DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio Ver. aggiornata al 29 Maggio 2014

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. La Ricorsione. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 29 Maggio 2014"

Transcript

1 La Ricorsione Marco D. Santambrogio Ver. aggiornata al 29 Maggio 2014

2 Obiettivi La ricorsione Ricordate la sigla GNU GNU = GNU is Not Unix GNU = GNU is Not Unix GNU = GNU is Not Unix GNU = GNU is Not GNU = GNU 2

3 L induzione matematica Si usa nelle definizioni e nelle dimostrazioni Definizione: numeri pari 1) 0 è un numero pari 2) se n è un numero pari anche n+2 è un numero pari Dimostrazione: dimostro che (2n) 2 =4n 2 (distributività della potenza di 2 risp. alla moltiplicazione) 1) n=1 : vero 2) suppongo sia vero per k, lo dimostro per k+1: (2(k+1)) 2 =(2k+2) 2 =(2k) 2 +8k+4= (per hp di induzione) 4k 2 +8k+4 = 4(k 2 +2k+1) = 4(k+1) 2 1) è il passo base, 2) è il passo di induzione 3

4 Il tacchino induttivista Un tacchino induttivista viene allevato in una fattoria del Maine (USA) Ogni giorno alle 7am Mr Jones porta il cibo al tacchino induttivista Il tacchino segue il seguente ragionamento: Il giorno 1 Mr Jones mi ha portato il 7am Ieri era il giorno n e Mr Jones mi ha portato il 7am Oggi è il giorno n+1 ed il cibo è arrivato Tutti i 7am Mr Jones mi porterà il cibo Thanksgiving 4

5 Iterazione e ricorsione Sono i due concetti informatici che nascono dal concetto di induzione 5

6 Iterazione L iterazione si realizza mediante la tecnica del ciclo Il calcolo del fattoriale: 0!=1 n!=n(n-1)(n-2).1 (realizzo un ciclo) 6

7 La ricorsione: definizione Dal latino re-currere ricorrere, fare ripetutamente la stessa azione In informatica: si tratta di procedure/funzioni che richiamano se stesse Il concetto di ricorsione viene usato nel contesto di: algoritmi strutture dati 7

8 8 Scopo della programmazione ricorsiva Lo scopo è quelo di risolvere un problema facendo riferimento allo stesso problma su scala ridotta La condizione di terminazione avviene quando si identifica uno o più casi semplici con soluzione immediata La struttura di un algoritmo ricorsivo è il seguente if (è il caso semplice) risolvilo else usa la ricorsione su dati ridotti

9 La ricorsione: che cos è? Ricorsione indiretta: Un sottoprogramma P chiama un sottoprogramma Q Q a sua volta chiama un terzo R, R chiama nuovamente P Ricorsione diretta Un sottoprogramma P chiama se stesso durante la propria esecuzione 9

10 10 Un esempio classico Individuare, in un gruppo di palline l unica pallina di peso maggiore delle altre facendo uso di una bilancia a basculla Per semplicità: il numero di palline sia una potenza di 3 Algoritmo Pesate: Se il gruppo di palline consiste in una sola pallina, allora essa è banalmente la pallina cercata, altrimenti procedi come segue. Dividi il gruppo di palline in tre e confronta due dei tre sottogruppi. Se i due gruppi risultano di peso uguale scarta entrambi, altrimenti scarta il gruppo non pesato e quello risultato di peso minore. Applica l algoritmo Pesate al gruppo rimanente.

11 Altri esempi di ricorsione La sommatoria di una sequenza di numeri Fattoriale: Fact(n)=n*Fact(n-1) Fact(0)=1 In arte e non solo 11

12 Il calcolo del fattoriale In matematica, se n è un intero positivo, si definisce n fattoriale e si indica con n! il prodotto dei primi n numeri interi positivi minori o uguali di quel numero 12

13 Il main del fattoriale 13

14 Il fattoriale iterativo 14

15 Definizione ricorsiva del fattoriale 1) n!=1 se n=0 2) n!= n*(n-1)! se n>0 Riduce il calcolo a un calcolo più semplice Ha senso perché si basa sempre sul fattoriale del numero più piccolo, che io conosco Ha senso perché si arriva a un punto in cui non è più necessario riusare la def. 2) e invece si usa la 1) 1) è il passo base, 2) è il passo di ricorsione 15

