Struttura dell atomo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Struttura dell atomo"

Transcript

1 Proprietà elettriche dei materiali Attrazione e repulsione delle cariche Se si sfregano due bacchette di plastica con un panno di lana e poi le bacchette vengono avvicinate, si vede che esse tendono a respingersi. Se si ripete l operazione con una bacchetta di plastica e una di vetro, le bacchette si attirano. Questi semplici esperimenti ci fanno capire che: esistono due tipi di cariche elettriche, che chiameremo positive (+) e negative (-); corpi con cariche dello stesso segno si respingono, mentre corpi con cariche di segno contrario si attraggono

2 Struttura dell atomo Dalla fisica è noto che tutti i corpi (solidi, liquidi o gassosi) sono composti da particelle molto piccole chiamate atomi. Ciascun atomo può essere paragonato ad un sistema solare in miniatura, costituito da un nucleo centrale (composto da particelle con carica positiva, i protoni, e da particelle senza carica, i neutroni) attorno al quale ruotano particelle con carica negativa, gli elettroni. Tutti gli atomi di un dato elemento chimico hanno lo stesso numero di protoni (numero atomico dell elemento). Allo stato naturale gli atomi sono elettricamente neutri: numero protoni = numero elettroni.

3 Elettroni di conduzione Si chiamano così gli elettroni contenuti nell orbita più esterna dell atomo. Infatti questi elettroni, essendo meno legati al loro nucleo, possono spostarsi con una certa facilità nell orbita più esterna di un atomo vicino, e da questa orbita a quella di un altro atomo ancora, dando così origine alla conduzione della corrente elettrica nel materiale. Questo è proprio quello che succede nei cavi di rame usati negli impianti elettrici. Il rame ha numero atomico 29. Di questi 29 elettroni 28 sono molto legati al nucleo, mentre l ultimo si può considerare praticamente libero. A questo punto dovreste essere in grado da soli di spiegare come avviene l elettrizzazione per strofinio delle bacchette.

4 Classificazione dei materiali ISOLANTI Non si lasciano attraversare dalla corrente elettrica, in quanto tutti gli elettroni degli atomi di questi materiali sono fortemente legati ai nuclei (assenza di elettroni di conduzione). La guaina che riveste i cavi di rame è un tipico esempio di isolante elettrico. Altri esempi sono: vetro, porcellana, carta, gomma, PVC, CONDUTTOI Si lasciano facilmente attraversare dalla corrente elettrica, grazie alla forte disponibilità di elettroni di conduzione. Tutti i metalli sono buoni conduttori, in particolare: rame, alluminio, oro, argento, ferro. L acqua è un conduttore? SEMICONDUTTOI Questi materiali (silicio, germanio, arseniuro di gallio) mostrano un comportamento intermedio, e hanno raggiunto una grande importanza in elettronica nella costruzione dei circuiti integrati.

5 Grandezze elettriche fondamentali La corrente elettrica Quando un cavo di rame viene inserito in un circuito elettrico elementare, i suoi elettroni di conduzione iniziano a muoversi verso il morsetto positivo della pila, da cui sono attratti. Infatti tra i due morsetti della pila, durante la fabbricazione, è stato creato uno squilibrio di cariche: un eccesso di elettroni in prossimità del morsetto, e una mancanza al morsetto +. Gli elettroni aspirati dal morsetto + vengono rimpiazzati da un numero uguale di elettroni pompati dal morsetto. Si ha così un movimento circolare (di andata e ritorno) di elettroni, cioè una corrente elettrica.

6 Una analogia idraulica Come saprai, fra due recipienti contenenti acqua a livello diverso, l acqua scorre dal recipiente con il livello più alto a quello con il livello più basso. Se vogliamo che la portata ( corrente) dell acqua ( elettroni) non diminuisca, dobbiamo mantenere costante il dislivello tra i due recipienti usando una pompa ( generatore). In modo analogo si ottiene la corrente elettrica. Avremo bisogno di avere agli estremi del cavo di rame ( tubo) una diversa concentrazione di elettroni, cioè un diverso livello di carica elettrica.

7 Misura dell intensità di corrente Immaginiamo di essere sul bordo di un autostrada per misurare l intensità del traffico: dovremo contare il numero di autoveicoli che transitano davanti a noi in un certo intervallo di tempo. Allo stesso modo, nel caso della corrente elettrica, misureremo la quantità di carica elettrica (elettroni) che passa in secondo attraverso una qualunque sezione del nostro cavo di rame. Data l estrema piccolezza della carica dell elettrone, per avere una corrente di ampere (l ampere, abbreviato A, è l unità di misura della corrente, così come il metro è l unità di misura della lunghezza) bisogna che in secondo passino 6,25 miliardi di miliardi di elettroni!

8 Verso convenzionale della corrente Come già detto gli elettroni di conduzione nel cavo di rame si muovono dal morsetto verso il morsetto + (è questo il verso reale della corrente elettrica). Tuttavia, quando la vera natura della corrente era ancora sconosciuta, è stato fissato un verso convenzionale: quello uscente dal polo positivo ed entrante in quello negativo. Quindi le frecce che nei circuiti ci aiutano a capire il percorso compiuto dalla corrente, in realtà indicano il verso opposto rispetto a quello reale di spostamento degli elettroni (come se questi avessero carica positiva!).

