VISITA IL SITO PER ALTRO MATERIALE E GUIDE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "VISITA IL SITO PER ALTRO MATERIALE E GUIDE"

Transcript

1 COPYRIGHT SEGO LICENSE Questo documento viene fornito così come è: se pensate che faccia schifo problemi vostri, nessuno vi obbliga a leggerlo. Se pensate che sia qualcosa di positivo e/o avete suggerimenti su come migliorarlo o altro materiale da aggiungere mandatemi pure una mail all indirizzo di posta che trovate sulla mia home page. Sarò felice di rispondervi e di collaborare con voi al miglioramento del documento stesso. In caso vogliate darmi una mano nella realizzazione di altri appunti mandatemi pure una mail. Se volete aiutarmi nella correzione di questo documento (nessuno è perfetto ) scrivetemi pure. Si prega di lasciare questo documento integro o almeno se lo modificate, lasciate un riferimento all autore originale del testo, magari indicando la sua pagina web. SEGO owner/webmaster of theskulls.com sego@the-skulls.com VISITA IL SITO PER ALTRO MATERIALE E GUIDE

2 ALBERI DI COPERTURA MINIMI Definizione 1 Dati G(V,E) e G (V,E ) sottografo di G, G si dice sottografo di copertura se tutti gli archi di G sono incidenti a tutti i vertici di G. FIGURA 20. posso togliere questo arco e resta un sottografo di copertura In verde il sottografo di copertura Nota: Per verificare se e ricoprente basta verificare che tutti i vertici in V sia toccati, utilizzando gli archi che si hanno a disposizione in E. Albero di copertura: un grafo di copertura che allo stesso tempo e anche albero(ossia e connesso e aciclico allo stesso tempo: E = V -1). Nota: Possono esistere anche piu alberi di copertura. FIGURA 21. b c e a d NOTA: Non posso più aggiungere un arco senza creare un ciclo f Definizione 2 Si dicono grafi pesati, dei grafi ai quali viene associata una funzione peso che caratterizza gli archi. W: E R funzione peso Dato T E abbiamo che W(T) = w( u, v) dove W(T) e il peso totale FIGURA 22. ( u, v) T a 5 b 2 6 c d e 2 NOTA: In verde il minimum spannin tree 10 f

3 A noi interessera trovare il MST (Minimum Spannin Tree) ossia l albero di copertura il cui peso e minimo. Definizione 3 Dato G(V,E) grafo non orientato, connesso e A E Preso (u,v) E e (u,v) A si dice che (u,v) e sicuro per A se A MST A {(u,v)} MST ALGORITMO GENERALE PER MST 1. A:=Ø 2. while A non forma un MST (A < V -1) 3. trova un arco (u,v) sicuro per A 4. A:=A {(u,v)} 5. return A Definizione 4 Taglio: e una partizione del tipo (S,V-S) con S V Definizione 5 (u,v) E attraversa il taglio (S,V-S) se u S v V-S Definizione 6 (u,v) E e un arco leggero per il taglio (S,V-S) se - (u,v) attraverso il taglio - w(u,v) <= w(x,y) x,y E che attraversa (S,V-S) ossia e un arco che attraversa il taglio e che ha peso minore o uguale a qualsiasi altro arco che attraversa il taglio Definizione 7 Il taglio (S,V-S) rispetta A E se nessun arco di A attraverso il taglio TEOREMA ALLA BASE DEGLI ALGORITMI MST Sia G(V,E) un grafo non orientato e connesso e a) A E contenuto in qualche MST b) (S,V-S) un taglio qualsiasi che rispetti A c) (u,v) E un arco leggero per (S,V-S) Allora (u,v) e un arco sicuro per A. Dimostrazione A {( u, v)} in qualche MST A E T sia un MST con A T FIGURA 23. S x y V \ S (x,y) T u v