16 Esempio di traccia Calcoliamo il fattoriale di 4: 4=0? No: calcoliamo il fattoriale di 3 e molt. per 4 3=0? No: calcoliamo il fattoriale di 2 e molt. per 3 2=0? No: calcoliamo il fattoriale di 1 e molt. per 2 1=0? No: calcoliamo il fattoriale di 0 e molt. per 1 0=0? Si: il fattoriale di 0 è 1. Risaliamo: il fattoriale di 1 è 1 per il fattoriale di 0 cioè 1*1=1 il fattoriale di 2 è 2 per il fattoriale di 1 cioè 2*1=2 il fattoriale di 3 è 3 per il fattoriale di 2 cioè 3*2=6 il fattoriale di 4 è 4 per il fattoriale di 3 cioè 4*6=24 16

17 Il fattoriale ricorsivo Calcolo del Fattoriale in modo ricorsivo: Fact(n)=n*Fact(n-1) Fact(0)=1 fat= fat= 1 1 FattRic(0) FattRic(1) fat= fat= n = FattRic(2) FattRic(3) main 17

18 Moltiplicazione Ideare un procedimento ricorsivo per calcolare il prodotto di due interi Nota: A*1=A; A*B = A + A*(B-1) int MulRic(int a, int b) { int ris; if (b == 1) ris = a; else ris = a + MulRic(a,b 1); return ris; } 18

19 Fibonacci Leonardo Fibonacci Matematico italiano Compie numerosi viaggi e assimila le conoscenze matematiche del mondo arabo, Nel 1202 pubblica: il Liber abaci Con Liber abaci si propose di diffondere nel mondo scientifico occidentale le regole di calcolo note agli Arabi il sistema decimale 19

20 Il problema dei conigli Un tale mise una coppia di conigli in un luogo completamente circondato da un muro, per scoprire quante coppie di conigli discendessero da questa in un anno: per natura le coppie di conigli generano ogni mese un'altra coppia e cominciano a procreare a partire dal secondo mese dalla nascita. L. Fibonacci da Liber Abaci 20

21 I numeri di Fibonacci Idea di base 1) fib(n)=1 se n=0 opp. n=1 2) fib(n)= fib(n-1) + fib(n-2) se n>1 21

22 Successione di Fibonacci Fib(n)=Fib(n-1)+Fib(n-2) Fib(0)=0; Fib(1)=1; int fibric (int n) { } int ris; if (n == 0) ris = 0; else if (n == 1) ris = 1; else ris = fibric(n 1) + fibric(n 2); return ris; 22

23 Un problema interessante: La torre di Brahma 23

24 La leggenda Narra la leggenda che all'inizio dei tempi, Brahma portò nel grande tempio di Benares, sotto la cupola d'oro che si trova al centro del mondo, tre colonnine di diamante e sessantaquattro dischi d'oro, collocati su una di queste colonnine in ordine decrescente, dal più piccolo in alto, al più grande in basso. E' la sacra Torre di Brahma che vede impegnati, giorno e notte, i sacerdoti del tempio nel trasferimento della torre di dischi dalla prima alla terza colonnina. Essi non devono contravvenire alle regole precise, imposte da Brahma stesso, che richiedono di spostare soltanto un disco alla volta e che non ci sia mai un disco sopra uno più piccolo. Quando i sacerdoti avranno completato il loro lavoro e tutti i dischi saranno riordinati sulla terza colonnina, la torre e il tempio crolleranno e sarà la fine del mondo. 24

25 Le torri di Hanoi Problema: spostare tutti i dischi dalla torre A alla torre B (usando la torre C come supporto intermedio ) in modo che si trovino nello stesso ordine 25

26 Le torri di Hanoi Scriveremo una funzione ricorsiva che prende come parametro il numero del disco più grande che vogliamo spostare (da 0 a 5 come nel disegno) La funzione prenderà anche tre parametri che indicano: da quale asta vogliamo partire (source), a quale asta vogliamo arrivare (dest), l altra asta, che possiamo usare come supporto temporaneo (spare). 26

