IL TRASFORMATORE: DESCRIZIONE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL TRASFORMATORE: DESCRIZIONE"

Transcript

1 I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o CAVOUR-MARCONI Loc. Piscille Via Assisana, 40/d PERUGIA Tel. 075/ Fax 075/ i p s i a p t in. i t - sito internet: w w w. i p s i a p g. i t Modulo 3 Trasformatore IL TRASFORMATORE: DESCRIZIONE Il trasformatore è una macchina elettrica statica (perché non contiene parti in movimento), è costituito da due circuiti elettrici (gli avvolgimenti, o circuiti, sono 2 nel caso di trasformatore monofase, nel trasformatore trifase gli avvolgimenti sono 6) elettricamente separati ma accoppiati magneticamente, avvolti intorno ad un nucleo in ferro (che funge da conduttore magnetico, così come il rame degli avvolgimenti è un conduttore elettrico, in elettronica a volte il ferro manca, si tratta in questo caso di trasformatori in aria ). Il suo funzionamento è basato sul principio dell induzione elettromagnetica: l energia è trasportata dall avvolgimento primario al secondario senza che vi sia connessione elettrica fra gli avvolgimenti grazie al fenomeno dell induzione elettromagnetica. Il trasformatore consente di convertire i parametri di tensione (simbolo V unità di misura [V] volt) e corrente (simbolo I unità di misura [A] ampere) in ingresso rispetto a quelli in uscita, riuscendo a mantenere quasi costante (a meno delle perdite per effetto dell'isteresi e delle correnti parassite) la potenza elettrica apparente fra ingresso ed uscita. Un trasformatore che funzioni da riduttore di tensione (V1 < V2) è anche elevatore di corrente (I1 > I2) e viceversa. Il trasformatore è una macchina in grado di funzionare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo che sono legati ai flussi magnetici variabili (legge di Faraday- Neumann - Lenz). Il trasformatore non è in grado di cambiare il valore della frequenza: la frequenza in entrata è sempre uguale alla frequenza in uscita. Il trasformatore svolge un ruolo fondamentale: senza il trasformatore le grandi reti di trasporto dell'energia elettrica, che collegano le centrali elettriche alle utenze ( industriali e domestiche) non potrebbero funzionare. L invenzione del trasformatore ed il suo perfezionamento (insieme alla mancanza di una macchina analoga che funzionasse in corrente continua) sono stati fra i principali motivi dell affermazione della corrente elettrica alternata sulla corrente elettrica continua. La potenza dei trasformatori viene sempre espressa in VA (voltampere) con i relativi multipli o sottomultipli. La potenza apparente del trasformatore è un dato di targa, caratteristico di ciascun trasformatore. Al contrario la potenza in W (Watt) del trasformatore non è un dato di targa perché dipende dal carico che il trasformatore alimenta, essendo la potenza attiva P dipendente dal fattore di potenza cos f che dipende dal carico (detto Z il carico del trasformatore, con Z = R + j X, si ricordi che è f = arctg (X / R).

2 - TRASFORMATORE DI ISOLAMENTO - Se ne consiglia l'impiego quando si vogliono limitare i rischi di contatti fra la terra e le parti attive che possono andare in tensione nel caso di cattivo isolamento. Tensione max PRI e SEC = 1000 V a vuoto -- frequenza max 500Hz. -- potenza max = 25KVA se monfase e 40 KVA se polifase -- isolamento doppio o rinforzato. - TRASFORMATORE DI SICUREZZA - E' un trasformatore d'isolamento la cui tensione secondaria a vuoto, non deve superare i 50 Veff. "detta tensione di sicurezza". Le potenze non devono superare i 10 KVA se monofase e i 16 KVA se polifase. - CLASSE DI PROTEZIONE - E' la caratteristica costruttiva di un'apparecchiatura contro le correnti pericolose CLASSE I - tutte le parti metalliche accessibili del trasformatore, sono isolate dalle parti in tensione tramite l'isolamento fondamentale (possono esserci punti con isolamento doppio o rinforzato) inoltre come misura di sicurezza supplementare, le parti conduttrici accessibili, tramite un morsetto di massa, sono collegate ad un conduttore di protezione di terra facente parte dell'impianto elettrico fisso. CLASSE II - Tutte le parti metalliche accessibili del trasformatore, sono separate dalle parti in tensione, tramite un isolamento doppio o rinforzato. In questo caso l'apparecchio non deve essere collegato a terra. -CLASSE DI ISOLAMENTO - Corrisponde alle classi d'isolamento dei materiali isolanti. A= 105 C -- E= 120 C -- B= 130 C -- F= 155 C -- H= 180 C. La temperatura ambiente che circonda il trasformatore, se non diversamente specificato è da intendersi come valore 40 C max. - SOVRATEMPERATURA - E' la temperatura raggiunta dall'apparecchio durante il funzionamento, sottratta dalla temperatura ambiente considerata 40 C. Pertanto le sovratemperature max per i vari gradi di classe d'isolamento sono le seguenti: A= 60 C -- E= 75 C -- B= 80 C -- F= 100 C -- H=125 C - TENSIONE DI INGRESSO NOMINALE - E' la tensione di alimentazione del trasformatore, che se non concordato diversamente, non deve superare del 6% il valore nominale di targa senza che ciò porti danno al funzionamento continuo dell'apparecchio. Particolare attenzione va posta se invece di una sola tensione di ingresso la richiesta è di tensioni supplementari o derivazioni. In questi casi si rende necessario un innalzamento del dimensionamento globale del trasformatore, che in relazione alla differenza tra la tensione max e la tensione min. può variare dal 5% al