9 Multipli e sottomultipli dell ampere () : 000 : 000 : 000 unità piccole μa ma A KA unità grandi x 000 x 000 x 000 Esempi: ) 30 ma = 30 : 000 = 0,03 A 2) 0 KA = 0 x 000 = 0000 A (2)

10 Il generatore elettrico iprendiamo l analogia con i circuiti idraulici: ci siamo serviti di una pompa per mantenere costante il dislivello tra i due recipienti, e quindi la portata dell acqua. Nel circuito elettrico il generatore ha la stessa funzione della pompa: esercita un adeguata pressione sugli elettroni. Questa pressione elettrica viene chiamata tensione. Tutti i generatori convertono energia non elettrica in energia elettrica. Ad es. una pila usa la sua energia chimica interna per tenere separate le cariche (elettroni) tra i suoi poli. Non appena colleghiamo con del cavo una lampadina alla pila, gli elettroni carichi di energia cominciano a spostarsi dal polo al polo + attraversando la lampadina, alla quale rilasciano l energia ricevuta dal generatore.

11 La tensione (o differenza di potenziale)

12 La tensione (o differenza di potenziale) Ma esattamente cosa vuol dire che una pila ci fornisce, ad esempio,,5 volt di tensione (il volt, abbreviato V, è l unità di misura della tensione elettrica)? La tensione elettrica ai capi di un generatore è definita come il rapporto tra l energia totale da esso fornita e la carica totale separata ai morsetti. Quindi, la tensione fornita dal generatore al circuito è direttamente proporzionale alla quantità di energia ceduta dal generatore agli elettroni. Gli elettroni poi perdono l energia acquistata dal generatore, attraversando i vari utilizzatori presenti nel circuito. Allora possiamo definire una ( caduta di) tensione ai capi di ogni utilizzatore, proporzionale all energia ceduta dagli elettroni all utilizzatore. Se poi prendiamo come livello di riferimento per l energia degli elettroni quella che essi possiedono al polo negativo del generatore, e le attribuiamo il valore convenzionale 0 (zero), potremo attribuire a ogni punto del circuito un ben preciso valore di energia, a cui diamo il nome di potenziale elettrico. Si capisce, in questo modo, che la tensione ai capi di un qualunque elemento del circuito (pila, lampadina, ) può essere definita come differenza di potenziale tra i due punti del circuito tra i quali l elemento è inserito.

13 Una analogia idraulica completa L analogia idraulica fa capire bene la differenza che esiste tra corrente e tensione. La tensione corrisponde alla pressione dell acqua, che può generare un flusso potente o debole indipendentemente dal diametro del tubo. Invece la corrente corrisponde alla portata dell acqua, e quindi proprio al diametro del tubo in cui l acqua è costretta a scorrere. Un tubo di diametro maggiore, a parità di pressione esercitata sull acqua, consentirà di avere una maggiore portata, cioè un flusso più intenso. Appare chiaro, da queste semplici analogie, che tensione e corrente sono tra di loro strettamente collegate. La relazione matematica che le lega si chiama legge di Ohm, e la esamineremo tra non molto.

14 Multipli e sottomultipli del volt () : 000 : 000 unità piccole mv V KV unità grandi x 000 x 000 Esempi: ) 700 mv = 700 : 000 = 0,7 V 2) 0,38 KV = 0,38 x 000 = 380 V (2)

15 La struttura dei circuiti Gli impianti elettrici e gli apparati elettronici sono costituiti da raggruppamenti, spesso molto complessi, di conduttori elettrici e parti speciali chiamate componenti (ne abbiamo già incontrati: pile, lampadine, ). Tutti questi sistemi vengono genericamente indicati con il termine di circuiti. Quello che vedete qui sotto, ad esempio, è un circuito per il comando di una lampada da un punto (è stata anche inserita una presa di corrente). N PE L Nel circuito a fianco (schema di montaggio) si riconoscono quattro componenti e un certo numero di collegamenti. Sapresti indicare il nome di ciascuno dei quattro componenti? L Comandata semplice + F.M.

16 Schemi elettrici Esistono diversi tipi di schemi elettrici (che ci forniscono informazioni differenti): schema funzionale (spiega il funzionamento dei diversi circuiti che compongono l impianto, non fornisce informazioni di installazione) schema di montaggio multifilare (spiega come l impianto va installato: comprende scatole di derivazione, i conduttori seguono percorsi paralleli, ) schema topografico unifilare (è molto simile allo schema di montaggio, ma indica anche l esatta collocazione dei vari componenti). Noi siamo interessati a capire il funzionamento dei circuiti, quindi useremo per lo più lo schema funzionale. Ecco lo schema funzionale della comandata semplice (per semplicità è stata tolta la presa di forza motrice):

17 Simboli usati negli schemi Generatore di tensione continua Generatore di tensione alternata Interruttore Lampada esistore (o esistenza ) Derivazione