27 L idea di base Voglio spostare n anelli dal piolo sorgente, a quello destinazione, usando come appoggio il piolo ausiliario Devo quindi prima spostare n - 1 anelli dal sorgente all'ausiliario, usando come appoggio il piolo destinazione Poi sposto l'unico anello rimasto dal sorgente al piolo destinazione Infine sposto gli n - 1 anelli che si trovano sull'ausilliario all'anello destinazione.. 27

28 L uso della ricorsione Quando si spostano gli n - 1 anelli la funzione hanoi richiama se stessa, cioè effettua una chiamata ricorsiva, semplificando però il problema perché bisogna spostare un numero di anelli inferiore. In pratica, con la ricorsione il problema viene continuamente ridotto di complessità fino alla soluzione banale in cui rimane solo un anello, che viene semplicemente spostato nel piolo destinazione. 28

29 Le torri di Hanoi: strategia Ridurremo il problema a quello di spostare 5 dischi dalla torre C alla torre B, dopo che il disco 5 è stato già messo nella posizione giusta 29

30 Le torri di Hanoi: pseudocodice FUNCTION MoveTower(disk, source, dest, spare): IF disk == 0, THEN: move disk from source to dest ELSE: MoveTower(disk - 1, source, spare, dest) /* (Passo 1) */ move disk from source to dest // / * (Passo 2) */ MoveTower(disk - 1, spare, dest, source) // / * (Passo 3) */ END IF Nota: l algoritmo aggiunge un caso base: quando il disco è il più piccolo (il numero 0). In questo caso possiamo muoverlo direttamente perché non ne ha altri sopra. Negli altri casi, seguiamo la procedura descritta per il disco 5. 30

31 Codice void hanoi(int n, int sorgente, int destinazione, int aux) { if (n==1) } printf("sposto da %d a %d.\n",sorgente, destinazione); else{ } hanoi(n - 1, sorgente, aux, destinazione); hanoi(1, sorgente, destinazione, aux); hanoi(n - 1, aux, destinazione, sorgente); 31

32 Esercizio: Massimo di un array Ideare un procedimento ricorsivo per calcolare il massimo di un array di interi Idea: max(vect[0 : N]) =max(vect[0],max(vect[1 : N])) int max(int *array, int n){ int maxs; if (n==1) return array[0]; /*Caso Array 1 elemento*/ if (n==2){ /*Caso Base*/ if (array[0]>array[1]) return array[0]; else return array[1]; } maxs = max(&array[1],n-1); /*Risolvi Problema Ridotto*/ if (array[0]>maxs)return array[0]; else return maxs; } 32

33 Fonti per lo studio + Credits Fonti per lo studio Introduzione alla programmazione in MATLAB, A.Campi, E.Di Nitto, D.Loiacono, A.Morzenti, P.Spoletini, Ed.Esculapio Capitolo 4 Particolare attenzione al 4.5 Credits Prof. A. Morzenti Gianluca Palermo 33

Ricorsione. (da lucidi di Marco Benedetti)

Ricorsione. (da lucidi di Marco Benedetti) Ricorsione (da lucidi di Marco Benedetti) Funzioni ricorsive Dal punto di vista sintattico, siamo in presenza di una funzione ricorsiva quando all interno della definizione di una funzione compaiono una

Dettagli

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. Script. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 13 Agosto 2014

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE. Script. Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 13 Agosto 2014 Script Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 13 Agosto 2014 1 Obiettivi Script 2 Script (m-file) Uno script è un file di testo contenente una sequenza di comandi MATLAB

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

La ricorsione. Politecnico di Milano Sede di Cremona

La ricorsione. Politecnico di Milano Sede di Cremona La ricorsione Politecnico di Milano Sede di Cremona Gianpaolo Cugola Dipartimento di Elettronica e Informazione cugola@elet.polimi.it http://www.elet.polimi.it/~cugola Definizioni ricorsive Sono comuni

Dettagli

Ricorsione. Corso di Fondamenti di Informatica

Ricorsione. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Ricorsione Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

INFORMATICA 1 L. Mezzalira

INFORMATICA 1 L. Mezzalira INFORMATICA 1 L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software del modello