4 Supponiamo che (u,v) T T =(T \ {(x,y)}) {(u,v)} W( T )=W(T)-W(x,y)+W(u,v) Siccome (u,v) è arco leggero W(u,v) W(x,y) W(T) W( T ) W(T) W( T )=W(T) (u,v) è sicuro per A? sì infatti: A {(u,v)} T, con (x,y) A Un COROLLARIO derivato da quanto detto sopra è il seguente: Sia G=(V,E) un grafo non orientato connesso e siano: (a) A E contenuto in un qualche MST (b) Dato G A = ( V, A) sia C componente connessa di G A (c) (u,v) un arco leggero che abbia un estremità in C e l altra in V \ C Allora (u,v) è sicuro per la foresta A. ALGORITMO DI KRUSKAL (G, w) Prima di entrare a parlare in dettaglio di questo algoritmo introduciamo il concetto di INSIEMI DISGIUNTI. Diamo un insieme S siffatto: S={ S 1, S2, S3,..., Sn } con S i S j = Ø i, j tale che i j NOTA: Si può variare dinamicamente. OSSERVAZIONI (alcune operazioni che si possono effettuare con gli insiemi disgiunti) 1) Make_set(u) 2) Find_set(u) 3) Union(u,v) Ricordiamo che ogni insieme disgiunto è identificato da un rappresentante. (1)MAKE_SET(u) Questa operazione non fa altro che creare un nuovo insieme contenente il solo elemento u {u} (2)FIND_SET(u) Questa operazione trova l indice i tale che u Si o per dirla in un altra maniera, si trova il rappresentante dell insieme a cui appartiene u. (3)UNION(u,v)

5 Unisce gli insiemi a cui appartengono u e v. NOTA: Nel caso di rappresentazione con liste: Make_set(u) viene creata una nuova lista con il solo elemento u Find_set(u) si scorrono le liste per trovare l elemento u (e per vedere a quale lista appartiene) Union(u,v) si concatenano le due liste. Nel caso di rappresentazione mediante alberi: Make_set(u) si crea un nuovo albero con il solo elemento u Find_set(u) viene fatta una ricerca all interno degli alberi (similmente quindi a quanto fatto per le liste) Union(u,v) viene creato un unico albero Per convenzione per quanto riguarda gli alberi si tende a considerare come rappresentante dell insieme la radice dell albero. KRUSKAL(G,w) 1. A:=Ø 2. foreach u V[G] do O(n) 3. Make_set(u) 4. ordina gli archi di E per peso non decrescente O(m log m) 5. foreach (u,v) E ordinato in modo non decrescente 6. if Find_set(u) Find_set(v) then 7. A:=A {(u,v)} 8. Union(u,v) 9. return A mα (n.m) dove α (n.m) <= 4 e α (n.m) = O(log m) O(m log m) Posto n= V e m= E, come si puo osservare da sopra la complessita totale e O(m log m) ALGORITMO DI PRIM (G, w, r) In Kruskal ad ogni passo dell esecuzione A e una foresta. In Prim si parte da un vertice e lo si espande mantenendo l invariante che formi un albero. IDEA BASE A Prendo l arco + leggero Devo mantenere due strutture dati particolari - key[u] - π [u] e l insieme Q che contiene i vertici non ancora visitati. All inizio avro che V-Q=Ø. Gli elementi di Q sono ordinati mediante key[u] abbiamo una coda a priorita In key[u] va memorizzato il peso dell arco piu leggero del tipo (u,v) Key[u]=min{w(u,v) v (V-Q) N(u)} dove N(u) insieme dei vertici adiacenti a u π [u]= predecessore di u nell albero (infatti che ho stabilito quale sia la radice all interno del mio albero libero, risulta automatica la relazione predecessore/successore)

