I ermini: I ω. ( + ) j I Ie ω φ π j ω+ φ e rappresenano due fasori con sfasao in riardo di 9 rispeo a I. La differenza di poenziale v( ) ai capi del condensaore vale: π j ω+ φ v { } cos π e e e ω+ φ I w + f w + f -p / cioè ale differenza di poenziale ha ampiezza ed è sfasaa in riardo di 9 relaivamene alla correne i( ). Inolre risula: v( ) i( ) w lim I limω ω ω I ; lim lim ω ω ω p / ovvero nel limie delle solleciazioni coninue il condensaore agisce come un circuio apero menre alle ale frequenze si compora come un corocircuio. Esempio: Nel circuio di figura il generaore v eroga una forza eleromorice sinusoidale di ampiezza pari a 3 e pulsazione ω di 34 rad s. Sabiliamo l espressione della correne che araversa nell ipoesi che e valgano rispeivamene Ω e Ω L vale mh e µf. L esensione complessa di v è: v L e ω j così in corrispondenza nodo N risula: I I + I (7.8) 3

15 ircuii elerici in regime sinusoidale 7-5 dove I I e 3 i ( ) e 3 i I rappresenano le esensioni complesse rispeivamene di i ; alla maglia comprendene il generaore e L e alla maglia comprendene L e si ha: j I + jωli3 e ω (7.9) jωli3 I I. jω (7.) v( ) i N i( ) i L 3 Quese due equazioni risulano formalmene ideniche a quelle che si scriverebbero in un circuio in correne coninua con l associazione di una resisenza j L jω alla capacià. Esprimiamo il sisema delle re equazioni in forma mariciale: ω all induanza L e di una resisenza I jω jωl I e I 3 jωl jω allora l esensione complessa della correne i vale: I L + + j ωl+ ωl jω jω e jωl jω jωl jωle jωl jωl jω jω e. j + + ω L ω ωl Poso quindi: I + + ω L ω ωl + ω ωl ϑ aan 73 ω L. A v( ) i( ) risula: ( ω ϑ ) i I cos. In figura sono confronai l andameno di i ( ) con quello di v.

16 7-6 ircuii elerici in regime sinusoidale 7.7 isonanza onsideriamo un circuio L soggeo ad una ecciazione sinusoidale: ( ω ) v cos ; a regime la correne i araverso la ree è daa dall espressione: i cos( ω φ) I cos( ω φ) Z in cui l ampiezza I rappresena il modulo della correne complessa I daa dalla (7.4): I Z + ωl ω. (7.) L ampiezza I presena un massimo quando la pulsazione assume il valore ω pari a: ω (7.) L ovvero in corrispondenza della pulsazione di oscillazione libera del circuio. elaivamene a queso circuio ω prende il nome di pulsazione di risonanza. Per ω uguale a ω si ha: I ω I (w) / inolre dalla (7.5) segue: φ( ω ) così deduciamo che in corrispondenza della pulsazione di risonanza il circuio ha un comporameno di ipo resisivo nel senso che la correne i araverso il circuio risula in fase con la ensione applicaa v. La reaanza di queso circuio vale: f ( ) +p / w w X ωl ; ω w w per ω < ω risula: -p /

17 ircuii elerici in regime sinusoidale 7-7 X < ; per cui l impedenza Z può essere espressa come: Z j X ; d alra pare dalla (7.7) osserviamo che il condensaore è caraerizzao da un impedenza negaiva così concludiamo che per ω < ω il circuio L è viso dal generaore come la serie di una resisenza con un condensaore ' di valore: ' ω L ; per ω > ω risula: X > ; per cui l impedenza Z può essere espressa come: Z + jx ; d alra pare dalla (7.6) osserviamo che l induanza è caraerizzaa da un impedenza posiiva così concludiamo che per ω > ω il circuio L è viso dal generaore come la serie di una resisenza con una bobina L' di valore: ω L L'. ω 7.8 Faore di merio Sia U M la massima energia che può immagazzinare un circuio risonane 3 e U D l energia dissipaa in un periodo dallo sesso circuio; si definisce faore di merio del circuio in quesione la quanià: U M Q π ω ω U D dove si inende che il rapporo UM U D deve essere calcolao in corrispondenza della pulsazione di risonanza della ree. Queso faore fornisce un indice di come il circuio impiega l energia che gli viene fornia dal generaore. Per sabilire il faore di merio del circuio L fino ad ora esaminao consideriamo l energia immagazzinaa nella bobina; se la correne i( ) che percorre il circuio è: 3 Quese considerazioni sono di caraere generale nel senso che si applicano a ui i circuii caraerizzai da una frequenza di risonanza e perano dei circuii risonani.