18 Corrente continua Vs Corrente alternata La corrente elettrica viene usata o per trasportare energia o per trasportare informazioni (pensate alla rete telefonica e a Internet). Per il trasporto di energia si possono impiegare due modalità diverse: la corrente continua oppure la corrente alternata. Si chiama corrente continua quella che percorre un conduttore sempre nello stesso verso (simboli: dc, cc, --). E prodotta da: pile, accumulatori (le batterie degli autoveicoli), celle fotovoltaiche, La corrente continua viene essenzialmente usata per alimentare gli apparati elettronici. Si chiama invece corrente alternata una corrente che cambia di verso periodicamente, in modo però che il numero di elettroni trasportati in un senso sia sempre uguale a quello degli elettroni trasportati nel senso opposto (simboli: ac, ca, ~). Si preleva da: alternatori, trasformatori e dalle prese di corrente. La corrente alternata viene usata per trasportare e distribuire agli utenti l energia elettrica, e per alimentare la quasi totalità degli apparecchi elettrici domestici e industriali.

19 Andamenti (grafici) nel tempo Corrente continua 5,00 0,00 periodo (s) corrente (A) 5,00 0,00-5,00-0,00-5,00 5,00 0,00 5,00 0 0,005 0,0 0,05 0,02 0,025 tempo (s) Corrente alternata sinusoidale ( f = 50 Hz ; T = 0,02 s ) T f f T corrente (A) 0,00-5,00-0,00 0 0,005 0,0 0,05 0,02 0,025 frequenza (Hz) -5,00 tempo (s)

20 Circuito chiuso Vs Circuito aperto Un circuito si dice chiuso, se al suo interno può circolare una corrente. Un circuito invece si dice aperto, se nell insieme di conduttori che lo costituisce vi è un interruzione tale da impedire il passaggio di corrente. circuito chiuso circuito aperto

21 La teoria dei circuiti La teoria dei circuiti è un insieme di regole che permettono di determinare, in ogni punto di un circuito, i valori delle grandezze elettriche in gioco (correnti e tensioni), in modo tale da conoscere completamente il comportamento del circuito, senza bisogno di valutarne le caratteristiche durante il suo reale funzionamento (in altre parole senza bisogno di montarlo).

22 Le leggi di Ohm La 3 a grandezza elettrica fondamentale: la resistenza Gli elettroni muovendosi nei conduttori non scorrono del tutto liberamente ma incontrano una certa resistenza (dovuta ai continui urti degli elettroni contro gli atomi del conduttore). Possiamo paragonare questo fenomeno a quello che si ha in un impianto idraulico quando l acqua che scorre nei tubi incontra una strozzatura. Tutti i materiali attraversati da una corrente presentano una certa resistenza.

23 La resistenza: definizione della grandezza La resistenza rappresenta il grado di opposizione che un materiale presenta al passaggio della corrente. La sua unità di misura è l ohm, abbreviato con la lettera o dell alfabeto greco: la lettera Ω. In un circuito gli utilizzatori presentano sempre una grande resistenza rispetto a quella dei conduttori che costituiscono i cavi di collegamento. L unico scopo dei conduttori è quello di trasportare l energia dal generatore agli utilizzatori, quindi i conduttori devono avere la resistenza più piccola possibile. 00 m di cavo di rame di sezione 2,5 mm 2 hanno una resistenza di soli 0,7 Ω! Una lampadina da 00 W ha una resistenza di circa 500 Ω.

24 Multipli dell ohm () : 000 : 000 unità piccole Ω KΩ MΩ unità grandi x 000 x 000 Esempi: ) 0,7 Ω = 0,7 : 000 = 0,0007 KΩ 2) 0,0005 MΩ = 0,0005 x 000 = 0,5 KΩ (2)

25 La resistenza: applicazioni Vedremo più avanti che la resistenza dei materiali al passaggio di corrente viene sfruttata in elettronica per ridurre la tensione o la corrente in un circuito. D altra parte, quando la corrente incontra un elevata resistenza nell attraversare un materiale, questo tende a surriscaldarsi. Molti dispositivi elettrici sfruttano questo fenomeno per produrre calore, ad esempio: saldatori ferri da stiro lampadine

26 Il cortocircuito Analizziamo il comportamento del circuito disegnato in questa slide. Quando l interruttore è aperto, il circuito si comporta in modo corretto (perché?). Quando invece l interruttore è chiuso, gli elettroni che formano la corrente, arrivati alla derivazione x, che percorso seguiranno? La risposta più naturale sarebbe: gli elettroni si ripartiscono tra i due percorsi. Purtroppo l utilizzatore (lampadina) ha una resistenza molto più grande di quella del solo cavo (di cortocircuito) che gli elettroni trovano proseguendo a destra. Per cui la corrente scorrerà praticamente tutta attraverso il collegamento di cortocircuito, e con intensità molto elevata (perché?). Il termine cortocircuito è usato proprio per indicare un collegamento diretto tra i due poli del generatore, cioè un collegamento che non passa attraverso alcun utilizzatore.