3 30%. La tensione in uscita in derivazione ad altre tensioni, se non diversamente specificato, disporrà di un valore di corrente espresso dalla divisione della potenza per il valore più elevato di tensione. - CORRENTE A VUOTO- E' la corrente al primario del trasformatore senza carico al secondario a tensione e frequenza nominali. Dipende essenzialmente dalle proprietà del circuito magnetico e agli effetti pratici può oscillare, anche per trasformatori della stessa serie, del % rispetto al valore nominale prestabilito. - CORRENTE DI INSERZIONE - Al momento della messa in tensione del trasformatore, a seconda del punto in cui si trova il valore di tensione sulla sinusoide, si ha un picco di corrente istantanea (per qualche millisecondo) che può variare dal valore zero ad un valore di anche 30 volte la corrente di targa. (la riduzione di tale fenomeno, si può ottenere aumentando la reattanza di dispersione del trasformatore e riducendo il valore di induzione magnetica nel nucleo del trasformatore). L'AUTOTRASFORMATORE E' UN TRASFORMATORE CON UN UNICO AVVOLGIMENTO COMUNE SIA PER LE TENSIONI PRIMARIE DI ENTRATA SIA PER LE TENSIONI DI USCITA E SENZA ISOLAMENTO ELETTRICO FRA LE STESSE. La potenza equivalente (è detta potenza di nucleo secondo le attuali normative) risulta dalla formula: Peq = Pn. (Vmax-Vmin) / Vmax dove: Peq = potenza di dimensionamento reale (potenza di nucleo) Pn = potenza nominale di targa (potenza passante) Vmax = tensione più alta Vmin = tensione più bassa. L' autotrasformatore è particolarmente conveniente quando la tensione più alta non superi più di due o tre volte la tensione più bassa e ovviamente non ci siano esigenze di separazione elettrica tra la tensione in entrata e la tensione in uscita Le enormi quantità di energia elettrica richieste dalla società moderna fanno sì che questa debba essere prodotta in grandi quantità presso centri di produzione denominati centrali elettriche. Un parametro utile per determinare la dimensione e la quantità di energia prodotta da una centrale è la potenza (simbolo P unità di misura W) la quale può variare dalle decine di kw (1 kw = 1000 W) di piccole centrali idroelettriche o solari alle centinaia di MW (1 MW = W) delle grandi centrali termoelettriche e nucleari. Questa energia deve essere trasportata anche per centinaia di km. La potenza elettrica è legata in maniera diretta ai parametri di tensione e corrente, secondo la formula: dove, detto fattore di potenza, è il correttivo dovuto allo sfasamento fra tensione e corrente. Ciò significa che a parità di potenza aumentando la tensione V diminuisce la corrente I (e si deve mantenere più vicino possibile al valore unitario). Ciò è molto importante, in quanto la corrente I genera al suo passaggio nei conduttori elettrici calore (per effetto Joule): più la corrente è alta e più calore si genera; per ovviare a questo inconveniente bisogna aumentare la sezione dei conduttori, ma esiste un limite economico e tecnologico nel dimensionamento delle linee elettriche, legato anche al fenomeno della caduta di tensione delle linee stesse. Al fine quindi di abbassare la corrente I si effettua una trasformazione aumentando la tensione V a parità di potenza P. Diminuendo le distanze da percorrere e la potenza da trasportare viene anche meno l'esigenza di avere tensioni alte, se a questo si associa anche l'esigenza di avere per l'uso domestico e industriale un livello di tensione compatibile con le esigenze di sicurezza, ne segue che dalla produzione alla distribuzione sono necessarie un numero adeguato di trasformazioni verso tensioni via via più basse.

4 La macchina elettrica che si occupa di effettuare tali trasformazioni è appunto il trasformatore. A titolo di esempio, viene presentato un elenco delle tensioni tipiche di esercizio degli impianti elettrici: 230 V: tensione per usi domestici 400 V: tensione per uso industriale 15/20 kv ( V): tensione di esercizio delle reti elettriche di distribuzione secondaria (lunghezza: alcune decine di km) 132/150/230/400 kv: tensione di esercizio delle linee elettriche di distribuzione primaria (lunghezza: alcune centinaia di km) 0,5/1 MV: tensione di esercizio delle linee elettriche di interconnessione su lunghissime percorrenze (lunghezza: alcune migliaia di km) Costruzione e principio di funzionamento del trasformatore Schema di principio Il trasformatore più semplice è costituito da due conduttori elettrici (solenoidi) avvolti su un anello di materiale ferromagnetico detto nucleo magnetico. L'avvolgimento al quale viene fornita energia viene detto primario, mentre quello dalla quale l'energia è prelevata è detto secondario. I trasformatori sono macchine reversibili, per cui questa classificazione non corrisponde ad un avvolgimento fisico unico. Quando sul primario viene applicata una tensione elettrica alternata sinusoidale, per effetto dell'induzione magnetica si crea nel nucleo un flusso magnetico con andamento sinusoidale. Per la legge di Faraday- Neumann-Lenz, questo flusso variabile induce nel secondario una tensione sinusoidale. La legge di Faraday Neumann - Lenz o legge dell'induzione elettromagnetica L'espressione matematica della legge di Faraday (1831) è : e(t) = ΔΦ(t)/Δt o, più precisamente dal punto di vista dell'analisi matematica, e(t) = dφ(t)/dt: la fem indotta è data dalla derivata rispetto al tempo del flusso. La legge si può esprimere dicendo che: " Una forza elettromotrice indotta è prodotta in un circuito elettrico, ogni volta che un flusso magnetico con esso (circuito) concatenato varia nel tempo e l'effetto è tanto maggiore quanto più rapida è la variazione". il segno meno che compare nella legge è correlato alla legge di Lenz, secondo la quale: "I fenomeni legati all'induzione elettromagnetica avvengono con modalità tali da contrastare le

5 cause che li hanno generati". Torniamo al trasformatore. La tensione prodotta nel secondario è proporzionale al rapporto tra il numero di spire del primario e quelle del secondario secondo la relazione: dove V p è la tensione applicata sul primario, V s la tensione indotta sul secondario, N p il numero di spire del primario e N s il numero di spire del secondario, k 0 è chiamato rapporto di trasformazione (spesso indicato come V1 / V2 = N1 / N2 = K 0. Ovviamente I1 / I2 = V2 / V1 = 1 / K 0 ) Per una tensione sinusoidale di ampiezza massima E m il valore efficace E vale: Trascurando le perdite, la relazione tra tensione, numero di spire, intensità di flusso e sezione del nucleo è data dalla relazione: Dove E è il valore efficace ( Veff anche indicato come RMS = root mean square) della tensione indotta, f è la frequenza in Hertz, N è il numero di spire dell'avvolgimento al quale si fa riferimento, S è la sezione del nucleo (in m 2 ) e B è il valore dell'induzione in Tesla. Costruttivamente il trasformatore monofase può essere realizzato nei due seguenti modi:

6 Lo scopo di quanto seguirà è quello di studiare la macchina al fine di ricavarne un modello che, considerando la natura elettrica della macchina, sarà costituito da un circuito equivalente. Una volta noto il modello sarà possibile prevedere il comportamento della macchina in qualsiasi condizione di funzionamento attraverso delle simulazioni e, in definitiva, sarà possibile utilizzare la macchina nel miglior modo possibile. Considerando la complessità della macchina, risulta conveniente iniziarne lo studio e ricavarne il modello per condizioni ideali e, successivamente, introdurre nel modello tutte quelle correzioni che permettono di tenere conto dei tanti aspetti reali non trascurabili. In ogni caso il modello che si ottiene è sempre il risultato di indispensabili ipotesi semplificative, oltre che della corretta valutazione delle numerose leggi che governano il funzionamento della macchina. Il processo di modellazione di un sistema, pur se con procedure diverse, è comune a tutti gli ambiti scientificotecnologici e, sempre, si cerca di arrivare ad un modello matematico idoneo alle elaborazioni, anche numeriche. Nel nostro caso, il modello matematico sarà costituito dalle equazioni elettrotecniche riferite al circuito equivalente. Si definisce ideale un trasformatore caratterizzato dalle seguenti proprietà: a) resistività elettrica del materiale conduttore impiegato per gli avvolgimenti è nulla, così da poter considerare nulle le resistenze ohmiche degli avvolgimenti; b) permeabilità magnetica del mezzo circostante il nucleo di valore nullo (quindi riluttanza dell aria infinita) e riluttanza del nucleo nulla, così da potersi ritenere tutto il flusso magnetico confinato nel nucleo stesso e concatenato con entrambi gli avvolgimenti (perdite per flussi dispersi nulle). c) perdite nel materiale ferromagnetico del nucleo nulle (questo implica che le perdite nel ferro per correnti parassite e per isteresi magnetica siano nulle) Dal trasformatore ideale al reale Per trasformatore ideale in figura si assume la convenzione degli utilizzatori alla porta 1 (primario) e quella dei generatori alla porta 2 (secondario). Questo è governato dalle equazioni simboliche: dove k 0 è il "rapporto di trasformazione". Riluttanza del nucleo non nulla

7 Usiamo l'ipotesi di accoppiamento perfetto cosi da concatenare lo stesso flusso di induzione magnetica: Le tensioni ai morsetti coincidono con le f.e.m. indotte valgono: Considerando il funzionamento a vuoto, posso scrivere: con I 1μ detta corrente di magnetizzazione. Possiamo ricavare: da cui considerando il funzionamento a carico, per il secondo principio di Kirchhoff risolvendo e sostituendo la precedente equazione ottengo: quindi la relazione che lega tensioni e correnti del trasformatore ideale diviene: Perdite nel nucleo non nulle

8 Oltre alla corrente di magnetizzazione va aggiunta la componente dovuta a perdite per isteresi e correnti parassite detta corrente a vuoto: così la relazione che lega tensioni e correnti del trasformatore ideale diviene: Per considerare le perdite per isteresi e correnti parassite che si producono nel nucleo. Accoppiamento non perfetto tra gli avvolgimenti L'accoppiamento imperfetto tra gli avvolgimenti è dovuto a linee di flusso che abbandonano il nucleo per richiudersi attraverso percorsi in aria, si avranno cosi altri 2 flussi: flusso di dispersione al primario Φ1d flusso di dispersione al secondario Φ2d posso definire: reattanza di dispersione a primario reattanza di dispersione a secondario Resistenza degli avvolgimenti non nulle Considera la resistenza dei conduttori che costituiscono gli avvolgimenti R1 e R2 poste in serie con le perdite per accoppiamento non perfetto. Schema completo equivalente Eliminate tutte le ipotesi di idealità, le f.e.m. indotte dal solo flusso di mutua induzione

9 mentre le differenze di potenziale effettivamente presente alle porte del trasformatore reale valgono: ricordando il rapporto di trasformazione: ottengo relazione che lega tensioni e correnti del trasformatore reale: queste equazioni descrivono il comportamento del trasformatore reale. Trasformatore monofase reale Il trasformatore reale si differenzia pertanto da quello ideale nei seguenti aspetti: a) resistenze Ohmiche R 1, R 2 degli avvolgimenti non nulle. A causa di ciò le correnti primaria e secondaria produrranno delle cadute di tensione Ohmiche e delle perdite di potenza per effetto Joule. Il valore delle resistenze Ohmiche aumenta con la temperatura, quindi per il circuito equivalente si dovrà fare riferimento ad una ben precisa temperatura chiamata temperatura convenzionale di riferimento T [ C] che vale 75 [ C] per le classi d'isolamento A, E, B oppure 115 [ C] per le classi F, H. Dal momento che gli effetti prodotti dalla presenza delle resistenze dipendono dalle correnti, nel circuito equivalente che costituisce il modello del trasformatore reale, le resistenze R 1, R 2 andranno poste in serie al circuito, in modo da essere percorse rispettivamente dalle correnti primaria e secondaria. Queste resistenze vengono proporzionate in modo tale che, a pieno carico, le perdite per effetto Joule al primario ed al secondario siano circa uguali, ciò equivale a fissare per i due avvolgimenti la stessa densità di corrente (nei trasformatori trifasi di media e grande potenza 2,5 3,5 [A/mm 2 ] per il rame, 1,5 2 [A/mm 2 ] per l'alluminio, nei piccoli trasformatori monofase 1,5 2,4 [A/mm 2 ] decrescente all'aumentare della potenza per il rame). b) presenza di flussi di dispersione al primario ed al secondario d 1, d 2, causati dal fatto che la permeabilità del mezzo circostante il nucleo non è nulla. Si tratta di flussi alternati sinusoidali di frequenza pari a quella della tensione d'alimentazione, indipendenti dalla temperatura, sostenuti rispettivamente dalla corrente primaria e secondaria, concatenati con un solo avvolgimento e che si sviluppano prevalentemente in aria. Si ha così un flusso autoconcatenato in ciascun avvolgimento che determinerà un'autoinduzione di f.e.m. e, in definitiva, una caduta di tensione reattiva induttiva ed un impegno di potenza reattiva in ciascun avvolgimento. Di tali aspetti si terrà conto mediante due reattanze di dispersione:

10 Tali reattanze, se la frequenza è costante, si potranno ritenere costanti perché il flusso di dispersione che le origina, sviluppandosi in gran parte in aria, percorre un circuito magnetico che è lecito ritenere a permeabilità magnetica costante. Inoltre andranno poste in serie nel circuito equivalente, in modo da essere percorse dalle correnti primaria e secondaria, infatti gli effetti da esse prodotti dipendono da tali correnti. c) perdite nel ferro del nucleo dovute all'isteresi magnetica ed alle correnti parassite. L'entità di tali perdite, riferite ad 1 [Kg] di ferro, ammonta rispettivamente a: Pis = Kis f B M [W/Kg], = 1,6 se B M < 1 [Wb / m 2 ], = 2 se B M 1 [Wb / m 2 ] Pcp = Kcp (Kf f B M ) 2 [W/Kg], dove Kf è il fattore di forma del flusso alternato. In tali espressioni B M è il valore massimo dell'induzione alternata, Kis e Kcp sono due costanti dipendenti dal tipo di mezzo ferromagnetico. Entrambe le perdite si possono riassumere nell'espressione: Si tratta di una espressione empirica, dove Cp è la cifra specifica di perdita che rappresenta le perdite in 1 [Kg] di ferro quando la frequenza vale 50 [Hz] e l'induzione massima vale 1 [Wb/m 2 ]. Le espressioni sopra scritte evidenziano come le perdite varino con la frequenza ad induzione costante e con l'induzione a frequenza costante. Se invece si immagina di mantenere costante la tensione applicata V 1 (caso pratico più frequente, specialmente per il trasformatore), allora si dimostra che le perdite per correnti parassite sono indipendenti dalla frequenza, mentre le perdite per isteresi diminuiscono all'aumentare della frequenza secondo l'esponente (1 - ) < 0. Infatti: avendo trascurato la caduta sull'avvolgimento primario e quindi considerato. Ponendo Y = 4,443 N 1 S e sostituendo nelle espressioni delle perdite si ha:

11 dalla quale si evince che a tensione costante le perdite per isteresi diminuiscono all'aumentare della frequenza; dalla quale si evince che a tensione costante le perdite per correnti parassite non dipendono dalla frequenza. Dalle stesse relazioni si nota come, per frequenza costante, le perdite per correnti parassite e per isteresi aumentano proporzionalmente al quadrato della tensione (potendosi ritenere di solito uguale a 2). Quindi è da evitare l'impiego del trasformatore a tensioni superiori ed a frequenze inferiori alle nominali. Delle perdite complessive nel ferro si terrà conto nel circuito equivalente con una resistenza fittizia trasversale R 0 in parallelo alla X, perché le perdite nel ferro sono pressoché proporzionali al quadrato della B M e, perciò, della E 1. Tale resistenza varrà: Si chiama attiva la componente Ia di corrente assorbita che tiene conto delle perdite nel ferro. La I e la Ia sono sempre presenti nel funzionamento del trasformatore. Nel funzionamento a vuoto esse sono le sole correnti e dalla loro composizione si ha la corrente assorbita a vuoto. Ovviamente la corrente attiva è in quadratura in anticipo rispetto alla corrente magnetizzante e vale. d) perdite addizionali dovute alla maggior resistenza presentata dagli avvolgimenti in corrente alternata rispetto alla corrente continua. Le perdite addizionali diminuiscono all'aumentare della temperatura e sono originate dall'effetto pelle, dall'effetto di prossimità e dalle correnti parassite che i flussi dispersi fanno scaturire nei mezzi conduttori da essi intersecati. Di tali perdite si tiene conto, conglobandole assieme a quelle Ohmiche, mediante la resistenza equivalente ridotta al primario od al secondario, riferita alla temperatura convenzionale. e) non linearità del mezzo ferromagnetico, che determina l'impossibilità di avere contemporaneamente sinusoidali la corrente magnetizzante ed il flusso. Infatti la permeabilità di un materiale ferromagnetico non è costante, ma dipende dal valore del campo magnetico. Quindi la caratteristica di magnetizzazione B = f(h) non è rettilinea così che a variazioni costanti di campo corrispondono variazioni diverse d'induzione e la stessa cosa succede nella relazione tra flusso (proporzionale all'induzione) e corrente magnetizzante (proporzionale al campo). Considerando che il trasformatore viene alimentato da una tensione forzatamente sinusoidale e che la f.e.m. è pressoché uguale alla tensione si può senz'altro ritenere sinusoidale il flusso (direttamente proporzionale alla f.e.m.) e, quindi, deformata la corrente magnetizzante. La deformazione è tanto più accentuata quanto più il punto di lavoro sulla caratteristica di magnetizzazione si addentra nelle zone del ginocchio e della saturazione. Nella pratica si lavora con valori d'induzione massima nel nucleo (1,3 1,75 [Wb/m 2 ] a secondo del tipo di lamierino per i trasformatori trifasi di media e grande potenza, 0,8 1,4 [Wb/m 2 ] per i piccoli trasformatori monofase) tali da raggiungere a malapena la zona del ginocchio così che la deformazione della corrente magnetizzante è poco

12 marcata. In tali condizioni è lecito ritenere la corrente magnetizzante uguale alla somma delle sue componenti di prima (detta fondamentale) e terza armonica come mostrato in figura. La componente di terza armonica, di frequenza 150 [Hz], può, nel caso non sia sufficientemente piccola, provocare disturbi nelle linee telefoniche poste in prossimità alla linea che alimenta il trasformatore essendo la sua frequenza nel campo dell'udibile. f) sovracorrente d'inserzione, si presenta nell'istante di messa in tensione del TR a vuoto quando la tensione ad esso applicata ha argomento iniziale nullo, cioè è esprimibile nella forma v 1 (t) = V 1M sen( t). In tale caso il flusso nel nucleo assume inizialmente un valore massimo doppio rispetto a quello normale e, mandando in saturazione il ferro, determina il richiamo di una intensissima corrente magnetizzante, anche 40 volte quella normale. Poichè la corrente magnetizzante può anche essere il 5% della nominale a carico, si osserva che all'inserzione (durante la prima semionda) la corrente può diventare anche il doppio della nominale a pieno carico e di ciò si dovrà tenere conto nella scelta dei dispositivi di protezione contro i cortocircuiti dei trasformatori. La condizione migliore di inserzione è quella per la quale v 1 (t) = V 1M sen( t + /2), infatti in tal caso il flusso assume fin dalla prima semionda il valore normale che poi conserverà. Fattori influenti sul rendimento Un trasformatore reale però non è una macchina perfetta e per questo presenta delle perdite, ovvero la potenza assorbita dal primario è sempre superiore a quella fornita dal secondario. I diversi motivi di perdita sono: Effetto Joule prodotto dalla corrente che scorre negli avvolgimenti (dette perdite nel rame); Induzione di correnti parassite nel nucleo che possono a loro volta dissipare energia per effetto Joule (dette perdite nel ferro); Perdita di flusso magnetico al di fuori del nucleo che può indurre correnti su oggetti vicini al trasformatore; Perdite per isteresi magnetica (sono perdite nel ferro); Perdite per movimenti meccanici dovuti a forze magnetiche o magnetostrizione, solitamente percettibili come il classico ronzio del trasformatore;

