7 CIRCUITI ELETTRICI IN REGIME SINUSOIDALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "7 CIRCUITI ELETTRICI IN REGIME SINUSOIDALE"

Transcript

1 7 IUII ELEII IN EGIME SINUSIDALE Il primo generaore di correne coninua fu realizzao nel 83 da Faraday; queso disposiivo era cosiuio da un disco di rame poso in roazione ra le espansioni polari di una calamia. ollegando un galvanomero ra l asse del disco ed il bordo Faraday osservò la generazione di una correne cosane di inensià proporzionale alla velocià di roazione del disco. Nel 83 il cosruore di srumeni scienifici francese Hippolye Pixii ponendo in roazione un magnee permanene a forma di ferro di cavallo in prossimià di un elerocalamia realizzò il primo generaore di correne alernaa; queso rudimenale disposiivo venne migliorao nel 844 da Luigi Palmieri che sviluppò il primo generaore moderno di correne alernaa. Inorno al 88 l energia oenua araverso i generaori di correne coninua aveva acquisao un coso di mole vole inferiore a quella oenua araverso le pile eleriche uavia l indusria eleroecnica inconrava noevoli difficolà nel rasporo a disanza della correne prodoa. Nondimeno con l invenzione di homas Alva Edison della lampadina ad incandescenza nel 879 l illuminazione elerica cominciò progressivamene a sosiuire quella a gas nei cenri urbani delle grandi cià. uavia a causa della cadua di ensione lungo i cavi il sisema di elerificazione di Edison basao sulla correne coninua richiedeva l isallazione di generaori di correne a disanze di circa un chilomero l uno dall alro. onsapevole dei vanaggi della correne alernaa dovui essenzialmene alla possibilià di variarne l ampiezza con elevai rendimeni per mezzo di rasformaori nel 888 il fisico di origine croaa Nikola esla propose all imprendiore George Wesinghouse una ree elerica basaa su queso ipo di correne. onemporaneamene per garanire il funzionameno degli impiani indusriali con la correne alernaa esla perfezionò il moore a correne alernaa sviluppao da Galileo Ferraris nel 885 che uilizzava un campo magneico roane oenuo da due bobine orogonali comandae da correni opporunamene sfasae per rascinare un indoo cosiuio da un eleromagnee. La compeizione ra i due sisemi di elerificazione si concluse col favore della correne alernaa nel 895 quando fu inauguraa la prima cenrale idroelerica della poenza di poco più di 3 kw presso le cascae del Niagara collegaa ad una ree in grado di rasporare energia con Nikola esla basse perdie sino alla cià di Buffalo disane circa 35 km dall impiano. Lo sudio dei circuii solleciai araverso generaori che erogano forze eleromorici variabili sinusoidalmene nel empo olre ad essere imporane dal puno di visa praico rivese paricolare ineresse anche dal puno di visa eorico; come si vedrà nel seguio un qualsiasi segnale reale periodico può essere rappresenao come la composizione di infinii segnali sinusoidali per cui lo homas Alva Edison Inerno della cenrale elerica delle cascae del Niagara in basso a desra sono visibili i generaori di correne alernaa (alernaori) progeai da esla.

2 7- ircuii elerici in regime sinusoidale sudio delle ecciazioni sinusoidali rappresena il puno di parenza per uno sudio più generale dei circuii. Infine il meodo generalmene adoperao per l analisi dei circuii ecciai sinusoidalmene si presa ad essere facilmene applicao ad alri sisemi simolai nella sessa maniera. Per affronare ale sudio occorre fare delle ipoesi relaive alle grandezze in gioco in queso coneso; ali ipoesi uavia non risulano limiani per un ampio inervallo di frequenze e per la maggior pare dei componeni in uso in ali circuii. Si assume che in ogni isane le correni sono le sesse che vi sarebbero nel caso sazionario ossia il veore densià di correne dovrà essere considerao sinusoidale quindi varranno la legge di hm e le leggi di Kirchhoff. Si rierrà inolre che la correne cambi nel empo in modo sufficienemene leno perché ue le sue variazioni si propaghino isananeamene araverso il circuio. Infine si assume che le caraerisiche capaciive induive e resisive della ree in esame siano localizzae in regioni di esensione limiaa del circuio in esame. 7. ircuio L La ree cosiuia dalla serie di una resisenza un induanza L ed una capacià prende il nome di circuio L. Sia la differenza di poenziale presene ra le armaure del condensaore nell isane iniziale in cui viene chiuso l inerruore. Indicando con v la differenza di poenziale ai capi del condensaore al empo generico si ha: L i v ( ) dove se di L + i + v (7.) d q indica la carica sul condensaore v vale: q v + i( ξ ) dξ (7.) per cui sosiuendo nell espressione precedene si ha: di L + i + + i( ξ) dξ d e derivando ambo i membri segue: di di d L d L + + i. (7.3) Per inegrare quesa equazione differenziale poniamo i λ e α dove in generale il coefficiene α è un numero complesso; sosiuendo ale espressione della correne nella (7.3) si oiene: α α α α λe + αλe + λe L L

3 ircuii elerici in regime sinusoidale 7-3 e dividendo ambo i membri per λ e α si perviene all equazione caraerisica: α + α + L L che ha soluzioni: α ± ± L 4L L L dove si è poso: 4L L ; le corrispondeni soluzioni dell equazione differenziale e α e e α sono due soluzioni indipendeni e di conseguenza è soluzione anche una loro combinazione lineare: α α i ae + be. Si noi che siccome α e α sono complessi anche e α e i deve essere una quanià reale in quano susceibile di misura necessariamene a e b devono essere complessi. In relazione al segno di si hanno re differeni soluzioni dell equazione differenziale. Se > ovvero se > L allora α e α sono dei numeri reali negaivi così la soluzione è la somma di due esponenziali decresceni: e α lo sono così poiché α α i ae + be. Se ovvero se L allora α e α sono reali e coincideni e valgono in paricolare ( L) così si prova che: i ( ) D D> L i c+ k e. Infine se < ovvero se < L allora α e α sono complessi perano se si pone: ω L 4L è possibile scrivere: α ± jω L

4 7-4 ircuii elerici in regime sinusoidale così sosiuendo nell espressione di i si ha : poso quindi: L jω L jω i ae e + be e L L ( ω ) ( ω ) ( ω ) ( ω ) e acos + jasin + bcos jbsin ( ω ) ( ω ) e a+ b cos + j a b sin a+ b I sinφ j ( a b ) I cosφ I i( ) segue: e - I L D< L i Ie cos ω sinφ+ sin ω cosφ L ( ω φ) Ie sin +. Si osservi che indipendenemene dal segno del discriminane la correne i si annulla sempre nel limie. p /w 7. Bilanci energeici nel circuio L Il circuio L nel limie ideale in cui è nulla è deo circuio L in ale caso l equazione differenziale che lo descrive si ricava da quella del circuio L (7.3) ponendo uguale a zero: di d la cui soluzione è: con: + i L sin ( ω φ ) i I + (7.4) ω ; (7.5) L Si fa uso della formula di Eulero: e jϕ cosϕ+ jsinϕ.