27 La (prima) legge di Ohm Abbiamo detto che gli elettroni, muovendosi nel circuito, urtano continuamente gli atomi dei materiali che attraversano. In questi urti gli elettroni perdono energia, e questa perdita si traduce in una progressiva caduta di potenziale lungo il circuito (in parole povere si perde, a poco a poco, la tensione fornita dal generatore). Una perdita simile (ma di pressione) incontra l acqua di un impianto idraulico percorrendo una strozzatura. Più il diametro del tubo si riduce, maggiore sarà il calo della pressione. Allo stesso modo, più grande è la resistenza elettrica del materiale, maggiore sarà la tensione persa. Si capisce così che la maggior parte della tensione verrà persa sugli utilizzatori, e non sui conduttori che hanno resistenza molto bassa. Il legame tra tensione persa e resistenza è stabilito da una relazione molto semplice, la prima legge di Ohm: resistenza (Ω) tensione (V) V = I corrente (A)

28 Le tre espressioni della legge di Ohm Cerchiamo di capire meglio il significato della legge di Ohm: ) l espressione V = I ci dice sostanzialmente che la caduta di tensione sull utilizzatore è direttamente proporzionale alla sua resistenza (cioè se ad esempio la resistenza raddoppia, anche la tensione raddoppia); 2) ma possiamo anche riscrivere la legge come I = V : (è stata solo girata ), e questa seconda espressione ci fa vedere che la corrente che scorre nell utilizzatore è inversamente proporzionale alla sua resistenza (cioè se la resistenza raddoppia, la corrente diventa la metà riflettete anche sull analogia idraulica!); 3) infine, girando nel terzo modo possibile la legge, otteniamo l espressione = V : I che ci consente di ricavare la resistenza dell utilizzatore, se conosciamo la sua tensione e la sua corrente. Queste tre espressioni della legge di Ohm vanno ricordate a memoria.

29 Prova sperimentale della legge di Ohm Con il circuito riportato in questa slide è possibile verificare la validità della legge di Ohm. I due tester consentono di misurare corrente (I) e tensione (V) sulla resistenza. Aumentando la tensione fornita dal generatore, il rapporto V : I non deve cambiare, ma rimanere sempre uguale al valore della resistenza. Questo è proprio quello che afferma la terza espressione della legge di Ohm. Link al grafico dei dati sperimentali.

30 La seconda legge di Ohm Abbiamo detto che la tensione persa lungo i cavi dell impianto è trascurabile rispetto a quella che cade sugli utilizzatori. Tuttavia in certi casi è necessario valutarla, e per farlo è necessario conoscere la resistenza totale del cavo. E facile intuire che la resistenza di un cavo elettrico è: direttamente proporzionale alla sua lunghezza, inversamente proporzionale alla sua sezione, dipendente dal tipo di conduttore usato per costruire il cavo (cambiando il conduttore cambia la quantità di elettroni di conduzione disponibili). Queste tre osservazioni sono riassunte dalla seconda legge di Ohm: l S = resistenza del cavo (Ω) ρ = resistività del conduttore (per il rame vale 0,075) l = lunghezza del cavo (m) S = sezione del cavo (mm 2 )

31 La resistenza equivalente esistenze in serie Quando due o più resistenze sono collegate tra loro una di seguito all altra in modo tale che la corrente sia la stessa per tutte (non avendo altro percorso possibile), si dice che le resistenze sono collegate in serie. Un circuito contenente una serie di resistenze può essere semplificato, sostituendo alla serie un unica resistenza equivalente di valore pari alla somma delle singole resistenze. Se EQ = , allora le due correnti sono uguali cioè I = I.

32 Un esempio Perché il circuito di destra sia equivalente a quello di sinistra, bisogna che siano uguali le correnti I e I (visto che la tensione fornita dal generatore è sempre la stessa, 36 V). La resistenza equivalente della serie di tre resistenze è: = 300 Ω. Proviamo allora a calcolare la corrente I : I = V G : EQ = 36 : 300 = 0,2 A, lo stesso valore della corrente I, quindi i due circuiti sono equivalenti.

33 esistenza equivalente: applicazioni L applicazione principale del concetto di resistenza equivalente consiste nel calcolo della corrente erogata dal generatore al circuito. Considerate il circuito disegnato in questa slide: è possibile calcolare la corrente erogata dal generatore usando soltanto la legge di Ohm? La risposta è no. Bisogna per forza passare al circuito equivalente, in cui la legge di Ohm è applicabile essendo presente una sola resistenza (quella equivalente). Tanto sappiamo che la corrente calcolata nel circuito equivalente è uguale alla corrente che scorre nel circuito di partenza! Trovata la corrente si potrà continuare l analisi del circuito con la legge di Ohm. PATITOE DI TENSIONE I V G V V 2 V G EQ 2 I G V ( ( G 2 ) VG 2 ; ) V 2 (APPOTO DI PATIZIONE) 2 I G 2 VG ( 2)

34 esistenze in parallelo Quando due o più resistenze sono montate una di fianco all altra in modo tale che la tensione sia la stessa per tutte (non essendoci altre cadute tra una resistenza e l altra), si dice che le resistenze sono collegate in parallelo. Un circuito contenente un parallelo di resistenze può essere semplificato, sostituendo al parallelo un unica resistenza equivalente di valore pari all inverso della somma degli inversi delle singole resistenze. PATITOE DI COENTE EQ EQ EQ 2 n FOMULA GENEALE n ESISTENZE TUTTE UGUALI PAALLELO DI 2 ESISTENZE Se si usa la resistenza equivalente, la corrente I G erogata dal generatore non cambia.

