Ripasso tramiti esempi - Applicazioni lineari e matrici

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ripasso tramiti esempi - Applicazioni lineari e matrici"

Transcript

1 Ripasso tramiti esempi - Applicazioni lineari e matrici Applicazioni lineari associata ad una matrice Avete imparato che data una matrice A K m,n esiste una applicazione lineare associata ad A. Ma come si costruisce questa applicazione lineare? Consideriamo V e W due K-spazi vettoriali di dimensione n e m rispettivamente ed E ɛ,..., ɛ n una base di V e F,..., m una base di W. Se A K m,n e se consideriamo i vettori w,..., w n di W le cui componenti rispetto a F sono date dalle colonne di A, allora è ben deinita l applicazione lineare : V W tale che ɛ z,..., ɛ n z n. Inoltre la è deinita dalla ormula : x ɛ x n ɛ n x z x n z n si dice applicazione lineare associata ad A mediante le basi E e F. La denoteremo con F E A. Esempio. Consideriamo V R e W R con basi rispettivamente E ɛ, ɛ, ɛ e F,, dove : ɛ ɛ ɛ. Consideriamo la matrice La : R R associata alla matrice A mediante le basi E ed F si costruisce così : si calcolano i vettori di R aventi per componenti le colonne di A, rispetto alla base F. Si trova : z + + z + + z + +

2 si deinisce sulla base E mediante le relazioni : ɛ z ɛ z ɛ z Ora la è ben deinita per che per determinare una applicazione lineare ci basta sapere quanto vale sugli elementi della base, quindi possiamo trovare una ormula per la, che costruiamo con le stesse tecniche utilizzate nelle lezione di esercizi: Si prende un vettore x x x qualsiasi in V. x Si scrive nella base scelta per V, in questo caso nella base E ɛ, ɛ, ɛ ; in questo modo avremo che x αɛ + βɛ + γɛ e quindi x αɛ + βɛ + γɛ per la linearità della. Conoscendo i valori di ɛ, ɛ, ɛ ci basta sostituire. Quindi il lavoro ora è trovare i valori di α, β, γ. Facciamo : x αe + βe + γe x x α + β x α + β + γ x α x α + γ x Quindi abbiamo la nostra ormula : x x F E A x x + γ β x + x 6 x α x γ x x x z + x + x 6 x z + x x z + x + x 6 x x 7x +6x x + x + x x Nelle esercitazioni molte volte abbiamo trovato le applicazioni lineari associate ad una matrice nelle basi canoniche anche se non lo dicevamo. Queste coincidono con le applicazioni lineari ϕ A.

3 ϕ A : K n K m x x x.. A x.. x n Quando non si a rierimento alla base è sottinteso che si sta lavorando con le basi canoniche e si denoterà l applicazione lineare ϕ associata alla matrice semplicemente con ϕ A senza are rierimento alla base. Esempio. : Allora R, x n ϕ A : K n K m x y x y z z x + y + z x + y Matrice associata ad una applicazione lineare Viceversa alla sessione, avete imparato che data una applicazione lineare ψ : V W esiste una matrice associata a questa applicazione lineare ψ. In questa sessione impareremo a trovare questa matrice. Deinizione. data una applicazione lineare e issate E ɛ,..., ɛ n ψ : V W F,..., m base di V e base di W la matrice associata all applicazione lineare ψ rispetto alle basi E ed F, denotata con Mψ F E, è costituita dalle coordinate del vettore ψɛ j W rispetto alla base F. Esplicitamente: a... a n Mψ F E a m... a mn dove a ij K e ψɛ j a j + a j a mj m m i a ij i

4 Esempio. Sia ψ : R R deinita da: ψ x x x x 7x +6x x +8x Consideriamo E ɛ, ɛ, ɛ basi di R e F, basi di R, dove : ɛ ɛ ɛ. Troviamo M F E ψ. Prima calcoliamo l imagine dei elementi della basi E di R : 7 +6 ψɛ ψ ψɛ ψ ψɛ ψ Ora scriviamo i vettori ψɛ, ψɛ, ψɛ di R nella basi F di R : α + α α + α β + β β + β γ + γ γ + γ Quindi per trovare i valori di α, β e γ dobbiamo risolvere i seguenti sistemi lineari: α α α β β β γ γ γ perciò, α α β β γ γ