5 ircuii elerici in regime sinusoidale 7-5 dove ω prende il nome di pulsazione di oscillazione libera del circuio L. Le due cosani φ e I sono ricavae a parire dalle condizioni iniziali. Assumendo che all isane iniziale la bobina non sia percorsa da correne si ha: φ. Poiché queso circuio è privo di elemeni dissipaivi il valore massimo dell energia immagazzinaa nella bobina I L deve essere uguale al valore massimo dell energia immagazzinaa nel condensaore essendo la differenza di poenziale presene all isane iniziale ra le armaure del condensaore; perano: I ω. (7.6) La differenza di poenziale ai capi del condensaore per φ si oiene dalla (7.) per sosiuendo a i la sua espressione dalla (7.4) con la posizione (7.6): di v L LIωcos( ω) Lω cos( ω) cos( ω) d così l energia immagazzinaa isananeamene nel condensaore è: Ue v cos ( ω) menre l energia immagazzinaa isananeamene nella bobina è: Um Li LI sin ( ω) sin ( ω) e l energia oale immagazzinaa isananeamene nel circuio L è: U cos ( ) sin ( ) Ue + Um ω + ω cioè pari all energia immagazzinaa nel condensaore all isane iniziale. In figura sono mosrai i grafici delle funzioni Ue Um e della loro somma U ( ). L osservazione che la scarica di una boiglia di Leyda non consise nel solo passaggio di elericià da un armaura all alra ma da una serie di oscillazioni smorzae fu faa da Henry nel 84. Sebbene non conoscesse ale sudio Hermann von Helmoholz adoò quesa ipoesi nella formulazione del principio di conservazione dell energia. Il processo di scarica fu sudiao analiicamene da homson nel 855 che uilizzando la eoria del poenziale idenificò le circosanze in cui si manifesava la scarica oscillaoria e rovò l espressione (7.5) della pulsazione di oscillazione. Infine nel 869 Helmoholz provò che si poevano oenere delle oscillazioni eleriche in una bobina collegaa alle armaure di un condensaore. U U ( ) U m ( ) U e ( )

6 7-6 ircuii elerici in regime sinusoidale 7.3 ircuio L forzao Supponiamo di aggiungere un generaore di forza eleromorice sinusoidale v di pulsazione ω alla serie dei componeni che cosiuiscono il circuio L. Se: ( ω ) v cos (7.7) v( ) L i v ( ) allora l equazione che descrive il nuovo circuio è: di L + i + v v. d Sosiuendo a v e a ha: v le loro espressioni rispeivamene dalle (7.) e (7.7) e riordinando si di + i + i ( ξ) d ξ cos( ω ) d L L L L. (7.8) L equazione che esprime la legge di variazione della differenza di poenziale ai capi del v a condensaore si ricava derivando ambo i membri dell equazione inegrale (7.) che lega i : dv i d sosiuendo i da ale equazione nella (7.8) si ha: dv dv v cos( ω) + +. (7.9) d L d L L L L equazione inegro-differenziale (7.8) che sabilisce la legge di variazione della correne araverso il circuio e l equazione differenziale (7.9) che sabilisce la legge di variazione della differenza di poenziale ai capi del condensaore definie le opporune condizioni iniziali possono essere risole facendo uso dei radizionali meodi così come si è fao per il circuio privo di solleciazione. uavia nel caso di simoli sinusoidali conviene far uso di un meodo paricolare inrodoo dall ingegnere edesco harles Proeus Seinmez nel 893 la cui applicazione si rivela paricolarmene efficace in ale ambio. harles Proeus Seinmez

7 ircuii elerici in regime sinusoidale Meodo simbolico A parire dall equazione differenziale: d y dy a + b + cy f (7.) d d consideriamo la nuova equazione che si oiene aggiungendo al secondo membro della (7.) la funzione jg ω d ω d a + b + cω f + jg. (7.) d d Si noi che si è fao uso di un simbolo diverso ω per rappresenare la soluzione di quesa equazione che in generale è diversa dalla soluzione y( ) della (7.). La funzione ω è in generale complessa e perano può essere espressa come: ω u + jv dove u e complessa di u. Sosiuendo nella (7.) si ha: v sono due funzioni reali. La funzione ω prende il nome di esensione d u d v du dv a + j b j c u jv f jg d d d d ed uguagliando quindi le pari reali e quelle immaginarie si ha: du du a + b + cu f d d dv dv a + b + cv g d d ovvero la funzione u è soluzione dell equazione originaria (7.). Quese considerazioni sono la base della regola di soluzione di equazioni differenziali dea meodo simbolico. A parire da una cera equazione (7.) scria in forma normale si cosruisce una seconda equazione (7.) sommando una funzione jg al secondo membro. L equazione (7.) è più semplice da risolvere ω è della (7.) ed è caraerizzaa dal fao che la pare reale u( ) della sua soluzione soluzione dell equazione (7.). L individuazione della forma funzionale di g( ) dipende dalla espressione di f ; se ad esempio risula: cos( ω ) f K allora è opporuno che sia

8 7-8 ircuii elerici in regime sinusoidale così: sin ( ω ) g K cos( ω ) sin ( ω ) f jg K jk Ke ω j + +. Perano in queso caso per oenere l equazione (7.) a parire dalla (7.) l applicazione del j cos ω con e ω. meodo corrisponde alla sosiuzione formale nella (7.) del ermine 7.5 Soluzione del circuio L forzao a regime Applichiamo il meodo simbolico all equazione (7.8); perano sosiuiamo formalmene j cos ω con e ω : di j I I d e ω + + ξ ξ d L L L L e deriviamo rispeo al empo: di di jω I jω e + +. (7.) d L d L L La soluzione generale di quesa equazione può essere posa nella forma I + I dove I ( ) indica la soluzione dell equazione omogenea associaa alla (7.): d I di + + I (7.3) d L d L menre I rappresena una soluzione paricolare della (7.). L equazione omogenea (7.3) uguale alla (7.3) è già saa risola nell ambio dello sudio del circuio L non forzao e in paricolare si è verificao che la corrispondene soluzione si annulla nel limie dei empi lunghi. Essendo ineressai allo sudio del circuio L a regime quando il ransiorio si può rienere esaurio non eniamo cono del ermine I. Per sabilire l espressione di I supponiamo che sia: I j I e ω sosiuendo nella (7.) si ha: jω jω jω jω ω Ie + jωie + Ie jω e L L L da cui dividendo per j e ω e sviluppando segue:

9 ircuii elerici in regime sinusoidale 7-9 I jω. (7.4) L L j L L ω + jω + ω ω j ωl L L jω L jω L jω ω Poniamo quindi: Z + j ωl ω allora indicando con Z e φ rispeivamene il modulo e l argomeno di Z : Z Z + ωl ω anφ ωl ω (7.5) l espressione di I divena: e I I e e e Z Ze Z jω jω jω j( ω φ ). jφ Alla luce dell applicazione del meodo simbolico la correne i( ) si valua deerminando la pare reale di I : j( ω φ) i e{ I } e e cos( ω φ ); Z Z La differenza di poenziale ai capi del condensaore v sesso meodo all equazione (7.9) uavia poiché: ( ξ ) v + i dξ applicando il meodo simbolico a ale relazione si ha: ( ξ ) + I dξ ; può essere deerminaa applicando lo in quesa espressione e l addendo derivane dall esremo inferiore di inegrazione deermineranno un ermine il cui effeo è limiao alla duraa del ransiorio perano non ne eniamo cono; così sosiuendo a I la sua espressione si ha:

10 7- ircuii elerici in regime sinusoidale I I d I e d I e jω jω ξ ξ jω jω ξ la cui pare reale è pari a v. A causa della scarsa preparazione maemaica degli ingegneri eleroecnici della fine del 9 secolo il meodo simbolico non fu immediaamene acceao. Per migliorarne la comprensione Seinmez a parire dal 897 pubblicò diversi manuali in cui il meodo era applicao in varie circosanze così araverso ali scrii e le lezioni enue il suo meodo fu gradualmene adoao nello sudio dei circuii ecciai sinusoidalmene. 7.6 Impedenza Nel circuio rappresenao in figura indicando con v ( ) vl e v rispeivamene le differenze di poenziale ai capi della resisenza della bobina e del condensaore risula: i v ( ) di v i vl L d v( ) L v L ( ) ( ξ ) v + i dξ. v ( ) Per la seconda legge di Kirchhoff se v è la forza eleromorice erogaa dal generaore con risula: ( ω ) v cos v v + v + v. L La descrizione del circuio in esame può essere svola equivalenemene araverso l uso del meodo simbolico; applicando direamene ale procedimeno alle espressioni di v vl e v ( ) si ha : L I jωli I ; jω sommando membro a membro se rappresena l esensione complessa di v allora: Per comodià di scriura si soinendono le dipendenze emporali delle esensioni complesse.

11 ircuii elerici in regime sinusoidale 7- + L + + jωl+ I Z I jω. La quanià Z pari a jωl ( jω) + + prende il nome di impedenza del circuio in esame. Si osservi che a differenza della resisenza di un circuio l impedenza non rappresena una caraerisica inrinseca di un circuio poiché dipende dalla pulsazione dell ecciazione sinusoidale applicaa. L unià di misura del modulo dell impedenza è l ohm. La relazione Z I che lega l esensione complessa della forza eleromorice applicaa all esensione complessa della correne araverso l impedenza è dea legge di hm generalizzaa. Dall esame della forma di Z è possibile ricavare l espressione delle impedenze associae alla resisenza alla bobina ed al condensaore: Z ZL jωl jxl (7.6) Z j jx jω ω (7.7) dove X L pari a ω L e ω prendono il nome rispeivamene di reaanza induiva e reaanza capaciiva. Alla luce dell espressione della legge di hm generalizzaa e della validià delle leggi di Kirchhoff è possibile dedurre che lo sudio delle rei soggee ad uno simolo di ipo sinusoidale procede in maniera analoga al caso degli simoli coninui purché si adoperi il conceo di impedenza per la descrizione dei componeni della ree. Perano il collegameno in serie di n impedenze Z Z Zn è equivalene ad un unica impedenza Z di valore pari a: X pari a Z n Z k k menre se le n impedenze sono connesse in parallelo risula: Z n k Z k. sserviamo infine che in generale un impedenza può essere espressa nella forma: Z + jx dove X è dea in generale reaanza. L inverso di un impedenza: Y Z

12 7- ircuii elerici in regime sinusoidale è denominao ammeenza. I re elemeni più semplici che cosiuiscono l impedenza sono la resisenza l induanza e la capacià; nel seguio analizzeremo separaamene le caraerisiche di ciascuno di quesi componeni Impedenza resisiva onsideriamo una resisenza percorsa da una correne: ( ω φ ) i I cos + i v dalla legge di hm segue: cos( ω φ) cos( ω φ ) v i I + + dove si è poso: I. Il fao che l impedenza associaa ad un resisore coincida con la sua resisenza fa si che le relazioni radizionali forniscano il legame ra correne e differenza di poenziale senza dover ricorrere al meodo simbolico. iò implica per alro che la differenza di poenziale ai capi della resisenza risula in fase con la correne che la percorre. I w + f 7.6. Impedenza induiva poso onsideriamo una bobina di induanza L percorsa dalla correne: ( ω φ ) i I cos + ; i L v L ( + ) j I Ie ω φ siccome l impedenza associaa alla bobina vale: L π j Z jωl ωle l esensione complessa della differenza di poenziale ai suoi capi è: L π π π j j ω+ φ+ j ω+ φ+ ( ) j ω + φ ω ω I Z I e Le LI e e dove si è poso: ωli.

13 ircuii elerici in regime sinusoidale 7-3 I due ermini: ( + ) j I Ie ω φ π j ω+ φ+ e w + f + p / I w + f possono essere considerai rappresenaivi di due veori che spiccano dal medesimo puno e ruoano nella sessa direzione convenzionalmene anioraria con velocià angolare pari a ω manenendosi uno sfasao in anicipo di 9 rispeo all alro I. Quese enià prendono il nome di fasori. Per ricavare la differenza di poenziale v( ) ai capi della bobina valuiamo la pare reale di : π j ω+ φ+ v { } e cos π e e ω+ φ+ ; quindi la differenza di poenziale sinusoidale ai capi della bobina ha ampiezza pari a ed è sfasaa in anicipo di 9 rispeo alla correne i( ). Dall espressione di segue inolre che: lim limωli ω ω ; lim I lim ω ω ωl v( ) i( ) ali relazioni possono essere inerpreae affermando che nel limie di uno simolo coninuo ( ω ) la bobina agisce come un corocircuio menre nel limie delle ale frequenze (ω ) la bobina si compora come un circuio apero. p / Impedenza capaciiva onsideriamo un condensaore di capacià alimenao dalla correne: ( ω φ ) i I cos + ; i v poso: ( + ) j I Ie ω φ poiché l impedenza associaa al condensaore è: π j Z j e jω ω ω l esensione complessa della differenza di poenziale ai suoi capi è:

14 7-4 ircuii elerici in regime sinusoidale π π π j j ω+ φ j ω+ φ ω φ j + I Z I e e I e e ω ω dove si è poso: I ermini: I ω. ( + ) j I Ie ω φ π j ω+ φ e rappresenano due fasori con sfasao in riardo di 9 rispeo a I. La differenza di poenziale v( ) ai capi del condensaore vale: π j ω+ φ v { } cos π e e e ω+ φ I w + f w + f -p / cioè ale differenza di poenziale ha ampiezza ed è sfasaa in riardo di 9 relaivamene alla correne i( ). Inolre risula: v( ) i( ) w lim I limω ω ω I ; lim lim ω ω ω p / ovvero nel limie delle solleciazioni coninue il condensaore agisce come un circuio apero menre alle ale frequenze si compora come un corocircuio. Esempio: Nel circuio di figura il generaore v eroga una forza eleromorice sinusoidale di ampiezza pari a 3 e pulsazione ω di 34 rad s. Sabiliamo l espressione della correne che araversa nell ipoesi che e valgano rispeivamene Ω e Ω L vale mh e µf. L esensione complessa di v è: v L e ω j così in corrispondenza nodo N risula: I I + I (7.8) 3

15 ircuii elerici in regime sinusoidale 7-5 dove I I e 3 i ( ) e 3 i I rappresenano le esensioni complesse rispeivamene di i ; alla maglia comprendene il generaore e L e alla maglia comprendene L e si ha: j I + jωli3 e ω (7.9) jωli3 I I. jω (7.) v( ) i N i( ) i L 3 Quese due equazioni risulano formalmene ideniche a quelle che si scriverebbero in un circuio in correne coninua con l associazione di una resisenza j L jω alla capacià. Esprimiamo il sisema delle re equazioni in forma mariciale: ω all induanza L e di una resisenza I jω jωl I e I 3 jωl jω allora l esensione complessa della correne i vale: I L + + j ωl+ ωl jω jω e jωl jω jωl jωle jωl jωl jω jω e. j + + ω L ω ωl Poso quindi: I + + ω L ω ωl + ω ωl ϑ aan 73 ω L. A v( ) i( ) risula: ( ω ϑ ) i I cos. In figura sono confronai l andameno di i ( ) con quello di v.