35 Un esempio I I 2 V V , 3 0, 2 A A I G I I 0,3 0,2 0, 5 A EQ 2 G IG 0, 5 A V EQ

36 Utilizzatori in parallelo Ecco un esempio di collegamento di più utilizzatori alla linea principale di distribuzione dell energia elettrica all interno di un abitazione (~ 230 V). Come vedete gli utilizzatori sono tutti collegati in parallelo, in modo da poterli accendere e spegnere indipendentemente l uno dall altro. Inoltre, in caso di guasto di un utilizzatore, gli altri continuano a funzionare correttamente. Con un collegamento in serie tutto ciò sarebbe stato possibile?

37 Collegamenti misti di resistenze Un collegamento misto è una combinazione di resistenze montate in serie e in parallelo. Considerate ad esempio il circuito seguente. Esso può essere semplificato progressivamente procedendo per piccoli passi: a ogni passo bisogna riconoscere quei gruppi di resistenze che sono tra loro in serie o in parallelo, e sostituirli con la loro resistenza equivalente.

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

U.D.: LABORATORIO ELETTRICITA

U.D.: LABORATORIO ELETTRICITA U.D.: LABORATORIO ELETTRICITA 1 ATTREZZI MATERIALI 2 Tavoletta compensato Misure: 30cmx20-30 cm spellafili punteruolo cacciavite Nastro isolante Metro da falegname e matita Lampadine da 4,5V o 1,5V pinza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Concetti di base sulla CORRENTE ELETTRICA

Concetti di base sulla CORRENTE ELETTRICA Concetti di base sulla CORRENTE ELETTRICA Argomenti principali Concetti fondamentali sull'atomo, conduttori elettrici, campo elettrico, generatore elettrico Concetto di circuito elettrico (generatore-carico)

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

APPUNTI DI ELETTROTECNICA GENERALE versione 0.0

APPUNTI DI ELETTROTECNICA GENERALE versione 0.0 APPUNTI DI ELETTROTECNICA GENERALE versione 0.0 9 settembre 2006 2 Indice 1 STRUTTURA DELLA MATERIA E FENOMENI ELETTRICI 7 1.1 Cos é l elettricità?.................................... 7 1.2 Fenomeni elettrostatici.................................

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

Un'analogia con il circuito idraulico

Un'analogia con il circuito idraulico Pompa Generatore di tensione (pila) Flusso d acqua PUNTI DI DOMANDA Differenza di potenziale Rubinetto Mulinello Lampadina Corrente elettrica 1. Che cos è l energia elettrica? E la corrente elettrica?

Dettagli

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA

PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA PERICOLI DERIVANTI DALLA CORRENTE ELETTRICA CONTATTI DIRETTI contatti con elementi attivi dell impianto elettrico che normalmente sono in tensione CONTATTI INDIRETTI contatti con masse che possono trovarsi

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

L ENERGIA DAGLI ELETTRONI. La struttura dell atomo

L ENERGIA DAGLI ELETTRONI. La struttura dell atomo L ENERGIA DAGLI ELETTRONI La struttura dell atomo Ogni materia è formata da particelle elementari dette atomi. Gli atomi sono formati da una parte centrale, il nucleo (composto da due tipi di particelle,

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

P od o u d z u io i n o e n e d e d l e l l a l a c o c r o ren e t n e e a l a t l er e na n t a a alternatori. gruppi elettrogeni

P od o u d z u io i n o e n e d e d l e l l a l a c o c r o ren e t n e e a l a t l er e na n t a a alternatori. gruppi elettrogeni Produzione della corrente alternata La generazione di corrente alternata viene ottenuta con macchine elettriche dette alternatori. Per piccole potenze si usano i gruppi elettrogeni. Nelle centrali elettriche

Dettagli

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI

IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI IMPIANTI FOTOVOLTAICI PER LA PRODUZIONE DI ENERGIA ELETTRICA INSTALLATI SU EDIFICI LINEE D INDIRIZZO PER LA VALUTAZIONE DEI RISCHI CORRELATI ALL INSTALLAZIONE DI IMPIANTI FOTOVOTAICI SU EDIFICI DESTINATI

Dettagli

AC Anywhere. Inverter. Manuale utente. F5C400u140W, F5C400u300W F5C400eb140W e F5C400eb300W

AC Anywhere. Inverter. Manuale utente. F5C400u140W, F5C400u300W F5C400eb140W e F5C400eb300W AC Anywhere Inverter (prodotto di classe II) Manuale utente F5C400u140W, F5C400u300W F5C400eb140W e F5C400eb300W Leggere attentamente le istruzioni riguardanti l installazione e l utilizzo prima di utilizzare

Dettagli

Interruttori di posizione precablati serie FA

Interruttori di posizione precablati serie FA Interruttori di posizione precablati serie FA Diagramma di selezione 01 08 10 11 1 15 1 0 guarnizione guarnizione esterna in esterna in gomma gomma AZIONATORI 1 51 5 54 55 56 5 leva leva regolabile di