18 7-8 ircuii elerici in regime sinusoidale sin ( ω ) i I la massima energia immagazzinaa nel circuio è: UM LI. Per valuare l energia dissipaa in un periodo osserviamo che l unico elemeno che dissipa energia è la resisenza e in corrispondenza della correne i( ) queso componene dissiperà isananeamene una poenza: sin ( ω ) p i I così l energia dissipaa in un periodo alla pulsazione di risonanza è: D I sin ( ω ) ω U p d I d I dove indica il periodo π ω alla pulsazione di risonanza. Dalla definizione segue quindi che il faore di merio del circuio L vale: π Q U LI M π π UD I π ω ω L inolre valendo la (7.) risula anche: Q ω L ω. (7.3) La grandezza esé inrodoa olre a caraerizzare il circuio risonane dal puno di visa energeico consene di meere in luce alri aspei relaivi alla funzionalià del circuio. Facendo uso del meodo simbolico deerminiamo le differenze di poenziale ai capi della bobina e del condensaore del circuio L in corrispondenza di un ecciazione sinusoidale di pulsazione pari a quella di risonanza risula: cioè: j ω jω jω + L L ω Z ω I ω jω L e jq e Q e π j ω jω jω ( ω) Z( ω) I ( ω) e jqe Qe jω π π vl Qcos ω+

19 ircuii elerici in regime sinusoidale 7-9 π v Qcos ω. Quindi alla risonanza le differenze di poenziale ai capi della bobina e del condensaore hanno un ampiezza Q vole maggiore dell ampiezza della forza eleromorice applicaa. D alra pare siccome le due ensioni oscillano manenendosi sfasae ra loro di 8 (in conrofase) la loro somma risula isane per isane nulla. Indichiamo genericamene con: ( ω + ϑ ) i I cos L ( w ) w I ( w ) l espressione della correne nel circuio L dove I è l ampiezza e ϑ pari all opposo φ dell argomeno dell impedenza Z la fase. Quese due quanià possono essere espresse come 4 : I ω ω + Q ω ω (7.4) ω ω anϑ Q. ω ω onvenzionalmene le pulsazioni ω e ω in corrispondenza delle quali I assume un valore pari a vole il suo massimo cioè ( ) definiscono gli esremi della banda passane ω inesa come l inervallo: ω ω ω; queso inervallo si può ricavare osservando che quando risulare: I è pari a ( ) dalla (7.4) deve 4 Dalle relazioni (7.) (7.) e (7.3) segue: I ωl ωl ωl ω Q ω ω ω ω ωωl. ω ω + Q ω ω Dalla relazione (7.5) enendo cono che la fase della correne i( ) è opposa all argomeno dell impedenza Z e dalle relazioni (7.) e (7.3) si ha: ω L ω ω ω anϑ an φ ωl Q Q Q. ω ωl ωωl ω ωωl ω ω