6 PRIM(G, w, r) 1. Q:=V[G] 2. foreach u Q do 3. key[u]:= //inizializzo 4. key[r]=0 //chiave della sorgente o radice 5. π [r]=nil //predecessore della radice 6. while Q Ø do //finche ho ancora vertici da visitare 7. u=extractmin(q) 8. foreach v Adj[u] //per ogni vertice adiacente 9. if v Q && w(u,v) < key[v] then 10. key[v]=w(u,v) 11. π [v]=u 12. return A={(u, π [u]) E u V-{r}} COMPLESSITA PRIM (poniamo m= E, n= V ) L inizializzazione delle strutture dati linee 1-5 ha complessita O(n), devo infatti inizializzare V vertici. Il ciclo while, linea 6, verra eseguito O(n), infatti all inizio la coda con priorita contiene nnumero dei vertici. Il costo di una extractmin(q), linea 7, e O(log n), quindi il costo totale di tutte le extractmin sara di O(n log n). Le righe 8-11 hanno saranno eseguite al max O(m), perche poiche stiamo parlando di vertici adiacenti sappiamo che u deg( u) = 2 E. trovo un possible arco + leggero e eventualmente modifico i valori dell adiacente in questione Ricordiamo inoltre che la riga 10, che effettua una modifica della key[n], poiche usiamo una coda con priorita, impiega O(log n) (viene infatti fatta una DecreaseKey). Concludendo quindi possiamo dire che il blocco delle linee 6-11 ha complessita totale O(m log n). La complessita totale dell algoritmo e quindi O(n log n + m log n). Pero n log n <= m log n O(m log n) 2 Ma siccome m <= n log m <= 2 log n m log m <= 2 m log n Asintoticamente quindi possiamo dire O(m log m) = O(m log n). Prim risulta cosi essere asintoticamente uguale a Kruskal.

VISITA IL SITO PER ALTRO MATERIALE E GUIDE

VISITA IL SITO  PER ALTRO MATERIALE E GUIDE COPYRIGHT SEGO LICENSE Questo documento viene fornito così come è: se pensate che faccia schifo problemi vostri, nessuno vi obbliga a leggerlo. Se pensate che sia qualcosa di positivo e/o avete suggerimenti

Dettagli

Algoritmi & Laboratorio

Algoritmi & Laboratorio Acknowledgement Lucidi da F. Damiani, a.a. 2004-2005 C. Demetrescu et al, Algoritmi e strutture dati, McGraw-Hill M. Zacchi, a.a. 2003-2004 I lucidi non sono un sostituto per il libro di testo non contengono

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli

Algoritmi & Laboratorio

Algoritmi & Laboratorio lbero ricoprente sia dato un grafo connesso e non orientato un albero ricoprente è un sottografo che contiene tutti nodi è aciclico è connesso cknowledgement Lucidi da. Damiani, a.a. 00-00. Demetrescu

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Alberi di copertura minimi 1 Problema Nella progettazione di circuiti elettronici è spesso necessario collegare i morsetti. Per connettere un insieme di n morsetti si può usare un insieme di n-1 fili elettrici.

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Grafi pesati e alberi minimi di copertura Riepilogo delle lezioni precedenti Definizione di

Dettagli

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso

LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L. Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso LABORATORIO DI ALGORITMI E STRUTTURE DATI A-L Ingegneria e scienze informatiche Cesena A.A: 2016/2017 Docente: Greta Sasso Minimum Spanning Tree Albero di copertura (Spanning Tree): un albero di copertura

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Prof. Aniello Murano Componenti fortemente connesse e Alberi minimi di copertura Corso di Laurea Codice insegnamento Email docente Anno accademico Informatica

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi .. Grafi (orientati): cammini minimi Una presentazione alternativa (con ulteriori dettagli) Un algoritmo greedy per calcolare i cammini minimi da un vertice sorgente in un grafo orientato e pesato, senza

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Fabio Patrizi 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero;

Dettagli

Algoritmi e Strutture Dati. Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal

Algoritmi e Strutture Dati. Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal Algoritmi e Strutture Dati Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal Progettare una rete stradale Supponiamo di dover progettare una rete stradale in cui il costo di costruzione di un

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati Capitolo 2 Minimo albero ricoprente: Algoritmo di Prim Il problema del calcolo di un Minimum

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Minimo albero ricoprente Sia G = (V, E) un grafo connesso non orientato. Definizioni Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene tutti i

Dettagli

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Minimo albero ricoprente Domenico Fabio Savo 1 Albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un

Dettagli

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo:

PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Il costo di cammino minimo da un vertice u ad un vertice v è definito nel seguente modo: PROBLEMA DEI CAMMINI MINIMI [CORMEN ET AL. CAP. 24] Sia G = (V,E) un grafo orientato ai cui archi è associato un costo W(u,v). Il costo di un cammino p = (v 1,v 2,...,v k ) è la somma dei costi degli archi