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3 RICORSIVITA 1. Cos è la ricorsività? La ricorsività è un metodo di soluzione dei problemi che consiste nell esprimere la soluzione relativa al caso n in funzione della soluzione relativa al caso n-1. La

Dettagli

Esercizi Capitolo 2 - Analisi di Algoritmi

Esercizi Capitolo 2 - Analisi di Algoritmi Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Funzioni e procedure

Funzioni e procedure Funzioni e procedure DOTT. ING. LEONARDO RIGUTINI DIPARTIMENTO INGEGNERIA DELL INFORMAZIONE UNIVERSITÀ DI SIENA VIA ROMA 56 53100 SIENA UFF. 0577234850-7102 RIGUTINI@DII.UNISI.IT HTTP://WWW.DII.UNISI.IT/~RIGUTINI/

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

Programmazione I - Laboratorio

Programmazione I - Laboratorio Programmazione I - Laboratorio Esercitazione 2 - Funzioni Gianluca Mezzetti 1 Paolo Milazzo 2 1. Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ mezzetti mezzetti di.unipi.it 2.

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 19 Ricorsione A. Miola Marzo 2012 http://www.dia.uniroma3.it/~java/fondinf/ Ricorsione 1 Contenuti q Funzioni e domini definiti

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

FONDAMENTI di INFORMATICA L. Mezzalira

FONDAMENTI di INFORMATICA L. Mezzalira FONDAMENTI di INFORMATICA L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

Elementi di Informatica

Elementi di Informatica Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Corso di Tecniche di Programmazione

Corso di Tecniche di Programmazione Corso di Tecniche di Programmazione Corsi di Laurea in Ingegneria Informatica ed Automatica Anno Accedemico 003/004 Proff. Giuseppe De Giacomo, Luca Iocchi, Domenico Lembo Dispensa : Algoritmi di Ordinamento

Dettagli

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata Esempi di Problema: Prendere un Caffè al Distributore Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica, e Programmi D. Gubiani

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Matematica - SMID : Programmazione Febbraio 2009 FOGLIO RISPOSTE

Matematica - SMID : Programmazione Febbraio 2009 FOGLIO RISPOSTE Matematica - SMID : Programmazione Febbraio 2009 FOGLIO RISPOSTE NOME: COGNOME: ============================================================== Esercizio 1 ci sono tante "righe"; non è detto servano tutte...

Dettagli

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP)

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) 12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica,

Dettagli

Laboratorio di Informatica Lezione 2

Laboratorio di Informatica Lezione 2 Laboratorio di Informatica Lezione 2 Cristian Consonni 30 settembre 2015 Cristian Consonni Laboratorio di Informatica, Lezione 2 1 / 42 Outline 1 Commenti e Stampa a schermo 2 Strutture di controllo 3

Dettagli

RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di

RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di RICORSIONE - schema ricorsivo (o induttivo) si esegue l'azione S, su un insieme di dati D, mediante eventuale esecuzione di esempio CERCA 90 NEL SACCHETTO = estrai num Casi num 90 Effetti CERCA 90 NEL

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 2 Dispensa 10 Strutture collegate - 2 A. Miola Febbraio 2008 http://www.dia.uniroma3.it/~java/fondinf2/ Strutture collegate - 2 1 Contenuti!Strutture

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

Architettura degli elaboratori Seconda esercitazione di laboratorio. Dr. Francesco Giacomini e Dr. Matteo Manzali Università degli Studi di Ferrara

Architettura degli elaboratori Seconda esercitazione di laboratorio. Dr. Francesco Giacomini e Dr. Matteo Manzali Università degli Studi di Ferrara Architettura degli elaboratori Seconda esercitazione di laboratorio Dr. Francesco Giacomini e Dr. Matteo Manzali Università degli Studi di Ferrara Linee generali (1) L esercitazione consiste nell implementare

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa E01 Esempi di programmi A. Miola Ottobre 2011 1 Contenuti Vediamo in questa lezione alcuni primi semplici esempi di applicazioni

Dettagli

Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa

Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa Ricerche, ordinamenti e fusioni 5.1 Introduzione Questo capitolo ci permette di fare pratica di programmazione utilizzando gli strumenti del linguaggio introdotti finora. A una prima lettura possono essere

Dettagli

Tipi di Dato Ricorsivi

Tipi di Dato Ricorsivi Tipi di Dato Ricorsivi Luca Abeni September 2, 2015 1 Tipi di Dato Vari linguaggi di programmazione permettono all utente di definire nuovi tipi di dato definendo per ogni nuovo tipo l insieme dei suoi

Dettagli

3) Il seguente numerale A1F0 in base 16 a quale numero in base 10 corrisponde?