5 In questo modo, per deinizione la matrice M F E è data da: Mψ F E α β γ α β γ ψ Esempio. Esercizio: Nel esempio. se prendiamo le basi canoniche di R, e e, e, e e di R, e e, e, la matrice associata a ψ nelle basi cononiche, M e e ψ, è data da: M e e ψ 7 6 quando le basi rierite sono le canoniche, denoteremo la matrice associata rispetto alle basi canonica del dominio e dell imagine per M ψ senza are rierimento alle basi.. Alcuni Teoremi Teorema. Siano V, W K-spazi vettoriali, ψ, ϕ : V W applicazioni lineari ed E, F rispettivamente basi di V e W. Allora M F E ϕ + M F E ψ Dimostrazione : Siano E e,..., e n e F,..., m, M F E ϕ+ψ M F E ϕ a ij M F E ψ b ij Dalla deinizione di matrice associata risulta : e quindi per deinizione di ϕ + ψ : ϕe j a j + a j a mj m ψe j b j + b j b mj m ϕ + ψe j a j + b j + a j + b j a mj + b mj m j,..., n quindi Mϕ+ψ F E Mϕ F E + Mψ F E Teorema.5 Siano V, W K spazi vettoriali, ψ : V W un applicazione lineare, k K e E, F basi di V e W rispettivamente. Allora M F E kϕ km F E ϕ Dimostrazione : Siano E e,..., e n e F,..., m, M F E ϕ a ij Dalla deinizione di matrice associata risulta : 5

6 ϕe j a j + a j a mj m j,..., n kϕe j ka j + ka j ka mj m quindi : kϕe j ka j + ka j ka mj m M F E kϕ km F E ϕ Teorema.6 Siano V, W, Z K spazi vettoriali, ψ : V W, ϕ : W Z applicazioni lineari. Siano date le basi E, F, G di V,W e Z rispettivamente. Risulta allora : Mϕ ψ GE Mϕ GF Mψ F E Dimostrazione : Abbiamo che ϕ ψ : V Z.Consideriamo E e,..., e n, F,..., m e G g,..., g p e M GF ϕ a ij M F E ψ b ij M GE ϕ ψ c ij Dalla deinizione di Mϕ ψ GE abbiamo che la j-esima colonna è data delle componenti del vettori ψ ϕe j nella base G: cioè Abbiamo che : ϕ ψe j c j g c pj g p ϕ ψe j ϕa j a mj m ϕ ψe j a j ϕ a mj ϕ m a j b g b p g p a mj b m g b pm g p a j b + a j b +... a mj b m g a j b p + a j b p +... a mj b pm g p quindi c ij b j a j + b j a j +... b jm a mj b j... b jm a j. a mj per tutti i e j Quindi Mϕ ψ GE c ij b ij.a ij Mϕ GF Mψ F E Esempio.7 Siano date le applicazioni lineari ψ : R R x x + y y x y e ϕ : R R z z t t Allora x ϕ ψ y x + y ϕ x y x + y x y x + y 6

7 Dall altra parte, usando le basi canoniche di R e R M ψ M ϕ Quello che ci aspettavamo. M ϕ ψ. Cambiamento di base Sia V un K-spazio vettoriale e siano E e,..., e n e F,..., n due basi di V. Allora esiste una matrice P EF a ij K n,n tale che a e a n e n a e a n e n.... n a n e a nn e n le colonne di P EF danno le componenti degli elementi di F rispetto ad E. Deinizione.8 La matrice P EF si chiama matrice di cambio di base da E ad F o anche matrice da passaggio di E ad F. NELLA NOTAZIONE P EF - STAI SCRIVENDO UN ELEMEN- TO DELLA BASE F COME COMBINAZIONE LINEARE DEGLI ELEMENTI DELLA BASE E. Osservazione.9 Per la deinizione di matrice associata ad una applicazione lineare si ha che la P EF si può interpretare nei due modi seguenti : P EF M EE ϕ, dove ϕ è l applicazione lineare deinita da ϕe,..., ϕe n n ϕ : V E V E e j j n i a ije i P EF M EF i V osservate lo scambio, dove i V è l applicazione identica di V V. Perchè, i V : V F V E j j n i a ije i Esempio. In R sia E e, e, e la base canonica e sia F,,, dove e e e e e + e Aermazione : F è una base di R. Inatti, α + β + γ αe e + βe e + γe + e 7

8 α + βe + α + γe + β + γe α + β α + γ β + γ α β γ Aermazione : La matrice di passaggio da E ad F ha per colonne le componenti di,, rispetto ad E; Siccome gli i sono gia scritti come combinazione lineare degli e i la P EF è quindi : P EF Troviamo la matrice di passaggio da F ad E: Dobbiamo avere che : e α + α + α e β + β e + β e γ + γ + γ quindi, per trovare i coeicienti α i, β i, γ i dobbiamo risolvere i seguenti sistemi lineari: α + α α + α α + α β + β β + β β + β γ + γ γ + γ γ + γ α α α β β β γ P F E γ γ Veriicate che P F E P EF P F F I, P EF P F E P EE I. Teorema. Sia V un spazio vettoriale, E, F due basi di V e P EF la matrice di passaggio da E ad F. Sia v un vettore avente componenti x,..., x n T rispetto ad E e y,..., y n T rispetto ad F. Allora si hanno le relazioni : x y.. P EF.. cioè : x n v E P EF v F y n 8