20 7- ircuii elerici in regime sinusoidale I (w) ω Q ω ω ω ± / / Q < Q < Q Q Q 3 da cui segue: ω Q ω ; Dw /w Dw /w Dw 3 /w Q 3 w/w osserviamo perano che la curva di risonanza risula ano più srea quano più è grande il valore assuno dal faore di merio. Il fenomeno della risonanza fu scopero da esla nel 89 nel corso dei suoi sudi sui circuii alimenai con ensioni sinusoidali ad ala frequenza; sfruando ale effeo esla realizzò un disposiivo (bobina di esla) in grado di produrre alissime ensioni a frequenza elevaa. f( ) +p / -p / w/w Q Q Q Poenze La poenza isananea fornia ad un generico carico da un generaore di forza eleromorice v( ) che eroga una correne i( ) è daa dalla relazione: vi w ; convenzionalmene w > corrisponde al rasferimeno di energia dal generaore verso il carico menre w < corrisponde ad un flusso di energia nella direzione opposa. onsideriamo una qualsiasi ree passiva ovvero priva di generaori e con due morsei; il eorema di hevénin eseso alle correni alernae consene di schemaizzare l inera ree compresa ra i morsei come una sola impedenza Z di modulo Z e argomeno φ : i Z v jφ Z Ze Z cosφ+ jz sinφ + jx dove si è poso: Zcosφ X Zsinφ. Se ale impedenza è percorsa da una correne sinusoidale: ( ω ) i I cos

21 ircuii elerici in regime sinusoidale 7- j di esensione complessa I pari a Ie ω l esensione complessa della differenza di poenziale ai suoi capi vale: ( ω φ) ( ω φ) I Z I e Ze I Ze e jω jφ j + j + in cui l ampiezza è pari a IZ ; a corrisponde la differenza di poenziale: { } ( ω + φ ) v ε IZcos. Perano la poenza isananea assorbia dalla ree così schemaizzaa è: poso quindi: risula: w vi I Zcos ω+ φ cos ω I Z cos ωcosφ sin ωcos ωsinφ I Zcosφcos ( ω) I Zsinφsin ( ω) p I ( Zcosφ) cos ( ω) I cos ( ω) I + cos( ω) q I ( Zsinφ ) sin ( ω) I X sin ( ω) w p + q ; il valor medio m p e così: q : W della poenza isananea w è la somma dei valori medi P m e + + ( ξ) ξ cos( ωξ) ξ + + ( ξ) ξ sin ( ωξ) ξ Pm p d I + I d I Qm q d I X d Wm Pm + Qm I Ieff Q m dei ermini dove I eff è il valore efficace 5 della correne i( ). Quindi la poenza isananea w è la somma di due ermini; il primo p ( ) deo poenza aiva isananea di valor medio diverso da zero 5 Per una grandezza periodica x( ) di periodo ovvero ale che per ogni risula x x( ) valore efficace di x( ) la quanià: + si definisce

22 7- ircuii elerici in regime sinusoidale rappresena la poenza dissipaa nella componene resisiva dell impedenza Z ; l alro q( ) deo poenza reaiva isananea di valor medio nullo corrisponde all energia che le capacià e le induanze cosiueni la componene reaiva X dell impedenza Z assorbono durane le fasi di carica e cedono nelle fasi di scarica; se l impedenza Z è cosiuia unicamene da un componene reaivo ale scambio avviene col solo generaore. Noiamo infine che il valor medio W m della poenza isananea è pari al quadrao del valore efficace della correne i moliplicao per la componene resisiva dell impedenza Z quindi gli effei dissipaivi prodoi da una correne alernaa sono uguali a quelli di una correne coninua di inensià pari a quella del valore efficace della correne alernaa. Per ale moivo quando in genere ci si riferisce all ampiezza di una grandezza sinusoidale come ad esempio 3 per la ensione adoaa in Europa nelle rei domesiche si inende il valore efficace di ale grandezza. Il valor medio della poenza isananea pari a P m può esprimersi come: Pm I I Zcosφ Icosφ Ieffeff cosφ inolre il valore massimo della poenza reaiva isananea è: Q I X I Zsinφ Isinφ Ieffeff sinφ; facendo uso di ali quanià si definisce la poenza apparene come: ( φ) ( φ) a m eff eff eff eff eff eff P P + Q I cos + I sin I ; ale grandezza pur essendo priva di significao fisico ha valore in quano indireamene fornisce un indicazione della correne assorbia dall impedenza Z consenendo di deerminare ad esempio le sezioni dei conduori da impiegare nei collegameni. onvenzionalmene la poenza P m dea poenza aiva (media) si misura in wa (W) la poenza reaiva (massima) Q si misura in volampere reaivi (A) e la poenza apparene P a si misura in volampere (A). La poenza apparene P a coincide con la poenza aiva P m solo se l angolo di fase φ è nullo cioè se cosφ che corrisponde al caso di una impedenza puramene resisiva. Il ermine cosφ è deo faore di poenza e fornisce il rapporo: cosφ P P m a + X eff x ( ξ ) d ξ. Nel caso di una grandezza variabile con legge sinusoidale i I ( ω ) Ieff I cos ( ωξ ) dξ I. + cos con ω π risula:

23 ircuii elerici in regime sinusoidale 7-3 ra la poenza aiva e quella apparene. Esempio: onsideriamo una bobina reale ovvero ale da essere caraerizzaa da una resisenza diversa da zero; supponiamo che la sua impedenza Z sia pari a Ω e che la fase φ sia di 6 anziché di 9 come per un induore ideale. ale bobina connessa ad una ree di disribuzione elerica che eroga una ensione efficace eff di 3 fa passare una correne: I eff eff 3.3 A Z Ω così la poenza apparene vale: P I.3 A 3 59 A. a eff eff on un angolo di fase di 6 il faore di poenza cosφ vale così la poenza aiva è: P I cosφ.3 A W m eff eff cioè la poenza media è la meà della poenza apparene. Qualora cosφ fosse uguale a in corrispondenza della medesima poenza aiva si avrebbe una correne assorbia dal generaore: Pm 64.5W I eff'.5 A 3 eff pari alla meà di I eff. he la correne I eff sia così elevaa a frone di un suo non effeivo impiego non risula conveniene in quano i conduori per il collegameno al generaore gli inerruori i fusibili ed alri componeni devono essere in grado di sosenere il doppio della correne che sarebbe necessaria se il faore di poenza fosse uniario. A ale scopo le apparecchiaure commerciali sono sempre progeae in modo ale da manenere il faore di poenza della ree di alimenazione il più possibile prossimo all unià. 7. Poenza complessa Alla luce delle precedeni definizioni si evince che è possibile associare alla poenza P a una quanià complessa P a definia come: P I * a eff eff dove * I eff è il complesso coniugao di I eff ; perano siccome: j eff e ω I j( ) Ieff e ω + φ allora: * I j( ω+ φ) jω jφ Pa Ieff eff e e Ieffeff e Ieffeff cosφ jieffeff sinφ Pm jq.

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Motori elettrici per la trazione veicolare. Vincenzo Di Dio

Motori elettrici per la trazione veicolare. Vincenzo Di Dio Moori elerici per la razione veicolare Vincenzo Di Dio Tipologie di moori elerici uilizzai per la razione veicolare Moori a correne coninua Moori a correne alernaa Sincroni Asincroni Correni eleriche e

Dettagli

3 CORRENTE ELETTRICA E CIRCUITI

3 CORRENTE ELETTRICA E CIRCUITI 3 ONT LTT UT lessandro ola Descrizione dell esperienza di Galvani Nel 79 il medico bolognese Luigi Galvani nell ambio dello sudio delle azioni eleriche sugli organi animali osservò che occando con uno

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica Principi di ingegneria elerica Lezione 19 a Conversione eleromeccanica dell'energia Trasmissione e disribuzione dell'energia elerica acchina elerica elemenare Una barra condurice di lunghezza l immersa

Dettagli

Circuiti del primo ordine

Circuiti del primo ordine Circuii del primo ordine Un circuio del primo ordine è caraerizzao da un equazione differenziale del primo ordine I circuii del primo ordine sono di due ipi: L o C Teoria dei Circuii Prof. Luca Perregrini

Dettagli

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato Analisi dei uasi a erra nei sisemi MT a neuro isolao e neuro compensao - Problemaiche inereni alle proezioni 5N e 67N - A cura di: n. laudio iucciarelli n. Marco iucciarelli . nroduzione Di seuio viene

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

Sul costo dell'energia elettrica incide notevolmente la penalità per basso Fattore di Potenza