Dettagli

Grafi: visita generica

Grafi: visita generica .. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 22 Febbraio Attenzione:

Progettazione di Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 22 Febbraio Attenzione: COGNOME: Nome: Progettazione di Algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 22 Febbraio 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Elementari su Grafi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Polo di Scienze Università di Camerino ad Ascoli Piceno Visita

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Introduzione ai grafi Grafi: Definizione e Algoritmi di visita Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2007/08 Introduzione ai

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 3 Cammini minimi: algoritmo di Dijkstra Cammini minimi in grafi: cammini minimi a singola sorgente (senza pesi negativi) Cammini minimi in grafi pesati Sia G=(V,E,w)

Dettagli

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*)

Algoritmi e Strutture dati Mod B. Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Algoritmi e Strutture dati Mod B Grafi Percorsi Minimi: algoritmi esatti e algoritmi euristici (A*) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di

Dettagli

Bioinformatica. Grafi. a.a Francesca Cordero. Grafi Bioinformatica

Bioinformatica. Grafi. a.a Francesca Cordero. Grafi Bioinformatica fcordero@di.unito.it Introduzione cknowledgement Lucidi da. Horváth,. emetrescu et al, lgoritmi e strutture dati, McGraw-Hill 3 efinizione: che cosa sono i grafi? definizione astratta: un grafo G = (V,)

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente Grafi (non orientati e connessi): minimo albero ricoprente Una breve presentazione Definizioni Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Algoritmi e Strutture Dati. Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford

Algoritmi e Strutture Dati. Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Bellman e Ford Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio II: cammini minimi a singola sorgente (per grafi

Dettagli

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo

Cammini Minimi. Algoritmo di Dijkstra. Cammino in un grafo Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 13 Cammini minimi: Algoritmo di Dijkstra (*) (ACM in grafi diretti e non diretti senza archi di peso negativo) Punto della situazione Algoritmo basato sull ordinamento

Dettagli

Esercitazione 3. Osserviamo che, dato un grafo con pesi distinti, questo ammette un unico MST.

Esercitazione 3. Osserviamo che, dato un grafo con pesi distinti, questo ammette un unico MST. Esercitazione 3 Problema 6: Sia G = (V, E) un grafo con pesi distinti sugli archi ed e E un arco di G. Progettare un algoritmo lineare in grado di determinare se esiste un MST di G che contiene l arco

Dettagli

Università Roma Tre - PAS Classe A048 "Matematica Applicata" - Corso di Informatica a.a. 2013/2014

Università Roma Tre - PAS Classe A048 Matematica Applicata - Corso di Informatica a.a. 2013/2014 Università Roma Tre Dipartimento di Matematica e Fisica Percorso Abilitante Speciale Classe A08 Matematica Applicata Corso di Informatica Algoritmi su Grafi Marco Liverani (liverani@mat.uniroma.it) Sommario

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Cammini Minimi. Algoritmo di Dijkstra

Cammini Minimi. Algoritmo di Dijkstra Cammini Minimi Algoritmo di Dijkstra Cammino in un grafo Dato un grafo G=(V,E), un Cammino (Percorso) in G è un insieme di vertici v 1, v 2,.., v k tali che (v i, v i+1 ) E v 1 v 2 v 3 v k In un grafo

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Cammini minimi con sorgente singola Vittorio Maniezzo - Università di Bologna Cammini minimi con sorgente singola Dato: un grafo(orientatoo non orientato) G= (V,E,W) con funzionedi peso w:e R un particolarevertices

Dettagli

Cammini minimi. Damiano Macedonio

Cammini minimi. Damiano Macedonio Cammini minimi Damiano Macedonio mace@unive.it Copyright 2010 2012, Moreno Marzolla, Università di Bologna, Italy (http://www.moreno.marzolla.name/teaching/asd2011b/) Modifications Copyright c 2015, Damiano

Dettagli

Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 6 Aprile Attenzione:

Algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 6 Aprile Attenzione: COGNOME: Nome: Algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 6 Aprile 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