9 Dimostrazione: Poichè P EF M EF i V la tesi segue subito. Osservazione. Si noti che la matrice di passaggio da E ad F permette di esprimere : gli elementi di F in unzione degli elementi di E; le componenti rispetto ad E in unzione delle componenti rispetto ad F. Esempio. In R consideriamo la base canonica E e, e, e e la base F e e, e e, e + e. Le componenti di x x, x, x T rispetto ad E sono x, x, x T. Se y y, y, y T sono le componenti di x rispetto ad F deve essere : v F P F E v E ovvero, y y y Cioè dall esempio di prima, y y y Che ci viene : quindi Dalla stessa orma Quindi, y y y x x x P F E x x x x x x x x + x x + x x x + x + x x E P EF y F x x x y y y y y + y y y y Teorema. Del cambio di base Sia : V W una applicazione lineare. Siano E, E due basi di V e siano F, F due basi di W. Sia P EE la matrice di passaggio da E a E e P F F la matrice di passaggio da F a F. Allora M F E P F F M F E P EE 9

10 Dimostrazione: P F F M F E P EE M F F i W M F E Mi EE V M F E i W M EE i v M F E i W i V M F E Esempio.5 In R Sia E e, e, e la base canonica ed E,, dove e e e e e + e. In R, sia G la base canonica e G, } Sia ϕ : R R l applicazione lineare associata alla matrice A Mϕ GE. Trovare M G E ϕ. Per trovarla dobbiamo calcolare le componenti di ϕ, ϕ, ϕ rispetto alla base G. ϕ ϕe e ϕe ϕe ϕ ϕe e ϕe ϕe ϕ ϕe + e ϕe + ϕe + Il nostro lavoro ora è scrivere i vettori ϕ j nella base G, cioè : ϕ α + α ϕ β + β ϕ γ + γ Risolvendo si trova : α α

11 Quindi: β β γ γ M G E ϕ Controlliamo in questo esempio la valità del Teorema: Prima calcoliamo P EE. e e e e P E E e + e Per il calcolo di P GG procediamo nel stesso modo : α β Si veriica subito che : + α + β P G G α α β β P G G Mϕ GE P EE M G E ϕ Corollario.6 Sia V uno spazio vettoriale ed E, F due basi di V. Sia P EF la matrice di cambiamento di base da E ad F e sia F : V V un applicazione lineare. Allora e M EE M F F P EF M F F P F E M EE Dimostrazione: Segue dal teorema.. P F E P EF P EF M F F P F E M EF i V M F F M F E i V Mi EF V Mi F E V Mi EE V i V M EE Esempio.7 Esercizio: Utilizando i resultati otenuti nei Esempi. e. e calcolando le matrici di passagio P F e delle base F alla base e di R e P ee della base e alla base E di R veriiche il corolario precedente, cioè, veriicare che: P F e M e e ψ P ee M F E ψ

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1 APPLICAZIONI LINEARI Applicazioni lineari tra spazi R n spazi di matrici spazi di polinomi e matrice associata rispetto ad una coppia di basi Endomorismi e matrice associata rispetto

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Omomorfismi e matrici

Omomorfismi e matrici Capitolo 12 Omomorfismi e matrici 121 Introduzione Nel corso di Geometria è stato visto come associare una matrice ad un omomorfismo tra spazi vettoriali Rimandiamo al testo del corso per esempi e esercizi

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti PRIMA ESERCITAZIONE Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx

Dettagli

Capitolo 5. Calcolo infinitesimale

Capitolo 5. Calcolo infinitesimale Capitolo 5 Calcolo ininitesimale 5 Derivazione a b R ed ] a, Siano ( :(, DEFINIZINE Diremo che ( è derivabile nel punto se esiste inito il seguente ite ( ( e porremo per deinizione ( ( ( La unzione : (

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale .1. COORDINATE IN UNO SPAZIO VETTORIALE 1.1 Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

1 Trasformazione di vettori e 1-forme per cambiamenti

1 Trasformazione di vettori e 1-forme per cambiamenti Trasformazione di vettori e -forme per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x µ } (x,x,x 2,x 3 ). La sua metrica è ds 2 (dx ) 2 +(dx ) 2 +(dx 2 ) 2 +(dx

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

Cambio di base. Capitolo Introduzione. 8.2 Cambio di base

Cambio di base. Capitolo Introduzione. 8.2 Cambio di base apitolo 8 ambio di base 8 Introduzione Sappiamo che, fissata una base finita in uno spazio vettoriale, ad ogni vettore sono associate le coordinate relative a tale base In questo capitolo vediamo che tali

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

Complemento ortogonale e proiezioni

Complemento ortogonale e proiezioni Complemento ortogonale e proiezioni Dicembre 9 Complemento ortogonale di un sottospazio Sie E un sottospazio di R n Definiamo il complemento ortogonale di E come l insieme dei vettori di R n ortogonali

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2.