Sul costo dell'energia elettrica incide notevolmente la penalità per basso Fattore di Potenza - Soluzioni e sisemi per la razionalizzazione dei consumi energeici IL BSSO FTTORE DI POTENZ IL RIFSMENTO DEGLI IMPINTI ELETTRII Sul coso dell'energia elerica incide noevolmene la penalià per basso Faore

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI UNIVERIÀ DEGLI UDI DI RENO FACOLÀ DI CIENZE MAEMAICHE, FIICHE E NAURALI CORO DI LAUREA IN FIICA APPLICAA DAVIDE BAI APPUNI DI ANALII DEI EGNALI Indice Risposa impulsionale dei sisemi lineari -. isemi lineari

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento Sommario Lezione 15 Converiore di ipo Flash Converiore a gradinaa Converiore a rampa Converiore ad approssimazioni successive (SA) Converiore di ipo SigmaDela Esempi di converiori preseni a bordo di mc

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

6 Profili in parete sottile

6 Profili in parete sottile 6 Profili in paree soile 6. Inroduzione Una percenuale non rascuraile in peso della produzione di componeni sruurali di acciaio riguarda i profili in paree soile, ossia profili in classe (profili snelli)

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

Si definisce analogico un segnale che può assumere infiniti valori nel campo di variabilità del segnale stesso (fig. 1.4a).

Si definisce analogico un segnale che può assumere infiniti valori nel campo di variabilità del segnale stesso (fig. 1.4a). 1.2.1 - Segnali analogici e digiali Si definisce analogico un segnale che può assumere infinii valori nel campo di variabilià del segnale sesso (fig. 1.4a). I segnali analogici sono così denominai poiché

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

Conversione Analogico-Digitale

Conversione Analogico-Digitale Capiolo 4 Conversione Analogico-Digiale I segnali del mondo reale sono analogici, menre un elaboraore digiale è in grado di memorizzare e raare esclusivamene sequenze finie di bi. Per raare con ecniche

Dettagli

INDICE. 1 Introduzione... 69 2 Trasmissione analogica in banda base... 71 3 Trasmissione analogica in banda traslata... 72

INDICE. 1 Introduzione... 69 2 Trasmissione analogica in banda base... 71 3 Trasmissione analogica in banda traslata... 72 INDICE MODULO 1 ELABORAZIONE DEI SEGNALI UNIÀ 1 Nozioni di base di eoria dei segnali... 1 Inroduzione... 3 Segnali deerminai nel dominio del empo... 3.1 Classificazione dei segnali deerminai... 3. Proprieà

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI

Fabio Grasso LA PREVIDENZA COMPLEMENTARE: I PROFILI TECNICI Fabio Grasso Direore Diparimeno di Scienze Saisiche Presidene Area Didaica delle Scienze Saisiche, Auariali e Finanziarie Universià degli Sudi di Roma La Sapienza LA PREVIDENZA COMPLEMENTARE: I PROFILI

Dettagli

LA MODULAZIONE DI AMPIEZZA

LA MODULAZIONE DI AMPIEZZA MODULATORI E DEMODULATORI AM LA MODULAZIONE DI AMPIEZZA Sadio odulaore Anenna Oscillaore quarzao Porane Aplificaore AF Modulaore AM Sadio aplificaore Segnale AM Messaggio Trasduore di rasissione Modulane

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

Economia e gestione delle imprese - 01

Economia e gestione delle imprese - 01 Economia e gesione delle imprese - 01 L impresa come organizzazione che crea valore Leve di creazione di ricchezza e responsabilià sociale Prima pare : L impresa che crea valore 1. L impresa 2. L evoluzione

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Esercizi svolti di teoria dei segnali

Esercizi svolti di teoria dei segnali Esercizi svoli di eoria dei segnali Alessia De Rosa Mauro Barni Novembre Indice Inroduzione ii Caraerisiche dei segnali deerminai Sviluppo in Serie di Fourier di segnali periodici Trasformaa di Fourier