16 7-6 ircuii elerici in regime sinusoidale 7.7 isonanza onsideriamo un circuio L soggeo ad una ecciazione sinusoidale: ( ω ) v cos ; a regime la correne i araverso la ree è daa dall espressione: i cos( ω φ) I cos( ω φ) Z in cui l ampiezza I rappresena il modulo della correne complessa I daa dalla (7.4): I Z + ωl ω. (7.) L ampiezza I presena un massimo quando la pulsazione assume il valore ω pari a: ω (7.) L ovvero in corrispondenza della pulsazione di oscillazione libera del circuio. elaivamene a queso circuio ω prende il nome di pulsazione di risonanza. Per ω uguale a ω si ha: I ω I (w) / inolre dalla (7.5) segue: φ( ω ) così deduciamo che in corrispondenza della pulsazione di risonanza il circuio ha un comporameno di ipo resisivo nel senso che la correne i araverso il circuio risula in fase con la ensione applicaa v. La reaanza di queso circuio vale: f ( ) +p / w w X ωl ; ω w w per ω < ω risula: -p /

17 ircuii elerici in regime sinusoidale 7-7 X < ; per cui l impedenza Z può essere espressa come: Z j X ; d alra pare dalla (7.7) osserviamo che il condensaore è caraerizzao da un impedenza negaiva così concludiamo che per ω < ω il circuio L è viso dal generaore come la serie di una resisenza con un condensaore ' di valore: ' ω L ; per ω > ω risula: X > ; per cui l impedenza Z può essere espressa come: Z + jx ; d alra pare dalla (7.6) osserviamo che l induanza è caraerizzaa da un impedenza posiiva così concludiamo che per ω > ω il circuio L è viso dal generaore come la serie di una resisenza con una bobina L' di valore: ω L L'. ω 7.8 Faore di merio Sia U M la massima energia che può immagazzinare un circuio risonane 3 e U D l energia dissipaa in un periodo dallo sesso circuio; si definisce faore di merio del circuio in quesione la quanià: U M Q π ω ω U D dove si inende che il rapporo UM U D deve essere calcolao in corrispondenza della pulsazione di risonanza della ree. Queso faore fornisce un indice di come il circuio impiega l energia che gli viene fornia dal generaore. Per sabilire il faore di merio del circuio L fino ad ora esaminao consideriamo l energia immagazzinaa nella bobina; se la correne i( ) che percorre il circuio è: 3 Quese considerazioni sono di caraere generale nel senso che si applicano a ui i circuii caraerizzai da una frequenza di risonanza e perano dei circuii risonani.

18 7-8 ircuii elerici in regime sinusoidale sin ( ω ) i I la massima energia immagazzinaa nel circuio è: UM LI. Per valuare l energia dissipaa in un periodo osserviamo che l unico elemeno che dissipa energia è la resisenza e in corrispondenza della correne i( ) queso componene dissiperà isananeamene una poenza: sin ( ω ) p i I così l energia dissipaa in un periodo alla pulsazione di risonanza è: D I sin ( ω ) ω U p d I d I dove indica il periodo π ω alla pulsazione di risonanza. Dalla definizione segue quindi che il faore di merio del circuio L vale: π Q U LI M π π UD I π ω ω L inolre valendo la (7.) risula anche: Q ω L ω. (7.3) La grandezza esé inrodoa olre a caraerizzare il circuio risonane dal puno di visa energeico consene di meere in luce alri aspei relaivi alla funzionalià del circuio. Facendo uso del meodo simbolico deerminiamo le differenze di poenziale ai capi della bobina e del condensaore del circuio L in corrispondenza di un ecciazione sinusoidale di pulsazione pari a quella di risonanza risula: cioè: j ω jω jω + L L ω Z ω I ω jω L e jq e Q e π j ω jω jω ( ω) Z( ω) I ( ω) e jqe Qe jω π π vl Qcos ω+

19 ircuii elerici in regime sinusoidale 7-9 π v Qcos ω. Quindi alla risonanza le differenze di poenziale ai capi della bobina e del condensaore hanno un ampiezza Q vole maggiore dell ampiezza della forza eleromorice applicaa. D alra pare siccome le due ensioni oscillano manenendosi sfasae ra loro di 8 (in conrofase) la loro somma risula isane per isane nulla. Indichiamo genericamene con: ( ω + ϑ ) i I cos L ( w ) w I ( w ) l espressione della correne nel circuio L dove I è l ampiezza e ϑ pari all opposo φ dell argomeno dell impedenza Z la fase. Quese due quanià possono essere espresse come 4 : I ω ω + Q ω ω (7.4) ω ω anϑ Q. ω ω onvenzionalmene le pulsazioni ω e ω in corrispondenza delle quali I assume un valore pari a vole il suo massimo cioè ( ) definiscono gli esremi della banda passane ω inesa come l inervallo: ω ω ω; queso inervallo si può ricavare osservando che quando risulare: I è pari a ( ) dalla (7.4) deve 4 Dalle relazioni (7.) (7.) e (7.3) segue: I ωl ωl ωl ω Q ω ω ω ω ωωl. ω ω + Q ω ω Dalla relazione (7.5) enendo cono che la fase della correne i( ) è opposa all argomeno dell impedenza Z e dalle relazioni (7.) e (7.3) si ha: ω L ω ω ω anϑ an φ ωl Q Q Q. ω ωl ωωl ω ωωl ω ω

20 7- ircuii elerici in regime sinusoidale I (w) ω Q ω ω ω ± / / Q < Q < Q Q Q 3 da cui segue: ω Q ω ; Dw /w Dw /w Dw 3 /w Q 3 w/w osserviamo perano che la curva di risonanza risula ano più srea quano più è grande il valore assuno dal faore di merio. Il fenomeno della risonanza fu scopero da esla nel 89 nel corso dei suoi sudi sui circuii alimenai con ensioni sinusoidali ad ala frequenza; sfruando ale effeo esla realizzò un disposiivo (bobina di esla) in grado di produrre alissime ensioni a frequenza elevaa. f( ) +p / -p / w/w Q Q Q Poenze La poenza isananea fornia ad un generico carico da un generaore di forza eleromorice v( ) che eroga una correne i( ) è daa dalla relazione: vi w ; convenzionalmene w > corrisponde al rasferimeno di energia dal generaore verso il carico menre w < corrisponde ad un flusso di energia nella direzione opposa. onsideriamo una qualsiasi ree passiva ovvero priva di generaori e con due morsei; il eorema di hevénin eseso alle correni alernae consene di schemaizzare l inera ree compresa ra i morsei come una sola impedenza Z di modulo Z e argomeno φ : i Z v jφ Z Ze Z cosφ+ jz sinφ + jx dove si è poso: Zcosφ X Zsinφ. Se ale impedenza è percorsa da una correne sinusoidale: ( ω ) i I cos