13 Le correnti parassite o correnti di Foucault sono delle correnti indotte in masse metalliche conduttrici che si trovano immerse in un campo magnetico variabile o che, muovendosi, attraversano un campo magnetico costante o variabile. In ogni caso la variazione del flusso magnetico genera queste correnti. Le correnti parassite sono causate dal movimento (o variazione) del campo magnetico che attraversa un conduttore. Il moto relativo genera la circolazione di elettroni, cioè corrente, nel conduttore. Questi elettroni muovendosi in vortici generano a loro volta un campo magnetico in direzione opposta al campo magnetico applicato (vedi legge di Lenz). Il fenomeno si accentua: con l'aumentare del campo magnetico applicato (se sinusoidale con il quadrato dell'ampiezza) con l'aumentare della conducibilità del conduttore attraversato dal campo magnetico con l'aumentare del movimento relativo tra campo magnetico e conduttore se il campo magnetico è variabile in modo periodico con l'aumentare della sua frequenza (se sinusoidale con legge proporzionale al quadrato della frequenza) Esempio di laminazione per ridurre le correnti parassite (in verde il campo magnetico che attraversa il conduttore): in alto le correnti (tratteggiate) hanno un percorso maggiore; in basso la laminazione riduce i percorsi delle correnti Nucleo di trasformatore laminato per ridurre le correnti parassite In tal caso maggiore è l'intensità delle correnti vorticose che si sviluppano e più forte il campo magnetico che esse generano (e si oppongono al campo magnetico originario). La corrente che si sviluppa nel conduttore ha una forma vorticosa perché gli elettroni sono soggetti alla Forza di Lorentz che è perpendicolare alla direzione degli elettroni stessi in movimento. Quindi, essi ruotano alla loro destra, o sinistra, a seconda del senso del campo applicato e della variazione del campo in aumento o in diminuzione. La resistività del conduttore smorza queste correnti. Le correnti parassite generano perdite di energia riscaldando il conduttore (Effetto Joule). Questo fenomeno in molte applicazioni risulta negativo in quanto questa generazione di calore non ha nessun effetto utile. Ad esempio nei trasformatori e nei motori elettrici determina una diminuzione dell'efficienza.

14 Si possono attenuare queste perdite scegliendo un nucleo magnetico che abbia una bassa conducibilità (ad esempio: ferriti, acciaio al silicio) o suddividendo il nucleo magnetico in sottili strati, elettricamente isolati (laminazione). In questo modo gli elettroni non possono attraversare la strato isolante tra i lamierini e l'area racchiusa dal loro percorso viene ridotta. Quindi più grande è il numero di lamierini per unità di superficie, perpendicolari al campo magnetico applicato, maggiore è la riduzione delle correnti disperse. Non sempre le perdite per correnti parassite sono un fenomeno non voluto. Vi sono applicazioni che si basano su di esso (vedi, ad esempio, i forni ad induzione). ISTERESI L'isteresi è la caratteristica di un sistema di reagire in ritardo alle sollecitazioni applicate e in dipendenza dello stato precedente. L'isteresi è usata in fisica, per descrivere il comportamento di alcuni materiali magnetici e ferromagnetici. Se la risposta di un sistema con isteresi viene rappresentata in un grafico in funzione dello stimolo, si ottiene una caratteristica curva chiusa (grafico a destra). In un sistema privo di isteresi la curva costituisce una linea singola. In presenza di isteresi si ottiene invece uno sdoppiamento della curva: se percorsa da sinistra a destra si ha un cammino, se percorsa in senso inverso se ne ottiene un altro. In molti dei fenomeni fisici in cui si ha tale caratteristica si ottengono due tratti orizzontali: uno superiore ed uno inferiore. Questi rappresentano i limiti di saturazione. Per un sistema in esame, al variare di alcune condizioni, si può avere una famiglia di curve, spazianti dalla quasi singola ad un'area racchiusa pressoché quadrata. L'ampiezza della curva chiusa è indice dell'entità dell'isteresi. Isteresi magnetica

15 Una famiglia di cicli di isteresi misurata con una densità di flusso modulata sinusoidalmente con frequenza di 50 Hz ed ampiezza variabile da 0,3 T a 1,7 T (T = Tesla, unità di misura del vettore induzione magnetica B ). Il materiale è acciaio ferromagnetico a cristalli orientati. B = Vettore Induzione magnetica (anche detto densità del flusso magnetico. Si misura in Tesla) H = Vettore Campo magnetico (si misura in Ampere/metro) B R = Induzione residua (Rimanenza) H C = Campo Coercitivo (Coercitività) Il fenomeno dell'isteresi è ben noto nei materiali ferromagnetici. Quando un campo magnetico inducente (H) viene applicato ad un materiale di questo tipo, si ha una sorta di memorizzazione. Se si aumenta il campo inducente fino ad un valore di saturazione della a (B) e poi lo si porta a zero, si ottiene che il materiale presenta una densità di flusso permanente in assenza di induzione, ovvero rimane magnetizzato. Invertendo la direzione del campo, il campo indotto residuo contrasta il campo inducente e per un preciso valore di H, detto campo coercitivo, la densità di flusso è nulla. Superato questo punto il flusso inizia a salire nella direzione del campo inducente fino a giungere a saturazione. Ripercorrendo il ciclo in senso opposto il fenomeno si manifesta specularmente. La magnetizzazione residua può essere un problema perché per esempio mantiene attratta l'ancora di un relè al cessare del segnale di comando. È possibile comunque eliminare questa magnetizzazione residua, portando il materiale magnetizzato alla temperatura di Curie, alla quale si distrugge l'ordine ferromagnetico negli spin elettronici. L'isteresi è anche una delle cause di dissipazione di energia nei trasformatori. Per questi motivi il fenomeno deve essere tenuto in considerazione nella progettazione di componenti elettrici e può essere attenuato scegliendo materiali a bassa isteresi. Questo fenomeno è sfruttato in diverse importanti applicazioni. È alla base della memorizzazione magnetica in nastri magnetici e hard disk. In questi ultimi dispositivi il verso della magnetizzazione residua rappresenta un bit: 0 o 1. Per cambiare lo stato di magnetizzazione è però necessario conoscere lo stato precedente, in base al quale varia il campo da applicare. Per evitare il problema si usa una tecnica detta bias, che consiste nel portare ad un valore noto il sistema prima della scrittura. La stessa tecnica è usata nei registratori audio a cassette, dove a volte è presente un selettore per il tipo di bias da usare in funzione del materiale ferromagnetico usato nei differenti tipi di nastro. Un sistema ferromagnetico è composto da domini microscopici, i cosiddetti domini di Weiss, che si comportano come dipoli magnetici (coppia inseparabile di poli Nord- Sud). I dipoli tendono a raggrupparsi a formare una piccola regione isotropa all'interno della quale la magnetizzazione è pressoché costante. Ciascun dominio della regione può assumere uno o più stati metastabili, che possono differire notevolmente da dominio a dominio ma la loro media equivale al livello di minima energia. L'isteresi è l'effetto risultante dalla combinazione di questi domini e dei loro stati. Si distingue il rendimento effettivo: Rendimento di un trasformatore monofase nel quale sia la potenza assorbita P 1 [W] che la potenza erogata P 2 [W] sono direttamente misurate, dal rendimento convenzionale, più importante del precedente:

16 nel quale una delle due potenze si ricava dall'altra tenendo conto delle perdite P P [W] (calcolate con riferimento al modello semplificato). Le perdite nel ferro Pfe [W] valgono Po (potenza assorbita nella prova a vuoto, riportata sulla targa) se il trasformatore è alimentato a tensione e frequenza nominali, altrimenti si calcolano con: Le perdite nel rame Pcu [W] valgono Pcc (potenza assorbita nella prova in corto, riportata sulla targa) se il trasformatore ha gli avvolgimenti percorsi dalle correnti nominali, altrimenti si calcolano con: Il trasformatore viene dimensionato per dare il massimo rendimento tra i 3/4 del pieno carico ed il pieno carico. Si dimostra che il rendimento è tanto più grande quanto più è grande il f.d.p. del carico. Inoltre, se si trascura la c.d.t. industriale, cioè se si immagina costante la tensione d'uscita al variare della corrente erogata, allora la corrente teorica per la quale si ha il massimo rendimento è quella che produce nel rame le stesse perdite che si hanno a vuoto nel ferro, ovvero: Qualitativamente, l'andamento del rendimento in funzione della corrente erogata è quello sopra raffigurato. Nei trasformatori ben costruiti e funzionanti a pieno carico il rendimento è sempre molto elevato, anche pari al 99,5% per le macchine di elevata potenza.

17 Dati di targa del trasformatore Il trasformatore, come tutte le macchine, è caratterizzato da una targa (etichetta metallica fissata alla carcassa del trasformatore) che riporta i valori nominali di funzionamento. Si tratta dei valori che servono a definire le prestazioni della macchina agli effetti delle garanzie e del collaudo. Non bisogna infatti dimenticare che l'efficienza della macchina dipende, oltre che dalle sue parti attive (ferro del nucleo, rame degli avvolgimenti), anche dal buon funzionamento degli isolanti impiegati. Gli isolanti sono condizionati dall'ambiente nel quale lavorano, dalle tensioni che devono sopportare e dalla temperatura che la macchina (in particolare gli avvolgimenti) raggiunge a regime termico. La temperatura a regime dipende dalle perdite di potenza interne alla macchina, perdite nel ferro che sono funzione del quadrato della tensione applicata e perdite nel rame che sono funzione del quadrato della corrente negli avvolgimenti. I valori nominali sono quei valori che le grandezze elettriche possono assumere garantendo il corretto funzionamento della macchina e, di solito, garantendo il più alto rendimento possibile. Per il trasformatore, i più importanti dati di targa sono: a) la frequenza nominale fn [Hz]; b) le tensioni nominali primaria V 1 n [V] e secondaria V 20 n [V] (concatenate per la macchina trifase), in valore efficace e riferite al funzionamento a vuoto; c) il rapporto nominale di trasformazione d) le correnti nominali primaria I 1 n [A] e secondaria I 2 n [A], in valore efficace e riferite ai terminali di collegamento del trasformatore alle linee; e) la potenza nominale definita come Sn = V 1 n I 1 n = V 20 n I 2 n [VA] per il trasformatore monofase, Sn = V 1 n I 1 n = V 20 n I 2 n [VA] per il trasformatore trifase; f) le perdite a vuoto espresse in percento della potenza nominale Po%, la corrente assorbita a vuoto in percento della corrente nominale Io%, il f.d.p. a vuoto cos 0 quando il trasformatore è alimentato a tensione e frequenza nominali (esiste la relazione cos 0 = Po% / Io% ); g) le perdite in cortocircuito espresse in percento della potenza nominale Pcc%, la tensione applicata in cortocircuito in percento della tensione nominale Vcc%, il f.d.p. in cortocircuito cos CC quando il trasformatore ha i morsetti d'uscita cortocircuitati, ha gli avvolgimenti percorsi dalle correnti nominali e la temperatura è quella convenzionale di riferimento (esiste la relazione ); h) il gruppo (o la famiglia) d'appartenenza, solo per i trasformatori trifase; i) la classe d'isolamento, che definisce la temperatura convenzionale di riferimento della quale abbiamo già parlato;

18 l) il tipo di servizio (continuo, che caratterizza i trasformatori che possono funzionare senza interrompere mai il servizio, di durata limitata, intermittente). E bene ricordare che, indipendentemente dall'impiego che se ne farà (riduttore o elevatore di tensione), si definisce primario l'avvolgimento di alta tensione e i morsetti dei due lati (di alta e bassa tensione) si identificano mediante lettere maiuscole dal lato di alta tensione e minuscole dal lato di bassa tensione, usando la stessa lettera per i morsetti dei due lati che si corrispondono (ovvero che assumono contemporaneamente il potenziale positivo o negativo).

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

APPUNTI DI MACCHINE ELETTRICHE versione 0.7

APPUNTI DI MACCHINE ELETTRICHE versione 0.7 APPUNTI DI MACCHINE ELETTRICHE versione 0.7 11 settembre 2007 2 Indice 1 ASPETTI GENERALI 7 1.1 Introduzione........................................ 7 1.2 Classificazione delle macchine elettriche........................