Dettagli

Metodo della trasformata di Laplace

Metodo della trasformata di Laplace Meodo della raformaa di aplace Il meodo imbolico conene di affronare l analii di rei coneneni componeni reaivi (condenaori e induori) in regime inuoidale, aggirando la compleià maemaica inrodoa dalle relazioni

Dettagli

SENTRON. Sistema per il controllo dell'isolamento negli ambienti medico-ospedalieri. Controllori, pannelli di test e di segnalazione

SENTRON. Sistema per il controllo dell'isolamento negli ambienti medico-ospedalieri. Controllori, pannelli di test e di segnalazione SENTRON Apparecchi modulari e fusibili BT Sisema per il conrollo dell'isolameno negli ambieni medico-ospedalieri Conrollori, pannelli di es e di segnalazione Nelle sale operaorie degli ambieni ospedalieri,

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

Sistemi di drenaggio urbano. Prof. Antonino Cancelliere. I sistemi di drenaggio urbano

Sistemi di drenaggio urbano. Prof. Antonino Cancelliere. I sistemi di drenaggio urbano Corso di Proezione Idraulica del Terriorio Sisemi di drenaggio urbano Prof. Anonino Cancelliere Diparimeno di Ingegneria Civile e Ambienale Universià di Caania acance@dica.unic.i 095 7382718 I sisemi di

Dettagli

Analisi Frequenziale di Segnali a Tempo Discreto

Analisi Frequenziale di Segnali a Tempo Discreto Capiolo 3 Analisi Frequenziale di Segnali a Tempo Discreo Nei capioli precedeni sono sae inrodoe le nozioni basilari di segnali analogici e a empo discreo, le operazioni fondamenali ra segnali, e, infine,

Dettagli

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007)

INDICATORI PER IL MERCATO AZIONARIO (aggiornato il 2-2-2007) INDICATORI PER IL MERCATO AZIONARIO (aggiornao il 2-2-2007). Obievi della rilevazione Negli anni 60 Mediobanca avviò la rilevazione sisemaca dei corsi delle azioni quoae in Borsa, ideando un indice con

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

Introduzione all analisi delle serie storiche e dei metodi di previsione

Introduzione all analisi delle serie storiche e dei metodi di previsione Inroduzione all analisi delle serie soriche e dei meodi di previsione Indice. Capiolo inroduivo,. Inroduzione.2 Fasi di un analisi di previsione e sruura delle dispense 2. Meodi e srumeni di base, 5 2.

Dettagli

Si trova all interno dell unità centrale e su di essa sono montati la maggior parte dei dispositivi che compongono il PC.

Si trova all interno dell unità centrale e su di essa sono montati la maggior parte dei dispositivi che compongono il PC. 2008-10-07 - pagina 1 di 9 PC Deskop Il PC da scrivania in una configurazione minima è cosiuio da: Unià cenrale con unià di memorizzazione ed elaborazione Tasiera Mouse Monior Unià cenrale Nell unià cenrale

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Dai segnali analogici a quelli numerici

Dai segnali analogici a quelli numerici Appuni di eoria dei Segnali a.a. 200/20 L.Verdoliva In queso capiolo descriveremo i passi che subisce un segnale analogico quando viene discreizzao per oenere un segnale numerico (conversione A/D), e quelle

Dettagli

Le polizze rivalutabili

Le polizze rivalutabili Capiolo 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi, con l eccezione delle polizze TCM, hanno compleamene

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica.

Opportunità di arbitraggio nel mercato del BTP Futures: una verifica empirica. Opporunià di arbiraggio nel mercao del BTP Fuures: una verifica empirica. Andrea Giacomelli Grea, Venezia Domenico Sarore Universià Ca' Foscari e Grea, Venezia Michele Trova Inesa Asse Managemen Come è

Dettagli

Preparare l ambiente di posa in opera

Preparare l ambiente di posa in opera Preparare l ambiene di posa in opera Prima della posa in opera, il parque deve essere conservao in ambieni asciui, con imballo inegro e chiuso, proeo da evenuali influenze dell'ambiene eserno che porebbero