21 ircuii elerici in regime sinusoidale 7- j di esensione complessa I pari a Ie ω l esensione complessa della differenza di poenziale ai suoi capi vale: ( ω φ) ( ω φ) I Z I e Ze I Ze e jω jφ j + j + in cui l ampiezza è pari a IZ ; a corrisponde la differenza di poenziale: { } ( ω + φ ) v ε IZcos. Perano la poenza isananea assorbia dalla ree così schemaizzaa è: poso quindi: risula: w vi I Zcos ω+ φ cos ω I Z cos ωcosφ sin ωcos ωsinφ I Zcosφcos ( ω) I Zsinφsin ( ω) p I ( Zcosφ) cos ( ω) I cos ( ω) I + cos( ω) q I ( Zsinφ ) sin ( ω) I X sin ( ω) w p + q ; il valor medio m p e così: q : W della poenza isananea w è la somma dei valori medi P m e + + ( ξ) ξ cos( ωξ) ξ + + ( ξ) ξ sin ( ωξ) ξ Pm p d I + I d I Qm q d I X d Wm Pm + Qm I Ieff Q m dei ermini dove I eff è il valore efficace 5 della correne i( ). Quindi la poenza isananea w è la somma di due ermini; il primo p ( ) deo poenza aiva isananea di valor medio diverso da zero 5 Per una grandezza periodica x( ) di periodo ovvero ale che per ogni risula x x( ) valore efficace di x( ) la quanià: + si definisce

22 7- ircuii elerici in regime sinusoidale rappresena la poenza dissipaa nella componene resisiva dell impedenza Z ; l alro q( ) deo poenza reaiva isananea di valor medio nullo corrisponde all energia che le capacià e le induanze cosiueni la componene reaiva X dell impedenza Z assorbono durane le fasi di carica e cedono nelle fasi di scarica; se l impedenza Z è cosiuia unicamene da un componene reaivo ale scambio avviene col solo generaore. Noiamo infine che il valor medio W m della poenza isananea è pari al quadrao del valore efficace della correne i moliplicao per la componene resisiva dell impedenza Z quindi gli effei dissipaivi prodoi da una correne alernaa sono uguali a quelli di una correne coninua di inensià pari a quella del valore efficace della correne alernaa. Per ale moivo quando in genere ci si riferisce all ampiezza di una grandezza sinusoidale come ad esempio 3 per la ensione adoaa in Europa nelle rei domesiche si inende il valore efficace di ale grandezza. Il valor medio della poenza isananea pari a P m può esprimersi come: Pm I I Zcosφ Icosφ Ieffeff cosφ inolre il valore massimo della poenza reaiva isananea è: Q I X I Zsinφ Isinφ Ieffeff sinφ; facendo uso di ali quanià si definisce la poenza apparene come: ( φ) ( φ) a m eff eff eff eff eff eff P P + Q I cos + I sin I ; ale grandezza pur essendo priva di significao fisico ha valore in quano indireamene fornisce un indicazione della correne assorbia dall impedenza Z consenendo di deerminare ad esempio le sezioni dei conduori da impiegare nei collegameni. onvenzionalmene la poenza P m dea poenza aiva (media) si misura in wa (W) la poenza reaiva (massima) Q si misura in volampere reaivi (A) e la poenza apparene P a si misura in volampere (A). La poenza apparene P a coincide con la poenza aiva P m solo se l angolo di fase φ è nullo cioè se cosφ che corrisponde al caso di una impedenza puramene resisiva. Il ermine cosφ è deo faore di poenza e fornisce il rapporo: cosφ P P m a + X eff x ( ξ ) d ξ. Nel caso di una grandezza variabile con legge sinusoidale i I ( ω ) Ieff I cos ( ωξ ) dξ I. + cos con ω π risula:

23 ircuii elerici in regime sinusoidale 7-3 ra la poenza aiva e quella apparene. Esempio: onsideriamo una bobina reale ovvero ale da essere caraerizzaa da una resisenza diversa da zero; supponiamo che la sua impedenza Z sia pari a Ω e che la fase φ sia di 6 anziché di 9 come per un induore ideale. ale bobina connessa ad una ree di disribuzione elerica che eroga una ensione efficace eff di 3 fa passare una correne: I eff eff 3.3 A Z Ω così la poenza apparene vale: P I.3 A 3 59 A. a eff eff on un angolo di fase di 6 il faore di poenza cosφ vale così la poenza aiva è: P I cosφ.3 A W m eff eff cioè la poenza media è la meà della poenza apparene. Qualora cosφ fosse uguale a in corrispondenza della medesima poenza aiva si avrebbe una correne assorbia dal generaore: Pm 64.5W I eff'.5 A 3 eff pari alla meà di I eff. he la correne I eff sia così elevaa a frone di un suo non effeivo impiego non risula conveniene in quano i conduori per il collegameno al generaore gli inerruori i fusibili ed alri componeni devono essere in grado di sosenere il doppio della correne che sarebbe necessaria se il faore di poenza fosse uniario. A ale scopo le apparecchiaure commerciali sono sempre progeae in modo ale da manenere il faore di poenza della ree di alimenazione il più possibile prossimo all unià. 7. Poenza complessa Alla luce delle precedeni definizioni si evince che è possibile associare alla poenza P a una quanià complessa P a definia come: P I * a eff eff dove * I eff è il complesso coniugao di I eff ; perano siccome: j eff e ω I j( ) Ieff e ω + φ allora: * I j( ω+ φ) jω jφ Pa Ieff eff e e Ieffeff e Ieffeff cosφ jieffeff sinφ Pm jq.

Lezione n.7. Variabili di stato

Lezione n.7. Variabili di stato Lezione n.7 Variabili di sao 1. Variabili di sao 2. Funzione impulsiva di Dirac 3. Generaori impulsivi per variabili di sao disconinue 3.1 ondizioni iniziali e generaori impulsivi In quesa lezione inrodurremo

Dettagli

Il condensatore. Carica del condensatore: tempo caratteristico

Il condensatore. Carica del condensatore: tempo caratteristico Il condensaore IASSUNTO: apacia ondensaori a geomeria piana, cilindrica, sferica La cosane dielerica ε r ondensaore ceramico, a cara, eleroliico Il condensaore come elemeno di circuio: ondensaori in serie

Dettagli

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A. 2014-15 Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 4-5 Eserciazione 7 CICUII IN EGIME SINUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza di 5 Hz è collegao a una resisenza 65 Ω.

Dettagli

VALORE EFFICACE DEL VOLTAGGIO

VALORE EFFICACE DEL VOLTAGGIO Fisica generale, a.a. /4 TUTOATO 8: ALO EFFC &CCUT N A.C. ALOE EFFCE DEL OLTAGGO 8.. La leura con un mulimero digiale del volaggio ai morsei di un generaore fornisce + in coninua e 5.5 in alernaa. Tra

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di A. A 3/4 e 4/5 Ulimo aggiornameno 4//9 Premessa egime sazionario Un sisema elerico è in

Dettagli

Regime dinamico nel dominio del tempo

Regime dinamico nel dominio del tempo egime dinamico nel dominio del empo Appuni a cura dell Ingg. Basoccu Gian Piero e Marras Luca Tuors del corso di LTTOTNIA per meccanici e chimici A. A 3/4 e 4/5 Ulimo aggiornameno // Appuni a cura degli

Dettagli

Un po di teoria. cos è un condensatore?