TEN Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. TEN 2008. Radici quadrate modulo p e modulo p k. Radici quadrate modulo p, con p > 2. Lemma 1. Sia n Z. Sia p > 2 un numero primo. (a) n è un quadrato modulo p se e solo se n p 1 2 1 mod p; (b) Sia n 0

Dettagli

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari:

Definizione 1 Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: Applicazioni lineari Definizione Una applicazione f : V W, con V, W spazi vettoriali sul campo K si dice lineare se conserva le combinazioni lineari: f(αv + βv 2 ) = αf(v ) + βf(v 2 ) v, v 2 V, α, β K.

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 11/12 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hilbert H (1) e H (2) si possono definire su di essi operazioni il cui risultato è un nuovo spazio di Hilbert

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Appunti di Geometria - 3

Appunti di Geometria - 3 Appunti di Geometria - 3 Samuele Mongodi - smongodi@snsit Cambi di base nel duale Richiami Sia V uno spazio vettoriale di dimensione n sul campo K e sia V il suo duale Supponiamo di avere fissate due basi

Dettagli

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA

CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA CAPITOLO SECONDO APPLICAZIONI TRA INSIEMI E RELAZIONI DI EQUIVALENZA 1 Applicazioni tra insiemi Siano A, insiemi. Una corrispondenza tra A e è un qualsiasi sottoinsieme del prodotto cartesiano A ; Se D

Dettagli

Capitolo IV SPAZI VETTORIALI EUCLIDEI

Capitolo IV SPAZI VETTORIALI EUCLIDEI Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Il Theorema Egregium di Gauss

Il Theorema Egregium di Gauss Università degli studi di Torino Corso di Studi in Matematica Geometria 3 Il Theorema Egregium di Gauss In queste note diamo una dimostrazione del Theorema Egregium di Gauss, che afferma che la curvatura

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni

Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni Esercizi di Algebra Commutativa Moduli 1 Tracce delle soluzioni 1. Sia A un anello A 0. Provare che: A n A m m = n. Soluzione. Sia m A un ideale massimale. Sia m m = ma m e m n = ma n. Se ϕ : A m A n e

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2013-2014 - Docente: Prof. Angelo Felice Lopez Tutori: Dario Giannini e Giulia Salustri Soluzioni Tutorato 9 15 Maggio

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 15 Capitolo

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Intersezione e somma di sottospazi vettoriali

Intersezione e somma di sottospazi vettoriali Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria

Dettagli

Esercizi di Algebra lineare

Esercizi di Algebra lineare Esercizi di Algebra lineare G. Romani December, 006 1. Esercizi sulle n-ple 1) Eseguire i seguenti calcoli. (, 1) + (1 3); 4(, ) + 3(4, ); 3(1,, 3) + ( )(,, 1) (3, 3, 3) + (4,, 1) + ( )(1, 4, ); (1, 4,

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

Lezione 15. Omomorfismi di anelli e loro proprietà.

Lezione 15. Omomorfismi di anelli e loro proprietà. Lezione 15 Prerequisiti: Lezioni 3, 9, 14 Rierimenti ai testi: [FdG] Sezione 54; [H] Sezioni 33-34; [PC] Sezione 44 Ricordiamo la seguente Omomorismi di anelli e loro proprietà Deinizione 151 Dati due

Dettagli

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Esempi Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Osservazioni per le matrici quadrate a) Data A M n (K) è possibile definire ricorsivamente

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che:

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che: Definizione 1. Dato un insieme A, un operazione su A è una applicazione da A A a valori in A. Definizione 2. Se A è un insieme con una operazione, dati a, b A diciamo che a divide b (e scriviamo a b) se

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Lezione 9: Le matrici

Lezione 9: Le matrici Lezione 9: Le matrici Ancora un po di sistemi in generale: le notazioni Nella lezione precedente abbiamo visto vari esempi di sistemi lineari in cui si verificavano i seguenti casi: una sola soluzione,

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

Prodotto scalare, covarianza e controvarianza, tensore metrico

Prodotto scalare, covarianza e controvarianza, tensore metrico Prodotto scalare, covarianza e controvarianza, tensore metrico Marco Bonvini 29 settembre 2005 1 Prodotto scalare Sia V spazio lineare su R; dati u, v V il loro prodotto scalare, indicato con (u, v), è:

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

Volumi in spazi euclidei 12 dicembre 2014

Volumi in spazi euclidei 12 dicembre 2014 Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato

Dettagli