Alberi e arborescenze di costo minimo

Alberi e arborescenze di costo minimo Alberi e arborescenze di costo minimo Complementi di Ricerca Operativa Giovanni Righini Dipartimento di Tecnologie dell Informazione - Università degli Studi di Milano Definizioni - 1 Un grafo G = (V,

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I)

Algoritmi e Strutture dati Mod B. Grafi: Percorsi Minimi (parte I) Algoritmi e Strutture dati Mod B Grafi: Percorsi Minimi (parte I) Grafi: Percorsi minimi Un percorso minimo in un grafo G= grafo pesato orientato, con funzione di peso w: E fi che mappa archi in pesi

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Algoritmo di Prim per MST, sua implementazione ed analisi Algoritmo di Kruskal per MST, sua implementazione ed analisi Universitá degli Studi di Salerno Corso di Algoritmi Prof.

Dettagli

Algoritmi e Strutture Dati. Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal (*)

Algoritmi e Strutture Dati. Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal (*) Algoritmi e Strutture Dati Capitolo 12 Minimo albero ricoprente: Algoritmo di Kruskal (*) Progettare una rete stradale Supponiamo di dover progettare una rete stradale in cui il costo di costruzione di

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Grafi: ordinamento topologico

Grafi: ordinamento topologico .. Grafi: ordinamento topologico Che cosa e e come si calcola Che cosa e un ordinamento topologico F. Damiani - Alg. & Lab. 04/05 Una definizione di ordinamento topologico Definizione. Funzione σ: V {1,

Dettagli

Strutture dati per insiemi disgiunti

Strutture dati per insiemi disgiunti Strutture dati per insiemi disgiunti Servono a mantenere una collezione S = {S 1, S 2,..., S k } di insiemi disgiunti. Ogni insieme S i è individuato da un rappresentante che è un particolare elemento

Dettagli

Esercitazione 7. Grafi. Rappresentazione e algoritmi di visita

Esercitazione 7. Grafi. Rappresentazione e algoritmi di visita Esercitazione 7 Grafi Rappresentazione e algoritmi di visita Grafo G = (V,E) non orientato 1 1 G = (V,E) orientato 6 Rappresentazione Grafo G = (V,E) metodi standard per la rappresentazione Liste di adiacenza

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) diffusione di messaggi segreti memorizzazione

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Esercizi svolti a lezione

Esercizi svolti a lezione Esercizi svolti a lezione Problema 1 In un corso di laurea sono previsti un certo numero di esami obbligatori. Esistono inoltre dei vincoli di propedeuticità: se un esame A è propedeutico ad un esame B

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Soluzioni della settima esercitazione di Algoritmi 1

Soluzioni della settima esercitazione di Algoritmi 1 Soluzioni della settima esercitazione di Algoritmi 1 Beniamino Accattoli 19 dicembre 2007 1 Grafi Un grafo è non orientato se descrivendo un arco come una coppia di vertici (i,j) l ordine è ininfluente

Dettagli

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version

Visite in Grafi BFS e DFS. PDF created with FinePrint pdffactory trial version Visite in Grafi BFS e DFS Visita di un Grafo 8Obiettivo: 4Visitare una sola volta tutti i nodi del grafo. 4Es.: visitare un porzione del grafo del Web 8Difficoltà : 4Presenza di cicli: Marcare i nodi visitati

Dettagli

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione:

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione: COGNOME: Nome: Progettazione di algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 15 Novembre 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Richiami di matematica discreta: grafi e alberi Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Grafi Definizione: G = (V,E) V: insieme finito di vertici E: insieme finito di archi,

Dettagli

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1)

Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Analisi e implementazione dell algoritmo di Dijkstra (Parte 1) Algoritmicamente August 1, 2009 http://algoritmicamente.wordpress.com/ 1 Concetti fondamentali Definizione 1 Un grafo è un insieme di vertici

Dettagli

Teoria dei Grafi Parte I. Alberto Caprara DEIS - Università di Bologna

Teoria dei Grafi Parte I. Alberto Caprara DEIS - Università di Bologna Teoria dei Grafi Parte I Alberto Caprara DEIS - Università di Bologna acaprara@deis.unibo.it Teoria dei Grafi Paradigma di rappresentazione di problemi Grafo G : coppia (V,E) V = insieme di vertici E =

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Grafi e visite di grafi Fabio Patrizi 1 Grafo: definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme E di coppie di vertici, detti archi (o

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F.