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

r.berardi PRINCIPI DI ELETTROTECNICA ELEMENTARE

r.berardi PRINCIPI DI ELETTROTECNICA ELEMENTARE r.berardi PRINCIPI DI ELETTROTECNICA ELEMENTARE Principi elementari di elettrotecnica Teoria elettronica della materia Pag. 2 La dinamo Pag. 13 Schema teoria Pag.. 3 L alternatore Pag. 14 elettronica Elettricita

Dettagli

Impianto elettrico nelle applicazioni aeronautiche. ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico

Impianto elettrico nelle applicazioni aeronautiche. ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico Impianto elettrico nelle applicazioni aeronautiche ITIS Ferentino Trasporti e Logistica Costruzione del Mezzo Aeronautico prof. Gianluca Venturi Indice generale Richiami delle leggi principali...2 La prima

Dettagli

EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO

EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO EFFETTI FISIOPATOLOGICI DELLA CORRENTE ELETTRICA SUL CORPO UMANO Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d

Dettagli

Costruire una pila in classe

Costruire una pila in classe Costruire una pila in classe Angela Turricchia, Grazia Zini e Leopoldo Benacchio Considerazioni iniziali Attualmente, numerosi giocattoli utilizzano delle pile. I bambini hanno l abitudine di acquistarle,

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

Capitolo 4 Protezione dai contatti indiretti.

Capitolo 4 Protezione dai contatti indiretti. Capitolo 4 Protezione dai contatti indiretti. La protezione contro i contatti indiretti consiste nel prendere le misure intese a proteggere le persone contro i pericoli risultanti dal contatto con parti

Dettagli

Sistemi elettrici secondo la tensione ed il loro modo di collegamento a terra. Sistemi elettrici e messa a terra -- Programma LEONARDO

Sistemi elettrici secondo la tensione ed il loro modo di collegamento a terra. Sistemi elettrici e messa a terra -- Programma LEONARDO Sistemi elettrici secondo la tensione ed il loro modo di collegamento a terra Classificazione dei sistemi in categorie secondo la loro tensione nominale In relazione alla loro tensione nominale i sistemi

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

Andiamo più a fondo nella conoscenza del Sistema Solare

Andiamo più a fondo nella conoscenza del Sistema Solare Andiamo più a fondo nella conoscenza del Sistema Solare Come abbiamo visto nelle pagine precedenti il Sistema Solare è un insieme di molti corpi celesti, diversi fra loro. La sua forma complessiva è quella

Dettagli

I modelli atomici da Dalton a Bohr

I modelli atomici da Dalton a Bohr 1 Espansione 2.1 I modelli atomici da Dalton a Bohr Modello atomico di Dalton: l atomo è una particella indivisibile. Modello atomico di Dalton Nel 1808 John Dalton (Eaglesfield, 1766 Manchester, 1844)

Dettagli

negativa Forza repulsiva Forza attrattiva

negativa Forza repulsiva Forza attrattiva 1 Corrente elettrica 1.1 Carica elettrica Sebbene le cariche elettriche siano tra i costituenti fondamentali della materia, l elettricità in natura è un fenomeno relativamente raro, se si eccettuano i

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

L=F x s lavoro motore massimo

L=F x s lavoro motore massimo 1 IL LAVORO Nel linguaggio scientifico la parola lavoro indica una grandezza fisica ben determinata. Un uomo che sposta un libro da uno scaffale basso ad uno più alto è un fenomeno in cui c è una forza

Dettagli

Esperienze con l elettricità e il magnetismo

Esperienze con l elettricità e il magnetismo Esperienze con l elettricità e il magnetismo Laboratorio di scienze Le esperienze di questo laboratorio ti permettono di acquisire maggiore familiarità con l elettricità e il magnetismo e di sperimentare

Dettagli

Gli orbitali: modello atomico probabilistico

Gli orbitali: modello atomico probabilistico 1 Approfondimento 2.1 Gli orbitali: modello atomico probabilistico Modello atomico planetario (o a gusci): gli elettroni ruotano intorno al nucleo percorrendo orbite prefissate. Il modello atomico planetario

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Veniamo al dunque, per prima cosa recuperiamo il materiale necessario:

Veniamo al dunque, per prima cosa recuperiamo il materiale necessario: Probabilmente questo problema è stato già affrontato da altri, ma volevo portare la mia esperienza diretta, riguardo alla realizzazione di un alimentatore per il caricabatterie 12 volt, ottenuto trasformando

Dettagli

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP

GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP GRUPPO DI CONTINUITA' 12 V - BATTERIA BACKUP Salve, questo circuito nasce dall'esigenza pratica di garantire continuità di funzionamento in caso di blackout (accidentale o provocato da malintenzionati)

Dettagli

ELEMENTI DI RISCHIO ELETTRICO. Ing. Guido Saule

ELEMENTI DI RISCHIO ELETTRICO. Ing. Guido Saule 1 ELEMENTI DI RISCHIO ELETTRICO Ing. Guido Saule Valori delle tensioni nominali di esercizio delle macchine ed impianti elettrici 2 - sistemi di Categoria 0 (zero), chiamati anche a bassissima tensione,

Dettagli

TESTER PROVA ALIMENTATORI A 12 VOLT CC CON CARICO VARIABILE MEDIANTE COMMUTATORI DA 4,2 A 29,4 AMPÉRE.