Un po di teoria. cos è un condensatore? Sudio sperimenale del processo di carica e scarica di un condensaore cos è un condensaore? Un po di eoria Un condensaore è un sisema di due conduori affacciai, dei armaure, separai da un isolane. Esso

Dettagli

del segnale elettrico trifase

del segnale elettrico trifase Rappresenazione del segnale elerico rifase Gli analizzaori di poenza e di energia Qualisar+ consenono di visualizzare isananeamene le caraerisiche di una ree elerica rifase. Rappresenazione emporale I

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoli Parenope Facolà di Ingegneria Corso di Comunicazioni Elerice docene: Prof. Vio Pascazio a Lezione: 7/04/003 Sommario Caraerizzazione energeica di processi aleaori Processi aleaori nel

Dettagli

Motori elettrici per la trazione veicolare. Vincenzo Di Dio

Motori elettrici per la trazione veicolare. Vincenzo Di Dio Moori elerici per la razione veicolare Vincenzo Di Dio Tipologie di moori elerici uilizzai per la razione veicolare Moori a correne coninua Moori a correne alernaa Sincroni Asincroni Correni eleriche e

Dettagli

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Campo rotante. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCINE ELETTRICE Campo roane Sefano Pasore Diparimeno di Ingegneria e Archieura Corso di Eleroecnica (IN 043) a.a. 01-13 Inroduzione campo magneico con inensià ane che ruoa aorno ad un asse con velocià

Dettagli

3 CORRENTE ELETTRICA E CIRCUITI

3 CORRENTE ELETTRICA E CIRCUITI 3 ONT LTT UT lessandro ola Descrizione dell esperienza di Galvani Nel 79 il medico bolognese Luigi Galvani nell ambio dello sudio delle azioni eleriche sugli organi animali osservò che occando con uno

Dettagli

PROPRIETÀ ENERGETICHE DEI BIPOLI

PROPRIETÀ ENERGETICHE DEI BIPOLI CAPITOLO 4 PROPRIETÀ ENERGETICHE DEI BIPOLI 4.1 Poenza elerica. Conservazione delle poenze eleriche. Si consideri un circuio N con b bipoli e siano i 1 i 2 i b le correni e v 1 v 2 v b le ensioni; per

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Osservabilità (1 parte)

Osservabilità (1 parte) eoria dei sisemi - Capiolo 9 sservabilià ( pare) Inroduzione al problema della osservabilià: osservazione e ricosruzione. Sai indisinguibili e sai non osservabili...3 Soospazi di osservabilià e non osservabilià

Dettagli

Regolatori switching

Regolatori switching 2 A4 Regolaori swiching I regolaori di ensione lineari hanno il grave difeo di non consenire il raggiungimeno di valori di efficienza paricolarmene elevai. Infai, in quese archieure gli elemeni di regolazione

Dettagli

Azionamenti Elettrici

Azionamenti Elettrici Azionameni Elerici 2.4. CONVERTITORI DC/DC... 33 2.4.1. Conrollo dei converiori DC/DC... 33 2.4.2. FullBridge converer (DC/DC)... 34 2.4.2.1. PWM con commuazione di ensione bipolare...35 2.4.2.2. PWM con

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI

ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI ITI GALILEO FERRARIS S. GIOVANNI LA PUNTA APPUNTI DI TELECOMUNICAZIONI PER IL 5 ANNO IND. ELETTRONICA E TELECOMUNICAZIONI Prof. Ing. R. M. Poro A cura della TELECOMUNICAZIONI Con il ermine elecomunicazioni

Dettagli

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica

Principi di ingegneria elettrica. Lezione 19 a. Conversione elettromeccanica dell'energia Trasmissione e distribuzione dell'energia elettrica Principi di ingegneria elerica Lezione 19 a Conversione eleromeccanica dell'energia Trasmissione e disribuzione dell'energia elerica acchina elerica elemenare Una barra condurice di lunghezza l immersa

Dettagli

Circuiti del primo ordine

Circuiti del primo ordine Circuii del primo ordine Un circuio del primo ordine è caraerizzao da un equazione differenziale del primo ordine I circuii del primo ordine sono di due ipi: L o C Teoria dei Circuii Prof. Luca Perregrini

Dettagli

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA

Giorgio Porcu. Appunti di SISTEMI. ITI Elettronica Classe QUINTA Giorgio Porcu Appuni di SSTEM T Eleronica lasse QUNTA Appuni di SSTEM T Eleronica - lasse QUNTA 1. TEORA DE SSTEM SSTEMA ollezione di elemeni che ineragiscono per realizzare un obieivo. l ermine è applicabile

Dettagli

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato

Analisi dei guasti a terra nei sistemi MT a neutro isolato e neutro compensato Analisi dei uasi a erra nei sisemi MT a neuro isolao e neuro compensao - Problemaiche inereni alle proezioni 5N e 67N - A cura di: n. laudio iucciarelli n. Marco iucciarelli . nroduzione Di seuio viene

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica

Esercitazione n 2. Morganti Nicola Matr. 642686. Molla ad elica cicilindrica ar. 64686 olla ad elica cicilindrica Eserciazione n 9 In figura è rappresenao un basameno sospeso anivibrane di una macchina nella quale viene originaa una forza perurbane alernaa sinusoidale di inensià

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

Lezione n.12. Gerarchia di memoria

Lezione n.12. Gerarchia di memoria Lezione n.2 Gerarchia di memoria Sommario: Conceo di gerarchia Principio di localià Definizione di hi raio e miss raio La gerarchia di memoria Il sisema di memoria è molo criico per le presazioni del calcolaore.

Dettagli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli

IL DIMENSIONAMENTO DEGLI IMPIANTI IDROSANITARI Vasi d espansione e accumuli FOCUS TECNICO IL DIMENSIONAMENTO DEGLI IMIANTI IDROSANITARI asi d espansione e accumuli RODUZIONE DI ACQUA CALDA SANITARIA Due sono i sisemi normalmene uilizzai per produrre acqua calda saniaria: quello

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14

Università di Pisa - Polo della Logistica di Livorno Corso di Laurea in Economia e Legislazione dei Sistemi Logistici. Anno Accademico: 2013/14 Universià di isa - olo della Logisica di Livorno Corso di Laurea in Economia e Legislazione dei Sisemi Logisici Anno Accademico: 03/4 CORSO DI SISTEMI DI MOVIMENTAZIONE E STOCCAGGIO Docene: Marino Lupi

Dettagli

Sul costo dell'energia elettrica incide notevolmente la penalità per basso Fattore di Potenza

Sul costo dell'energia elettrica incide notevolmente la penalità per basso Fattore di Potenza - Soluzioni e sisemi per la razionalizzazione dei consumi energeici IL BSSO FTTORE DI POTENZ IL RIFSMENTO DEGLI IMPINTI ELETTRII Sul coso dell'energia elerica incide noevolmene la penalià per basso Faore

Dettagli

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF

TEMPORIZZATORE CON Ic NE 555 ( a cura del prof A. GARRO ) SCHEMA A BLOCCHI : NE555 1 T. reset (4) VCC R6 10K. C5 10uF TEMPOIZZATOE CON Ic NE 555 ( a cura del prof A GAO ) SCHEMA A BLOCCHI : M (8) NE555 00K C7 00uF STAT S 4 K C6 0uF (6) (5) () TH C T A B 0 0 Q S Q rese T DIS (7) OUT () 0 T T09*()*C7 (sec) GND () (4) 6