Dettagli

INTERBANCA Codice ISIN IT0004041478

INTERBANCA Codice ISIN IT0004041478 REGOLAMENTO DEL PRESTITO OBBLIGAZNAR INTERBANCA 2006/2011 Discoun Dynamic Index 24 fino a EUR 250.000.000 Ar. 1 - TITOLI Il presio obbligazionario Inerbanca 2006/2011 Discoun Dynamic Index 24 fino a EUR

Dettagli

C R CARICO. Fig. 2.1 - Sistema meccanico

C R CARICO. Fig. 2.1 - Sistema meccanico 2 DINAMIA DEL SISTEMA MOTOE AIO 2. Equazione di equilibrio meccanico Nel caso di movimeno roaorio, che rappresena il caso più comune nel campo degli azionameni elerici, il moore ed il relaivo carico azionao

Dettagli

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA

SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA SELEZIONE DI UN PORTAFOGLIO MEDIANTE LA FORZA RELATIVA RELATORE: Ch.mo Prof. Francesco

Dettagli

Provincia di Treviso

Provincia di Treviso Treviso, 21 dicembre 2004 OGGETTO: Gesione rifiui urbani e assimilai Servizio pubblico inegraivo di gesione rifiui speciali Adempimeni relaivi alla compilazione di formulari di idenificazione, regisri

Dettagli

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES)

L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) L'UTILIZZO DI TRADING RULES IN MODELLI A CAMBIAMENTO DI REGIME (SWITCHING REGIMES) Monica Billio Universià Ca Foscari e GRETA, Venezia Michele Paron GRETA, Venezia Inroduzione. Moli meodi di analisi ecnica

Dettagli

Ottobre 2009. ING ClearFuture

Ottobre 2009. ING ClearFuture Oobre 2009 ING ClearFuure Una crescia cosane. Con una solida proezione nel empo. ING ClearFuure è la soluzione assicuraiva Uni Linked di dirio lussemburghese, realizzaa apposiamene da ING Life Luxembourg

Dettagli

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni

Sommario. Introduzione. Progetto di alberi di trasmissione Concentrazione di tensioni 3 La orsione Sommario Inroduzione Alberi saiamene indeerminai Carihi orsionali su alberi irolari Momeno dovuo a ensioni inerne Deformazioni angenziali parallele all asse Progeo di alberi di rasmissione

Dettagli

Esercitazione Scritta di Controlli Automatici 08-02-2006

Esercitazione Scritta di Controlli Automatici 08-02-2006 Eserciazione Scria di Conrolli Aomaici 8--6 Esercizio Si consideri la serie composa da n aaore ed n sisema meccanico (figra ). U A(s) F G(s) Y Figra : Connessione serie ra aaore e sisema meccanico. Enrambe

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ

UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI ECONOMIA FEDERICO CAFFÈ CORSO DI LAUREA IN ECONOMIA E COMMERCIO Tesi di laurea IL RUOLO DELL ESPANSIONE DELLA DOMANDA DI CONSUMI NELLA CRESCITA ECONOMICA: ALCUNE

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini

Automazione Industriale AA 2002-2003 Prof. Luca Ferrarini Auomazione Indusriale AA 2002-2003 Prof. Luca Ferrarini Laboraorio 1 Obieivi dell eserciazione Sviluppare modelli per la realizzazione di funzioni di auomazione Comprensione e uilizzo di Ladder Diagrams

Dettagli

L ambiente prima di tutto

L ambiente prima di tutto ambiene prima di uo CATAOGO AMPAE ambiene prima di uo a ireiva Europea (2005/32/CE) viea da Seembre 2009 la prima iissione sul mercao di lampade ad elevao consumo energeico per uso domesico. a decisione

Dettagli

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009

La matrice di contabilità sociale (SAM): uno strumento per la valutazione IPI, 2009 La marice di conabilià sociale (SAM): uno srumeno per la valuazione IPI, 2009 Sono vieae le riproduzioni del eso, dei dai e dei conenui informaici dei CD allegai non auorizzai dall IPI con qualsiasi mezzo

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE TESI DI LAUREA IN STATISTICA ECONOMIA E FINANZA STIMA DELLA VOLATILITA NEI MERCATI FINANZIARI CON DATI INFRA-GIORNALIERI: ALCUNI CONFRONTI