TESTER PROVA ALIMENTATORI A 12 VOLT CC CON CARICO VARIABILE MEDIANTE COMMUTATORI DA 4,2 A 29,4 AMPÉRE. TESTER PROVA ALIMENTATORI A 12 VOLT CC CON CARICO VARIABILE MEDIANTE COMMUTATORI DA 4,2 A 29,4 AMPÉRE. Nello Mastrobuoni, SWL 368/00 (ver. 1, 06/12/2011) Questo strumento è utile per verificare se gli

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

INDICE Raccomandazioni Norme di sicurezza Attenzione Avvertenze per i genitori

INDICE Raccomandazioni Norme di sicurezza Attenzione Avvertenze per i genitori INDICE DISTINTA DEI PEZZI Pag. 4 ISTRUZIONI DI MONTAGGIO Pag. 5 L ELETTRICITÀ NELLA VITA QUOTIDIANA Pag. 6 LA CORRENTE ELETTRICA E RELATIVI ESPERIMENTI Pag. 9 IL MAGNETISMO E RELATIVI ESPERIMENTI Pag.

Dettagli

Elettrificatori per recinti

Elettrificatori per recinti Elettrificatori per recinti 721 Cod. R315527 Elettri catore multifunzione PASTORELLO SUPER PRO 10.000 Articolo professionale, dotato di rotoregolatore a 3 posizioni per 3 diverse elettroscariche. Può funzionare

Dettagli

IMPIANTISTICA DI BORDO

IMPIANTISTICA DI BORDO IMPIANTISTICA DI BORDO 1 ELEMENTI DI ELETTROTECNICA 2 MAGNETISMO ED ELETTROMAGNETISMO 3 PRODUZIONE,TRASFORMAZIONE E DISTRIBUZIONE DELL ENERGIA ELETTRICA A BORDO 4 ALTERNATORI E MOTORI SINCRONI 5 MOTORI

Dettagli

IMPIANTI ELETTRICI CIVILI

IMPIANTI ELETTRICI CIVILI UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Architettura Corso di Fisica Tecnica Ambientale Prof. F. Sciurpi - Prof. S. Secchi A.A. A 2011-20122012 IMPIANTI ELETTRICI CIVILI Per. Ind. Luca Baglioni Dott.

Dettagli

CABLAGGI ED ISTRUZIONI DI UTILIZZO

CABLAGGI ED ISTRUZIONI DI UTILIZZO VALIDO PER MOD. DTCHARGE E 1000 CABLAGGI ED ISTRUZIONI DI UTILIZZO LEGGERE CON CURA IN OGNI SUA PARTE PRIMA DI ALIMENTARE TOGLIAMO IL COPERCHIO, COSA FARE?? Il DTWind monta alternatori tri fase. Ne consegue

Dettagli

Alimentazione Switching con due schede ATX.

Alimentazione Switching con due schede ATX. Alimentazione Switching con due schede ATX. Alimentatore Switching finito 1 Introduzione...2 2 Realizzazione supporto...2 3 Realizzazione Elettrica...5 4 Realizzazione meccanica...7 5 Montaggio finale...9

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei L OSCILLOSCOPIO L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei circuiti elettronici. Nel suo uso abituale esso ci consente di vedere le forme d onda

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle STRUTTURA ATOMO Com è fatto l atomo ATOMO UNA VOLTA si pensava che l atomo fosse indivisibile OGGI si pensa che l atomo è costituito da tre particelle PROTONI particelle con carica elettrica positiva e

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Interruttori di sicurezza ad azionatore separato con sblocco a serratura

Interruttori di sicurezza ad azionatore separato con sblocco a serratura Interruttori di sicurezza ad azionatore separato con sblocco a serratura Diagramma di selezione VF KEYF VF KEYF1 VF KEYF2 VF KEYF3 VF KEYF7 VF KEYF AZIONATORI UNITA DI CONTATTO 1 2 21 22 2NO+1NC FD FP

Dettagli

MODULO SOLARE A DUE VIE PER IMPIANTI SVUOTAMENTO

MODULO SOLARE A DUE VIE PER IMPIANTI SVUOTAMENTO Schede tecniche Moduli Solari MODULO SOLARE A DUE VIE PER IMPIANTI SVUOTAMENTO Il gruppo con circolatore solare da 1 (180 mm), completamente montato e collaudato, consiste di: RITORNO: Misuratore regolatore

Dettagli

Manuale d uso. Per abitazioni, baite, camper, caravan, barche

Manuale d uso. Per abitazioni, baite, camper, caravan, barche Manuale d uso Regolatore di carica EP5 con crepuscolare Per abitazioni, baite, camper, caravan, barche ITALIANO IMPORTANTI INFORMAZIONI SULLA SICUREZZA Questo manuale contiene importanti informazioni sulla