3) Il seguente numerale A1F0 in base 16 a quale numero in base 10 corrisponde? Leggete attentamente le domande del test e date la/le vostra/e risposta/e. 1) Per quanto tempo la memoria RAM di un personal computer conserva le informazioni? Finchè lo hard disk funziona in modo corretto

Dettagli

Funzioni in C. Violetta Lonati

Funzioni in C. Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Funzioni - in breve: Funzioni Definizione di funzioni

Dettagli

Ricorsione. La ricorsione consiste nella possibilità di definire una funzione in termini di se stessa

Ricorsione. La ricorsione consiste nella possibilità di definire una funzione in termini di se stessa Funzioni e Ricorsione La ricorsione consiste nella possibilità di definire una funzione in termini di se stessa È basata sul principio di induzione matematica: se una proprietà P vale per n=n 0 e si può

Dettagli

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA. INFORMATICA B Ingegneria Elettrica. La ricorsione

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA. INFORMATICA B Ingegneria Elettrica. La ricorsione INFORMATICA B Ingegneria Elettrica La ricorsione Ricorsione Che cos è la ricorsione? Un sottoprogramma P richiama se stesso (ricorsione diretta) Un sottoprogramma P richiama un altro sottoprogramma Q che

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

3. La sintassi di Java

3. La sintassi di Java pag.9 3. La sintassi di Java 3.1 I tipi di dati statici In Java, come in Pascal, esistono tipi di dati statici predefiniti e sono i seguenti: byte 8 bit da -128 a 127 short 16 bit coincide con l integer

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa E04 Esempi di algoritmi e programmi C. Limongelli - A. Miola Novembre 2011 1 Contenuti q Somma di una sequenza di numeri interi

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

Introduzione al Corso di Algoritmi

Introduzione al Corso di Algoritmi Università di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Accademico 2014/15 p. 1/36 Introduzione al Corso di Algoritmi Di cosa parliamo oggi: Una discussione generale su cosa studieremo, perchè

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

GUIDA BASE DI PASCAL

GUIDA BASE DI PASCAL 1 GUIDA BASE DI PASCAL Un algoritmo, nel suo significato più ampio, è sequenza logica di istruzioni elementari (univocamente interpretabili) che, eseguite in un ordine stabilito, permettono la soluzione

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

Parte I. Relazioni di ricorrenza

Parte I. Relazioni di ricorrenza Parte I Relazioni di ricorrenza 1 Capitolo 1 Relazioni di ricorrenza 1.1 Modelli Nel seguente capitolo studieremo le relazioni di ricorrenza. Ad esempio sono relazioni di ricorrenza a n = a n 1 + n, a

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

Corso di Visual Basic (Parte 9)

Corso di Visual Basic (Parte 9) Corso di Visual Basic (Parte 9) di Maurizio Crespi La nona lezione del corso dedicato alla programmazione in Visual Basic si pone lo scopo di illustrare le funzioni definibili dall'utente e il concetto

Dettagli

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base:

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base: LA STRUTTURA DI RIPETIZIONE La ripetizione POST-condizionale La ripetizione PRE-condizionale INTRODUZIONE (1/3) Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno

INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno INFORMATICA GENERALE Prof. Alberto Postiglione Dipartimento Scienze della Comunicazione Università degli Studi di Salerno UD 3.1b: Costrutti di un Algoritmo Dispense 1.2 I Costrutti di base 13 apr 2010

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C

Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Università di Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

CURRICOLO CLASSI I II III IV - V SCUOLE PRIMARIE IC PORTO MANTOVANO

CURRICOLO CLASSI I II III IV - V SCUOLE PRIMARIE IC PORTO MANTOVANO ISTITUTO COMPRENSIVO di PORTO MANTOVANO (MN) Via Monteverdi 46047 PORTO MANTOVANO (MN) tel. 0376 398 781 e-mail: mnic813002@istruzione.it e-mail certificata: mnic813002@pec.istruzione.it sito internet:

Dettagli

Parte 1. Vettori di bit - AA. 2012/13 1.1

Parte 1. Vettori di bit - AA. 2012/13 1.1 1.1 Parte 1 Vettori di bit 1.2 Notazione posizionale Ogni cifra assume un significato diverso a seconda della posizione in cui si trova Rappresentazione di un numero su n cifre in base b: Posizioni a n

Dettagli

Programmazione II Università di Roma "La Sapienza" Appunti a cura della Prof.ssa FACHINI. Ricorsione per il "problem solving" Il problema del cambio.

Programmazione II Università di Roma La Sapienza Appunti a cura della Prof.ssa FACHINI. Ricorsione per il problem solving Il problema del cambio. Programmazione II Università di Roma "La Sapienza" Appunti a cura della Prof.ssa FACHINI Ricorsione per il "problem solving" Il problema del cambio. Consideriamo il problema di determinare in quanti modi

Dettagli

Bontà dei dati in ingresso

Bontà dei dati in ingresso COMPLESSITÀ COMPUTAZIONALE DEGLI ALGORITMI Fondamenti di Informatica a.a.2006/07 Prof. V.L. Plantamura Dott.ssa A. Angelini Il costo puo' dipendere dal valore dei dati in ingresso Un tipico esempio è dato

Dettagli

Esempio : i numeri di Fibonacci

Esempio : i numeri di Fibonacci Esempio : i numeri di Fibonacci La successione di Fibonacci F 1, F 2,... F n,... è definita come: F 1 =1 F 2 =1 F n =F n 1 F n 2,n 2 Leonardo Fibonacci (Pisa, 1170 Pisa, 1250) http://it.wikipedia.org/wiki/leonardo_fibonacci

Dettagli

Successioni ricorsive

Successioni ricorsive Capitolo 1 Successioni ricorsive Un modo spesso usato per assegnare una successione è quello ricorsivo che consiste nell assegnare alcuni termini iniziali (il primo, oppure i primi due, oppure i primi...

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

Fondamenti di Informatica Ingegneria Clinica Lezione 19/10/2009. Prof. Raffaele Nicolussi

Fondamenti di Informatica Ingegneria Clinica Lezione 19/10/2009. Prof. Raffaele Nicolussi Fondamenti di Informatica Ingegneria Clinica Lezione 19/10/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi rnicolussi@fub.it Lezioni

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

Algoritmo. Funzioni calcolabili. Unità 28

Algoritmo. Funzioni calcolabili. Unità 28 Prerequisiti: - Conoscenza dei numeri naturali e interi e delle loro proprietà. - Acquisizione del concetto di funzione. Questa unità è riservata al primo biennio dei Licei, eccezion fatta per il Liceo

Dettagli

Elementi di informatica e Programmazione

Elementi di informatica e Programmazione Elementi di informatica e Programmazione Corsi di Laurea di Ing. Informatica, Ing. Elettronica e delle Telecomunicazioni, Ing. dell'automazione Industriale Alessandro Saetti Marco Sechi e Alessandro Bugatti

Dettagli

Corso di Esercitazioni di Programmazione

Corso di Esercitazioni di Programmazione Corso di Esercitazioni di Programmazione Introduzione Dott.ssa Sabina Rossi Informazioni Pagina web del corso: News Orari Mailing list Lezioni Esercitazioni Date esami Risultati esami.. http://www.dsi.unive.it/~prog1

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Appunti del corso di Informatica 1. 6 Introduzione al linguaggio C

Appunti del corso di Informatica 1. 6 Introduzione al linguaggio C Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

ESERCIZIO 1 (Definizione funzioni passaggio parametri per copia)

ESERCIZIO 1 (Definizione funzioni passaggio parametri per copia) ESERCIZIO 1 (Definizione funzioni passaggio parametri per copia) Scrivere una funzione per definire se un numero è primo e un programma principale minimale che ne testa la funzionalità. #include

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Corso di Laurea in Matematica