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

6 IL TASSO DI CAMBIO

6 IL TASSO DI CAMBIO Il asso di cambio 111 6 IL TASSO DI CAMBIO Il sisema economico silizzao dal quale siamo parii nel capiolo 1 si basa sul barao. In esso quindi non roviamo monea né ano meno la necessià di converire grandezze

Dettagli

6 Le polizze rivalutabili

6 Le polizze rivalutabili 6 Le polizze rivaluabili 6.1 Inroduzione Le polizze via rivaluabili sono sae inrodoe nel mercao ialiano negli anni di ala inflazione e oggi ui i conrai dei rami via proposi dalla compagnie ialiane, con

Dettagli

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading

Metodi stocastici per l individuazione di casi di Manipolazione e di insider trading Approfondimeni l Regulaion Meodi socasici per l individuazione di casi di Manipolazione e di insider rading Marcello Minenna presena un modello probabilisico per l individuazione di possibili fenomeni

Dettagli

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G.

Corso di IMPIANTI TECNICI per l EDILIZIAl. Vaso di espansione. Prof. Paolo ZAZZINI Dipartimento INGEO Università G. Corso di IMPIANTI TECNICI per l EDILIZIAl aso di espansione Prof. Paolo ZAZZINI Diparimeno INGEO Universià G. D Annunio Pescara www.lf.unich.i Prof. Paolo ZAZZINI Diparimeno INGEO Universià G. D Annunio

Dettagli

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici

Facoltà di Agraria - Università di Sassari Anno Accademico 2004-2005. Analisi Costi e Benefici Facolà di Agraria - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Pianificazione e Difesa del erriorio Docene: Luciano Guierrez Analisi Cosi e Benefici. Inroduzione. Decisioni individuali

Dettagli

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia

Introduzione all analisi quantitativa dei beni pubblici. Italo M. Scrocchia Diparimeno di Scienze Economiche, Maemaiche e Saisiche Universià degli Sudi di Foggia Inroduzione all analisi quaniaiva dei beni pubblici Ialo M. Scrocchia Quaderno n. 27/2008 Esemplare fuori commercio

Dettagli

Distribuzione Weibull

Distribuzione Weibull Disribuzione Weibull f() 6.6.4...8.6.4. 5 5 5 3 Disribuzione di Weibull Una variabile T ha disribuzione di Weibull di parameri α> β> se la sua densià di probabilià è scria nella forma: f ( ) exp da cui

Dettagli

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996

LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Liuc Papers n. 33, Serie Economia e Impresa 8, seembre 1996 LA DINAMICA DEL DEBITO PUBBLICO. UN ANALISI DEL CASO ITALIANO, 1980-1996 Angelo Marano Inroduzione Le dimensioni anomale che il debio pubblico

Dettagli

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita

Appunti delle lezioni di istituzioni di matematica attuariale per le assicurazioni sulla vita Appuni delle lezioni di isiuzioni di maemaica auariale per le assicurazioni sulla via Claudio Pacai anno accademico 2005 06 Indice 1 Le operazioni di assicurazione e la eoria dell uilià 1 1.1 L operazione

Dettagli

Ma nel dettaglio, come si svolge una seduta di allenamento con la metodica SPLIT SYSTEM?

Ma nel dettaglio, come si svolge una seduta di allenamento con la metodica SPLIT SYSTEM? LO SPLIT SYSTEM Di Fabio Zonin Volee oenere oimi guadagni di forza e massa e enere conemporaneamene soo conrollo la percenuale di grasso corporeo e farlo allenandovi solo per un ora re vole la seimana?

Dettagli

Il PLL: anello ad aggancio di fase

Il PLL: anello ad aggancio di fase 9 Il PLL: anello ad aggancio di ase l PLL (Phase-Locked Loop) è un circuio, le cui applicazioni sono descrie nel SOTTOPARAGRAFO 9., cosiuio da re blocchi (FIGURA ) che realizzano un sisema in reroazione

Dettagli