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente

CAPITOLO 1. Motore a corrente continua ad eccitazione indipendente CAPITOLO Motore a corrente continua ad eccitazione indipendente. - Struttura e principio di funzionamento Una rappresentazione schematica della struttura di un motore a corrente continua a due poli è mostrata

Dettagli

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione

Motori Elettrici. Principi fisici. Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Motori Elettrici Principi fisici Legge di Lenz: se in un circuito elettrico il flusso concatenato varia nel tempo si genera una tensione Legge di Biot-Savart: un conduttore percorso da corrente di intensità

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

PRODUZIONE DI ENERGIA ELETTRICA COME E PERCHÉ

PRODUZIONE DI ENERGIA ELETTRICA COME E PERCHÉ PRODUZIONE DI ENERGIA ELETTRICA COME E PERCHÉ Perché produrre energia elettrica Tutta la società moderna si basa sul consumo di energia, per fare qualsiasi attività necessitiamo di qualche forma di energia.

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile

nica Cagliari ) m Viene detto (1) Dal sistema dell energia Un possibile Viene detto sistema polifase un sistema costituito da più tensioni o da più correnti sinusoidali, sfasate l una rispetto all altra. Un sistema polifase è simmetrico quando le grandezze sinusoidali hanno

Dettagli

Capitolo 1. Generalità sulle macchine elettriche

Capitolo 1. Generalità sulle macchine elettriche Capitolo 1 Generalità sulle macchine elettriche Scopo di questo capitolo è capire come funziona un motore elettrico, quali i princìpi generali che consentono la trasformazione di energia meccanica in energia

Dettagli

ESERCITAZIONE Rispondi a ciascuna delle seguenti domande in 10 righe

ESERCITAZIONE Rispondi a ciascuna delle seguenti domande in 10 righe ESERCITAZIONE Rispondi a ciascuna delle seguenti domande in 10 righe CAPITOLO 1 La carica elettrica e la legge di Coulomb La carica elettrica e la legge di Coulomb: conduttori ed isolanti. Vari tipi di

Dettagli

IMPIANTI ELETTTRICI parte II

IMPIANTI ELETTTRICI parte II IMPIANTI ELETTTRICI parte II di Delucca Ing. Diego PROTEZIONE DI UN IMPIANTO DAI SOVRACCARICHI E DAI CORTO CIRCUITI Una corrente I che passa in un cavo di sezione S, di portata IZ è chiamata di sovracorrente

Dettagli

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario

ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA. CLASSE: V A Corso Ordinario ANNO SCOLASTICO 2014/2015 I.I.S. ITCG L. EINAUDI SEZ.ASSOCIATA LICEO SCIENTIFICO G. BRUNO PROGRAMMA DI FISICA CLASSE: V A Corso Ordinario DOCENTE: STEFANO GARIAZZO ( Paola Frau dal 6/02/2015) La corrente

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

INVERTER per MOTORI ASINCRONI TRIFASI

INVERTER per MOTORI ASINCRONI TRIFASI APPUNTI DI ELETTROTECNICA INVERTER per MOTORI ASINCRONI TRIFASI A cosa servono e come funzionano A cura di Marco Dal Prà www.marcodalpra.it Versione n. 3.3 - Marzo 2013 Inverter Guida Tecnica Ver 3.3 Pag.

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

M A G N E T I C I G E N E R A L I T A'

M A G N E T I C I G E N E R A L I T A' S C H E R M I M A G N E T I C I G E N E R A L I T A' Gli schermi magnetici hanno la funzione di proteggere oggetti sensibili dall'aggressione magnetica esterna. Questi schermi possono essere suddivisi

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

MACCHINA SINCRONA TRIFASE

MACCHINA SINCRONA TRIFASE MACCHIA SICROA TRIFASE + + + + + + + + + + + + + + + + + + L avvolgimento di eccitazione, percorso dalla corrente continua i e, crea una f.m.m. al traferro e quindi un campo magnetico in modo tale che

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

RELAZIONE DI IMPATTO AMBIENTALE

RELAZIONE DI IMPATTO AMBIENTALE RELAZIONE DI IMPATTO AMBIENTALE Fattori di impatto ambientale Un sistema fotovoltaico non crea un impatto ambientale importante, visto che tale tecnologia è utilizzata per il risparmio energetico. I fattori

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

Guida alla scelta di motori a corrente continua

Guida alla scelta di motori a corrente continua Motori Motori in in corrente corrente continua continua 5 Guida alla scelta di motori a corrente continua Riddutore Coppia massima (Nm)! Tipo di riduttore!,5, 8 8 8 Potenza utile (W) Motore diretto (Nm)

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

L ENERGIA DAGLI ELETTRONI. La struttura dell atomo

L ENERGIA DAGLI ELETTRONI. La struttura dell atomo L ENERGIA DAGLI ELETTRONI La struttura dell atomo Ogni materia è formata da particelle elementari dette atomi. Gli atomi sono formati da una parte centrale, il nucleo (composto da due tipi di particelle,

Dettagli

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B

(2) t B = 0 (3) E t In presenza di materia, le stesse equazioni possono essere scritte E = B Equazioni di Maxwell nei mezzi e indice di rifrazione I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E ϱ ɛ 0 () E B (2) B 0 (3) E B µ 0 j + µ 0 ɛ 0

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

2. FONDAMENTI DELLA TECNOLOGIA

2. FONDAMENTI DELLA TECNOLOGIA 2. FONDAMENTI DELLA TECNOLOGIA 2.1 Principio del processo La saldatura a resistenza a pressione si fonda sulla produzione di una giunzione intima, per effetto dell energia termica e meccanica. L energia

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Capitolo 4 Protezione dai contatti indiretti.

Capitolo 4 Protezione dai contatti indiretti. Capitolo 4 Protezione dai contatti indiretti. La protezione contro i contatti indiretti consiste nel prendere le misure intese a proteggere le persone contro i pericoli risultanti dal contatto con parti

Dettagli

Dossier tecnico n 12. Guida alle prove di collaudo trasformatori di distribuzione immersi in olio

Dossier tecnico n 12. Guida alle prove di collaudo trasformatori di distribuzione immersi in olio Dossier tecnico n 12 Guida alle prove di collaudo trasformatori di distribuzione immersi in olio Dossier tecnico n 3 Redatto a cura della ttività Trasformatori Guida alle prove di collaudo trasformatori

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI LINEE D INDIRIZZO PER LA VALUTAZIONE DEI RISCHI CORRELATI ALL INSTALLAZIONE DI IMPIANTI FOTOVOTAICI SU EDIFICI DESTINATI

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

Un'analogia con il circuito idraulico

Un'analogia con il circuito idraulico Pompa Generatore di tensione (pila) Flusso d acqua PUNTI DI DOMANDA Differenza di potenziale Rubinetto Mulinello Lampadina Corrente elettrica 1. Che cos è l energia elettrica? E la corrente elettrica?