Dettagli

Riscaldamento dell acqua con pannelli fotovoltaici

Riscaldamento dell acqua con pannelli fotovoltaici RISCALDATORI DI ACQUA IBRIDI LOGITEX LX AC, LX AC/M, LX AC/M+K Gamma di modelli invenzione brevettata Riscaldamento dell acqua con pannelli fotovoltaici Catalogo dei prodotti Riscaldatore dell acqua Logitex

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

PROTEZIONE DAI CONTATTI DIRETTI ED INDIRETTI

PROTEZIONE DAI CONTATTI DIRETTI ED INDIRETTI PROTEZIONE DAI CONTATTI DIRETTI ED INDIRETTI Appunti a cura dell Ing. Emanuela Pazzola Tutore del corso di Elettrotecnica per meccanici, chimici e biomedici A.A. 2005/2006 Facoltà d Ingegneria dell Università

Dettagli

SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO

SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO LA PROTEZIONE DELLE CONDUTTURE CONTRO LE SOVRACORRENTI DEFINIZIONI NORMA CEI 64-8/2 TIPOLOGIE DI SOVRACORRENTI + ESEMPI SEGNI GRAFICI E SIMBOLI ELETTRICI PER SCHEMI DI IMPIANTO DISPOSITIVI DI PROTEZIONE

Dettagli

una saldatura ad arco

una saldatura ad arco UTENSILERIA Realizzare una saldatura ad arco 0 1 Il tipo di saldatura Saldatrice ad arco La saldatura ad arco si realizza con un altissima temperatura (almeno 3000 c) e permette la saldatura con metallo

Dettagli

Compressori serie P Dispositivi elettrici (PA-05-02-I)

Compressori serie P Dispositivi elettrici (PA-05-02-I) Compressori serie P Dispositivi elettrici (PA-05-02-I) 5. MOTORE ELETTRICO 2 Generalità 2 CONFIGURAZIONE PART-WINDING 2 CONFIGURAZIONE STELLA-TRIANGOLO 3 Isolamento del motore elettrico 5 Dispositivi di

Dettagli

Ecco come funziona un sistema di recinzione!

Ecco come funziona un sistema di recinzione! Ecco come funziona un sistema di recinzione! A) Recinto elettrico B) Fili elettrici C) Isolatori D) Paletti E) Paletti messa a terra 3 m 3 m 1 m Assicurarsi che ci siano almeno 2500V in tutta la linea

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

RESISTIVITA ELETTRICA DELLE POLVERI: MISURA E SIGNIFICATO PER LA SICUREZZA

RESISTIVITA ELETTRICA DELLE POLVERI: MISURA E SIGNIFICATO PER LA SICUREZZA RESISTIVITA ELETTRICA DELLE POLVERI: MISURA E SIGNIFICATO PER LA SICUREZZA Nicola Mazzei - Antonella Mazzei Stazione sperimentale per i Combustibili - Viale A. De Gasperi, 3-20097 San Donato Milanese Tel.:

Dettagli

La Termodinamica ed I principi della Termodinamica

La Termodinamica ed I principi della Termodinamica La Termodinamica ed I principi della Termodinamica La termodinamica è quella branca della fisica che descrive le trasformazioni subite da un sistema (sia esso naturale o costruito dall uomo), in seguito

Dettagli

ESPERIENZA N 8: UNA CELLA SOLARE CASALINGA PROPRIETÀ E APPLICAZIONI:

ESPERIENZA N 8: UNA CELLA SOLARE CASALINGA PROPRIETÀ E APPLICAZIONI: ESPERIENZA N 8: UNA CELLA SOLARE CASALINGA PROPRIETÀ E APPLICAZIONI: La cella solare è un spositivo per la trasformazione energia luminosa in energia elettrica. L applicazione più nota questi tipi spositivi

Dettagli

Milliamp Process Clamp Meter

Milliamp Process Clamp Meter 771 Milliamp Process Clamp Meter Foglio di istruzioni Introduzione La pinza amperometrica di processo Fluke 771 ( la pinza ) è uno strumento palmare, alimentato a pile, che serve a misurare valori da 4

Dettagli

RELAZIONE DI IMPATTO AMBIENTALE

RELAZIONE DI IMPATTO AMBIENTALE RELAZIONE DI IMPATTO AMBIENTALE Fattori di impatto ambientale Un sistema fotovoltaico non crea un impatto ambientale importante, visto che tale tecnologia è utilizzata per il risparmio energetico. I fattori

Dettagli

CLASSE IV- Opzione 2 Corsi supplementari di scienze naturali L ENERGIA ELETTRICA

CLASSE IV- Opzione 2 Corsi supplementari di scienze naturali L ENERGIA ELETTRICA CLASSE IV- Opzione 2 Corsi supplementari di scienze naturali L ENERGIA ELETTRICA L energia elettrica 1. Il magnetismo E 2.1. Calamite e poli magnetici. E 2.2. Poli magnetici e magnetismo terrestre. E 2.3.

Dettagli

Corrente elettrica e circuiti elettrici

Corrente elettrica e circuiti elettrici La corrente elettrica Come già detto nell'atomo i protoni hanno una carica elettrica di segno positivo e gli elettroni di segno negativo. Questi ultimi inoltre non sfuggono alle loro orbite ellittiche

Dettagli