K 4 è planare? E K 3,3 e K 5 sono planari? Sì! No! (Teorema di Kuratowski) K 5. Camil Demetrescu, Irene Finocchi, Giuseppe F. K 4 è planare? Sì! E K 3,3 e K 5 sono planari? K 5 No! (Teorema di Kuratowski) 1 Un albero è un grafo bipartito? SÌ! Ma un grafo bipartito è sempre un albero?? 2 Algoritmi e Strutture Dati Capitolo 11

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici

Ordinamenti. Grafo : definizione. Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

Teoria dei Grafi Parte I

Teoria dei Grafi Parte I Teoria dei Grafi Parte I Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it Teoria dei Grafi Paradigma di rappresentazione di problemi Grafo G : coppia (V,E) V = insieme di vertici E = insieme

Dettagli

Esercitazione 2. Progettare un algoritmo che risolva tale problema in tempo O( E + V log V ).

Esercitazione 2. Progettare un algoritmo che risolva tale problema in tempo O( E + V log V ). Esercitazione 2 Problema 4: Dato un grafo G = (V, E) con pesi positivi sugli archi ed un insieme di k centri C = {c 1, c 2, c k } V, si richiede di partizionare l insieme V in k insiemi V 1, V 2, V k in

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Grafi e visite di grafi Domenico Fabio Savo 1 Grafo: definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme E di coppie di vertici, detti archi

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Prof. Aniello Murano Grafi: Implementazione ed operazioni di base Corso di Laurea Codice insegnamento Email docente Anno accademico Laboratorio di Algoritmi e

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Capitolo 11 Cammini minimi con sorgente singola efinizione 11.1. Sia G = (V,, w) un grafo orientato e pesato; dato il cammino p = v 0, v 1,..., v k in G, il valore w(p) = k i=1 w(v i 1, v i ) rappresenta

Dettagli

Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo

Capitolo 5. Algoritmi di ricerca su grafo. 5.1 Algoritmi di ricerca su grafo Capitolo 5 Algoritmi di ricerca su grafo Gli algoritmi di ricerca su grafo, oggetto dei prossimi paragrafi, rappresentano tecniche fondamentali per determinare nodi che soddisfino particolari proprietà

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti.

G è 2-colorabile se ogni nodo può essere colorato di bianco o di nero in modo che nodi connessi da archi siano colorati con colori distinti. Grafi Grafi bipartiti Un grafo non orientato G è bipartito se l insieme dei nodi può essere partizionato in due sottoinsiemi disgiunti tali che nessun arco del grafo connette due nodi appartenenti allo

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Informatica 3. LEZIONE 25: Algoritmi sui grafi. Modulo 1: Problema del percorso più breve Modulo 2: Spanning tree a costo minimo

Informatica 3. LEZIONE 25: Algoritmi sui grafi. Modulo 1: Problema del percorso più breve Modulo 2: Spanning tree a costo minimo Informatica LEZIONE 2: Algoritmi sui grafi Modulo 1: Problema del percorso più breve Modulo 2: Spanning tree a costo minimo Informatica Lezione 2 - Modulo 1 Problema del percorso più breve Problema Problema:

Dettagli

Algoritmi e Strutture di Dati II 2. Visite di grafi

Algoritmi e Strutture di Dati II 2. Visite di grafi Algoritmi e Strutture di Dati II 2 Visite di grafi Gli algoritmi di visita di un grafo hanno come obiettivo l esploraione di tutti i nodi e gli archi del grafo. Vi sono due modi principali per esplorare

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Appunti lezione Capitolo 13 Programmazione dinamica

Appunti lezione Capitolo 13 Programmazione dinamica Appunti lezione Capitolo 13 Programmazione dinamica Alberto Montresor 12 Novembre, 2015 1 Domanda: Fattore di crescita dei numeri catalani Vogliamo dimostrare che cresce almeno come 2 n. La nostra ipotesi

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme

Dettagli

Il Problema dell Albero Ricoprente Minimo (Shortest Spanning Tree - SST)

Il Problema dell Albero Ricoprente Minimo (Shortest Spanning Tree - SST) Il Problema dell Albero Ricoprente Minimo (Shortest Spanning Tree - SST) È dato un grafo non orientato G=(V,E). Ad ogni arco e i E, i=1,,m, è associato un costo c i 0 7 14 4 10 9 11 8 12 6 13 5 17 3 2

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

Progettazione di Algoritmi (9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 27 Giugno 2018.