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

Differenziazione di prodotto e qualità in monopolio

Differenziazione di prodotto e qualità in monopolio Economia Indusriale Capiolo 7 Differenziazione di prodoo e qualià in monopolio Beoni Michela Gallizioli Giorgio Gaverina Alessandra Rai Nicola Signori Andrea AGENDA Concei di differenziazione vericale

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33

Processi stocastici. Corso Segnale e Rumore Giorgio Brida Giugno/luglio 2007 Pagina 1 di 33 Processi socasici Inroduzione isemi lineari e sazionari; luuazioni casuali, derive e disurbi; processi socasici sazionari in senso lao, unzione di auocorrelazione e spero di poenza; risposa di un sisema

Dettagli

DI IDROLOGIA TECNICA PARTE III

DI IDROLOGIA TECNICA PARTE III FCOLT DI INGEGNERI Laurea Specialisica in Ingegneria Civile N.O. Giuseppe T. ronica CORSO DI IDROLOGI TECNIC PRTE III Idrologia delle piene Lezione XVII: I meodi indirei per la valuazione delle porae al

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

Adottando il metodo più corretto (in riferimento al Manuale di Meccanica, Hoepli) verificare la resistenza strutturale del dente.

Adottando il metodo più corretto (in riferimento al Manuale di Meccanica, Hoepli) verificare la resistenza strutturale del dente. 1) Risolvere i segueni due esercizi (empo assegnao 2h) a) Un riduore cosiuio da una coppia di ruoe nae a ni drii a proporzionameno normale ve rasmeere una poenza di 5kW. Inolre si hanno i segueni dai:

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

CAPITOLO I GENERALITA SUL SISTEMA ELETTRICO PER L ENERGIA

CAPITOLO I GENERALITA SUL SISTEMA ELETTRICO PER L ENERGIA CAPITOLO I GENERALITA SUL SISTEMA ELETTRICO PER L ENERGIA 1. Inroduzione Il rasferimeno dell energia elerica dai luoghi in cui viene prodoa a quelli in cui viene uilizzaa avviene, salvo casi paricolari,

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

ELENCO FILTRI DI USCITA INVERTER. Prodotti considerati:

ELENCO FILTRI DI USCITA INVERTER. Prodotti considerati: Moori, azionameni, accessori e servizi per l'auomazione EENCO FITRI DI USCITA INVERTER PER A RIDUZIONE DE dv/dt della ensione di uscia ( riduzione della ensione di modo comune e differenziale) Prodoi considerai:

Dettagli

4 Il Canale Radiomobile

4 Il Canale Radiomobile Pare IV G. Reali: Il canale radiomobile 4 Il Canale Radiomobile 4.1 INTRODUZIONE L evoluzione fondamenale nella filisofia di progeo delle rei di comunicazione indoor è il passaggio dalla modalià di rasmissione

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

Moltiplicazione di segnali lineari

Moltiplicazione di segnali lineari Moliplicazione di segnali lineari Processo non lineare: x ( x ( x ( Meodologia uilizzaa per: Campionameno ed acquisizione dai Processi di comunicazione (modulazione Abbiamo viso con il campionameno dei

Dettagli

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI

Corso di Comunicazioni Elettriche. 2 RICHIAMI DI TEORIA DEI SEGNALI Prof. Giovanni Schembra TEORIA DEI SEGNALI DETERMINATI Corso di Comunicazioni Eleriche RICHIAMI DI TEORIA DEI SEGNALI Pro. Giovanni Schembra Richiami di Teoria dei segnali TEORIA DEI SEGNALI DETERMINATI Richiami di Teoria dei segnali Valori caraerisici di

Dettagli

9. Conversione Analogico/Digitale

9. Conversione Analogico/Digitale 9.1. Generalià 9. Conversione Analogico/Digiale 9.1. Generalià In un converiore analogico/digiale, il problema di fondo consise nello sabilire la corrispondenza ra la grandezza analogica di ingresso (che

Dettagli

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI

APPUNTI DI ANALISI DEI SEGNALI DAVIDE BASSI UNIVERIÀ DEGLI UDI DI RENO FACOLÀ DI CIENZE MAEMAICHE, FIICHE E NAURALI CORO DI LAUREA IN FIICA APPLICAA DAVIDE BAI APPUNI DI ANALII DEI EGNALI Indice Risposa impulsionale dei sisemi lineari -. isemi lineari

Dettagli

Analisi e valutazione degli investimenti

Analisi e valutazione degli investimenti Analisi e valuazione degli invesimeni Indice del modulo L analisi degli invesimeni e conceo di invesimeno Il valore finanziario del empo e aualizzazione Capializzazione e aualizzazione Il coso opporunià

Dettagli

Trasformazioni di Galileo

Trasformazioni di Galileo Principio di Relaivià Risrea (peciale) e si sceglie un dr rispeo al uale le leggi della fisica sono scrie nella forma più semplice (dr ineriale) allora le sesse leggi valgono in ualunue alro dr in moo

Dettagli

USO DELL OSCILLOSCOPIO

USO DELL OSCILLOSCOPIO Con la collaborazione dell alunno Carlo Federico della classe IV sez. A Indirizzo Informaica Sperimenazione ABACUS Dell Isiuo Tecnico Indusriale Saele A. Monaco di Cosenza Anno scolasico 009-010 Prof.

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

7 I convertitori Analogico/Digitali.

7 I convertitori Analogico/Digitali. 7 I converiori Analogico/Digiali. 7 1. Generalià Un volmero numerico, come si evince dal nome, è uno srumeno che effeua misure di ensione mediane una conversione analogicodigiale della grandezza in ingresso

Dettagli

Modulo. Muri di sostegno

Modulo. Muri di sostegno odulo uri di sosegno. - Generalià sui muri di sosegno pag.. Azioni saice sul muro pag. 5. Azioni provocae dal sisma pag. 7.4 - Verifice pag..4. - Verifice del complesso muro + fondazione pag. 4.4. - Verifica

Dettagli

IL RISCALDAMENTO DELLE MACCHINE ELETTRICHE

IL RISCALDAMENTO DELLE MACCHINE ELETTRICHE IL RISCALDAMENO DELLE MACCHINE ELERICHE Lezione 3: Riscaldameno delle macchine eleriche Fenomeni ransiori ransiorio elerico i IL RIS SCALDAM moore e m carico secondi 10-4 10-1 10-3 10 ω Θ e m ransiorio

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto

La valutazione d azienda: conciliazione tra metodo diretto ed indiretto Valuazione d azienda La valuazione d azienda: conciliazione ra meodo direo ed indireo di Maeo Versiglioni (*) e Filippo Riccardi (**) La meodologia maggiormene uilizzaa per la valuazione d azienda, è quella

Dettagli

Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica dll delle Costruzioni i I Modulo A/A 2007-0808

Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica dll delle Costruzioni i I Modulo A/A 2007-0808 LEZIONE N 4 STATO LIITE ULTIO DI TORSIONE Posizione del problema La orsione di ravi in c.a - I sadio: il comporameno elasico la orsione nelle sezioni monoconnesse La orsione nelle sezioni biconnesse La