Dettagli

ELEMENTI DI ELETTROTECNICA

ELEMENTI DI ELETTROTECNICA ELEMENTI DI ELETTROTECNICA 1. TENSIONE E CORRENTE La storia dell elettricità prende avvio dalla particolare proprietà di una sostanza, l ambra, che strofinata con altra sostanza in grado di riscaldarsi,

Dettagli

IMPIANTI ELETTRICI CIVILI

IMPIANTI ELETTRICI CIVILI UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Architettura Corso di Fisica Tecnica Ambientale Prof. F. Sciurpi - Prof. S. Secchi A.A. A 2011-20122012 IMPIANTI ELETTRICI CIVILI Per. Ind. Luca Baglioni Dott.

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI

ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI Le seguenti grandezze fisiche sono utilizzate per descrivere l'esposizione ai campi elettromagnetici:

Dettagli

SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO

SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO LA PROTEZIONE DELLE CONDUTTURE CONTRO LE SOVRACORRENTI DEFINIZIONI NORMA CEI 64-8/2 TIPOLOGIE DI SOVRACORRENTI + ESEMPI SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO DISPOSITIVI DI PROTEZIONE

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Ing Guido Picci Ing Silvano Compagnoni

Ing Guido Picci Ing Silvano Compagnoni Condensatori per rifasamento industriale in Bassa Tensione: tecnologia e caratteristiche. Ing Guido Picci Ing Silvano Compagnoni 1 Tecnologia dei condensatori Costruzione Com è noto, il principio costruttivo

Dettagli

Storia dei generatori di tensione e della corrente elettrica

Storia dei generatori di tensione e della corrente elettrica Storia dei generatori di tensione e della corrente elettrica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia 1778 Alessandro Volta, in analogia al potenziale gravitazionale definito

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

Effetti fisiopatologici della corrente elettrica sul corpo umano

Effetti fisiopatologici della corrente elettrica sul corpo umano Effetti fisiopatologici della corrente elettrica sul corpo umano La vita è regolata a livello cerebrale, muscolare e biologico da impulsi di natura elettrica. Il cervello è collegato ai muscoli ed a tutti

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria Quale frequenza di lavoro scegliere Geometria del pezzo da trattare e sue caratteristiche elettromagnetiche

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

FUNZIONAMENTO DI UN BJT

FUNZIONAMENTO DI UN BJT IL TRANSISTOR BJT Il transistor inventato nel 1947, dai ricercatori Bardeen e Brattain, è il componente simbolo dell elettronica. Ideato in un primo momento, come sostituto delle valvole a vuoto per amplificare

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

FISICA/MENTE ALCUNE QUESTIONI CONNESSE CON LA PRODUZIONE E DISTRIBUZIONE DELL'ENERGIA ELETTRICA. Roberto Renzetti (2004)

FISICA/MENTE ALCUNE QUESTIONI CONNESSE CON LA PRODUZIONE E DISTRIBUZIONE DELL'ENERGIA ELETTRICA. Roberto Renzetti (2004) FISICA/MENTE ALCUNE QUESTIONI CONNESSE CON LA PRODUZIONE E DISTRIBUZIONE DELL'ENERGIA ELETTRICA Roberto Renzetti (2004) PREMESSA L'idea di scrivere queste pagine e di riprendere, ripescandovi, un mio vecchio

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Rischio Elettrico nei laboratori dei

Rischio Elettrico nei laboratori dei UNIVERSITÁ DEGLI STUDI DI TERAMO Rischio Elettrico nei laboratori dei Dipartimenti Scientifici Dott. Giuseppe Mazziotti di Celso Università degli Studi di Teramo 16 Novembre 2010, Teramo LA CORRENTE ELETTRICA

Dettagli

PROGRAMMA SVOLTO. a.s. 2012/2013

PROGRAMMA SVOLTO. a.s. 2012/2013 Liceo Scientifico Statale LEONARDO DA VINCI Via Cavour, 6 Casalecchio di Reno (BO) - Tel. 051/591868 051/574124 - Fax 051/6130834 C. F. 92022940370 E-mail: LSLVINCI@IPERBOLE.BOLOGNA.IT PROGRAMMA SVOLTO

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis

CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO. Prof. Silvio Stasi Dott. Ing. Nadia Salvatore Dott. Ing. Michele Debenedictis CONTROLLO SCALARE V/Hz DEL MOTORE ASINCRONO SCHEMA DELL AZIONAMENTO A CATENA APERTA AZIONAMENTO L azionamento a catena aperta comprende il motore asincrono e il relativo convertitore statico che riceve

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

ELEMENTI DI RISCHIO ELETTRICO. Ing. Guido Saule

ELEMENTI DI RISCHIO ELETTRICO. Ing. Guido Saule 1 ELEMENTI DI RISCHIO ELETTRICO Ing. Guido Saule Valori delle tensioni nominali di esercizio delle macchine ed impianti elettrici 2 - sistemi di Categoria 0 (zero), chiamati anche a bassissima tensione,

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Compressori serie P Dispositivi elettrici (PA-05-02-I)

Compressori serie P Dispositivi elettrici (PA-05-02-I) Compressori serie P Dispositivi elettrici (PA-05-02-I) 5. MOTORE ELETTRICO 2 Generalità 2 CONFIGURAZIONE PART-WINDING 2 CONFIGURAZIONE STELLA-TRIANGOLO 3 Isolamento del motore elettrico 5 Dispositivi di

Dettagli

Cabine MT/BT: teoria ed esempi di calcolo di cortocircuito

Cabine MT/BT: teoria ed esempi di calcolo di cortocircuito 2 Febbraio 28 Quaderni di Applicazione ecnica 1SDC7101G0902 Cabine M/B: teoria ed esempi di calcolo di cortocircuito Cabine M/B: teoria ed esempi di calcolo di cortocircuito Indice 1 Generalità sulle cabine

Dettagli