Progettazione di Algoritmi (9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 27 Giugno 2018. COGNOME: Nome: Progettazione di Algoritmi (9 CFU) Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 27 Giugno 2018 Attenzione: Inserire i propri dati nell apposito spazio soprastante

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Ordinamenti. Vittorio Maniezzo Università di Bologna

Ordinamenti. Vittorio Maniezzo Università di Bologna Ordinamenti 1 Vittorio Maniezzo Università di Bologna Grafo : definizione Un grafo G = (V,E)è composto da: V: insieme di vertici E V V: insieme di archi (edge) che connettono i vertici Un arco a= {u,v}

Dettagli

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario)

Algoritmi Avanzati Soluzioni dello scritto del 2 febbraio 2004 (appello straordinario) Algoritmi Avanzati Soluzioni dello scritto del febbraio 004 (appello straordinario) 1. Tengo nascosto nel taschino della giacca un grafo misterioso di 7 nodi. Vi dico solo che listando le valenze (= numero

Dettagli

Analisi e progetto di algoritmi: soluzioni degli esercizi

Analisi e progetto di algoritmi: soluzioni degli esercizi Analisi e progetto di algoritmi: soluzioni degli esercizi Daniele Turato 24 giugno 2008 Indice 1 Esercizi assegnati in classe 2 1.1 Lezione 1: nozioni basilari sui grafi................. 2 1.1.1 Esercizio

Dettagli

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill)

Grafi: visite. Una breve presentazione. F. Damiani - Alg. & Lab. 04/05 (da C. Demetrescu et al - McGraw-Hill) Grafi: visite Una breve presentazione Visite di grafi Scopo e tipi di visita Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico Problema di base

Dettagli

Progettazione di Algoritmi - lezione 11

Progettazione di Algoritmi - lezione 11 Progettazione di Algoritmi - lezione 11 Discussione dell'esercizio [rifornimenti] Un algoritmo greedy per questo problema è quello che si presenta naturalmente: facciamo rifornimento solo quando è necessario,

Dettagli

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi

Dettagli

Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016

Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Esercitazione 6 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Tong Liu April 14, 2016 Elementi Fondamentali Rappresentazione n = V numero di vertici (nodi) m = E numero di archi Matrice di adiacenza:

Dettagli

Cammini di costo minimo

Cammini di costo minimo Cammini di costo minimo Ivan Lanese Dipartimento di Informatica Scienza e Ingegneria Università di Bologna ivan.lanese@gmail.com http://www.cs.unibo.it/~lanese/ Cammini di Costo Minimo 2 Definizione del

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello straordinario del 17 Aprile Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Appello straordinario del 17 Aprile Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Appello straordinario del 17 Aprile 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina

Dettagli

Introduzione ai Grafi: Implementazione e operazioni di base

Introduzione ai Grafi: Implementazione e operazioni di base Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Introduzione ai Grafi: Implementazione e operazioni di base 2 1 Informazione Generali (1)

Dettagli

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)}

Grafi. V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} Grafi Grafo orientato (o diretto) = (V,E) V = nodi o vertici - E = archi (edges) V = {a, b, c, d} E = {(a, b), (a, c), (c, a), (d, d), (b, d)} archi uscenti da un nodo x: (x, y) archi incidenti su un nodo

Dettagli

Grafi giu 03 ASD - Grafi

Grafi giu 03 ASD - Grafi Grafi giu 03 ASD - Grafi Definizioni/1 Struttura dati per la rappresentazione di relazioni binarie G=(V,E), V =n, E =m V: insieme di Vertici E={(v i, v j ): v i, v j (v i, v j ) = (v j, v i ) (v i, v j

Dettagli