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

MODELLI AFFLUSSI DEFLUSSI

MODELLI AFFLUSSI DEFLUSSI MODELLI AFFLUSSI DEFLUSSI Al ecnico si presenano moli casi in cui non è sufficiene la deerminazione delle massime porae ramie i crieri di similiudine idrologica, precedenemene esposi. Si ciano, a iolo

Dettagli

6 Profili in parete sottile

6 Profili in parete sottile 6 Profili in paree soile 6. Inroduzione Una percenuale non rascuraile in peso della produzione di componeni sruurali di acciaio riguarda i profili in paree soile, ossia profili in classe (profili snelli)

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento

Lezione 15. Lezione 15. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. ADC di tipo Flash. Sommario. Materiale di riferimento Sommario Lezione 15 Converiore di ipo Flash Converiore a gradinaa Converiore a rampa Converiore ad approssimazioni successive (SA) Converiore di ipo SigmaDela Esempi di converiori preseni a bordo di mc

Dettagli

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1)

x ( x, x,..., x ) (8.5, 10.3, 9.6, 8.7, 11.2, 9.9, 7.9, 10, 9, 11.1) Serie Sorice e Processi Socasici Federico Andreis Inroduzione Desiderando inrodurre inuiivamene il conceo di serie sorica basa fare riferimeno a qualsiasi fenomeno misurabile ce varia nel empo e la cui

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

MISURE DI SPOSTAMENTO

MISURE DI SPOSTAMENTO ESTENSOMETRO F A MISURE DI SPOSTAMENTO L F ISTA A - A A 1 esensimeri 2 Misure di sposameno : - lineare - angolare Misure di sposameno : - Quasi saiche (allineameno di un roore con comparaori) - Tempovariani

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda

UNIVERSITA DEGLI STUDI DI SASSARI. L approccio time series per l analisi e la previsione della disoccupazione sarda UNIVERSITA DEGLI STUDI DI SASSARI FACOLTA DI SCIENZE POLITICHE MASTER IN STATISTICA APPLICATA L approccio ime series per l analisi e la previsione della disoccupazione sarda Relaore: Prof. Paolo Maana

Dettagli

Economia e gestione delle imprese - 01

Economia e gestione delle imprese - 01 Economia e gesione delle imprese - 01 L impresa come organizzazione che crea valore Leve di creazione di ricchezza e responsabilià sociale Prima pare : L impresa che crea valore 1. L impresa 2. L evoluzione

Dettagli

Si definisce analogico un segnale che può assumere infiniti valori nel campo di variabilità del segnale stesso (fig. 1.4a).

Si definisce analogico un segnale che può assumere infiniti valori nel campo di variabilità del segnale stesso (fig. 1.4a). 1.2.1 - Segnali analogici e digiali Si definisce analogico un segnale che può assumere infinii valori nel campo di variabilià del segnale sesso (fig. 1.4a). I segnali analogici sono così denominai poiché

Dettagli

Conversione Analogico-Digitale

Conversione Analogico-Digitale Capiolo 4 Conversione Analogico-Digiale I segnali del mondo reale sono analogici, menre un elaboraore digiale è in grado di memorizzare e raare esclusivamene sequenze finie di bi. Per raare con ecniche

Dettagli

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione

INTRODUZIONE AI SEGNALI. Fondamenti Segnali e Trasmissione INTRODUZIONE AI SEGNALI Classiicazione dei segnali ( I segnali rappresenano il comporameno di grandezze isiche (ad es. ensioni, emperaure, pressioni,... in unzione di una o piu variabili indipendeni (ad

Dettagli

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100.

In questo caso entrambi i gruppi chiedono copertura completa: q = d = 100. Soluzione dell Esercizio 1: Assicurazioni a) In un mercao perfeamene concorrenziale, deve valere la condizione di profii aesi nulli: E(P)=0. E possibile mosrare che ale condizione implica che l impresa

Dettagli

funzione: trasformare un segnale ottico in un segnale elettrico;

funzione: trasformare un segnale ottico in un segnale elettrico; Foorivelaori (a semiconduore) funzione: rasformare un segnale oico in un segnale elerico; ipi: fooconduori; foodiodi (pn, pin, a valanga...) caraerisiche: modo di funzionameno; larghezza di banda; sensibilià;

Dettagli

LA MODULAZIONE DI AMPIEZZA

LA MODULAZIONE DI AMPIEZZA MODULATORI E DEMODULATORI AM LA MODULAZIONE DI AMPIEZZA Sadio odulaore Anenna Oscillaore quarzao Porane Aplificaore AF Modulaore AM Sadio aplificaore Segnale AM Messaggio Trasduore di rasissione Modulane

Dettagli

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2

COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA 2 COME RISOLVERE GLI ESERCIZI DI ANALISI MATEMATICA Ecco una piccola e semplice guida che illusra come risolvere, a grandi linee gli esercii proposi agli esami di Analisi Maemaica (del DM 509/99, cioè successione

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aveni come dominio e codominio dei sooinsiemi dei numeri reali; esse sono alla base dei modelli maemaici preseni in ogni campo

Dettagli

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech

LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO. Sergio Rech LA MODELLAZIONE DEGLI IMPIANTI DI CONVERSIONE DELL ENERGIA NEL MERCATO LIBERO Sergio Rech Diparimeno di Ingegneria Indusriale Universià di Padova Mercai energeici e meodi quaniaivi: un pone ra Universià

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

INDICE. 1 Introduzione... 69 2 Trasmissione analogica in banda base... 71 3 Trasmissione analogica in banda traslata... 72

INDICE. 1 Introduzione... 69 2 Trasmissione analogica in banda base... 71 3 Trasmissione analogica in banda traslata... 72 INDICE MODULO 1 ELABORAZIONE DEI SEGNALI UNIÀ 1 Nozioni di base di eoria dei segnali... 1 Inroduzione... 3 Segnali deerminai nel dominio del empo... 3.1 Classificazione dei segnali deerminai... 3. Proprieà

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO

273 CAPITOLO 18: PALI DI FONDAZIONE IN CONDIZIONI DI ESERCIZIO 27 nrouzione Per i pali si può fare un iscorso analogo a quello viso per le fonazioni superficiali. Si è viso che nel caso elle fonazioni superficiali l analisi ella eformabilià ella sruura non poeva essere

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - I Appello 16 Luglio 2007 POLIECNICO DI ILNO IV FCOLÀ Ingegneria erospaziale Fisica Sperimenale + - I ppello 6 Luglio 007 Giusificare le rispose e scriere in modo chiaro e leggibile. Sosiuire i alori numerici solo alla fine, dopo

Dettagli

Pianificazione di traiettorie nello spazio cartesiano

Pianificazione di traiettorie nello spazio cartesiano Corso di Roboica 1 Pianificazione di raieorie nello spazio caresiano Prof. Alessandro De Luca Roboica 1 1 Traieorie nello spazio caresiano le ecniche di pianificazione nello spazio dei giuni si possono

Dettagli

Telecontrollo via internet del processo SBR con tecniche di intelligenza artificiale

Telecontrollo via internet del processo SBR con tecniche di intelligenza artificiale Universià degli Sudi di Firenze Facolà di Ingegneria Tesi di laurea magisrale in Ingegneria per l'ambiene e il Terriorio 20 Aprile 2006 Teleconrollo via inerne del processo SBR con ecniche di inelligenza

Dettagli