Corso di Laurea in Matematica Corso di Laurea in Matematica Laboratorio di Informatica (a.a. 2002-03) Esercizi 1 Docente: Monica Nesi 1. Scrivere un programma in C che, dati in ingresso due numeri naturali, calcola il loro prodotto

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Ins. Zanella Classe seconda. Problemi moltiplicativi

Ins. Zanella Classe seconda. Problemi moltiplicativi Ins. Zanella Classe seconda Problemi moltiplicativi FOGLI DI CARTA OGGI IN CLASSE SIAMO IN 23 ALUNNI. LA MAESTRA DA AD OGNI ALUNNO 3 FOGLI. DISEGNA QUESTA SITUAZIONE, IN MODO CHE SI CAPISCA QUANTI FOGLI

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Corso di Laurea in Matematica

Corso di Laurea in Matematica Corso di Laurea in Matematica Laboratorio di Informatica (a.a. 2003-04) Esercizi di programmazione in C: funzioni e procedure 1 Docente: Monica Nesi Nota Nelle soluzioni di alcuni degli esercizi riportati

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Sviluppare Programmi Corretti

Sviluppare Programmi Corretti Sviluppare Programmi Corretti Ivano Salvo Università di Roma La Sapienza email: salvo@di.uniroma1.it Anno Accademico 2005-06 Presentazione La presente dispensa si propone di presentare il materiale di

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore

Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore Ascensore Ricerca Automatica Esercitazione In un grattacielo ci sono coppie formate da marito e moglie. Il cancello delle scale viene chiuso e l unico modo per scendere è con l ascensore che può portare

Dettagli

Unità B3 Strutture di controllo

Unità B3 Strutture di controllo (A) CONOSCENZA TERMINOLOGICA Dare una breve descrizione dei termini introdotti: I/O su console Package Blocco di controllo Oggetto System.out Oggetto System.in Oggetto Tastiera Metodo readline() Strutture

Dettagli

Programmazione Ricorsione

Programmazione Ricorsione Programmazione Ricorsione Samuel Rota Bulò DAIS Università Ca Foscari di Venezia. Outline Ricorsione Cos è la ricorsione? In matematica... n! = { n (n 1)! se n > 0 1 altrimenti N = {0} {i + 1 : i N} Principio

Dettagli

MATEMATICA CLASSE PRIMA

MATEMATICA CLASSE PRIMA CLASSE PRIMA L alunno/a si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Contare oggetti o eventi, a voce e mentalmente,

Dettagli

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14. Pietro Frasca.

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14. Pietro Frasca. Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14 Pietro Frasca Lezione 16 Martedì 3-12-2013 1 La tecnica di gestione di un dispositivo a interruzione

Dettagli

Descrizione di un algoritmo

Descrizione di un algoritmo Descrizione di un algoritmo Un algoritmo descrive due tipi fondamentali di oper: calcoli ottenibili tramite le oper primitive su tipi di dato (valutazione di espressioni) che consistono nella modifica

Dettagli

L algoritmo di ricerca binaria. Daniele Varin LS Ing. Informatica Corso di Informatica teorica Docente: prof. Paolo Sipala

L algoritmo di ricerca binaria. Daniele Varin LS Ing. Informatica Corso di Informatica teorica Docente: prof. Paolo Sipala L algoritmo di ricerca binaria Daniele Varin LS Ing. Informatica Corso di Informatica teorica Docente: prof. Paolo Sipala L algoritmo di ricerca binaria (o dicotomica) In informatica,, la ricerca dicotomica

Dettagli

Maria Reggiani - Pavia

Maria Reggiani - Pavia Maria Reggiani - Pavia L aula laboratorio didattico del nostro dipartimento durante lo stage estivo per studenti di scuola superiore San Pellegrino Terme, 8 settembre 2015 Laboratorio attività laboratoriale:

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Esercizi. Assembly. Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 2014/2014

Esercizi. Assembly. Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 2014/2014 Esercizi Assembly Alessandro A. Nacci alessandro.nacci@polimi.it ACSO 2014/2014 1 RIPASSO Architettura dei registri del 68K Di (0 i 7): registri di dato a 8, 16, 32 bit Ai (0 i 7): resgistri di a 16, 32

Dettagli

Successioni ricorsive. Unità 60

Successioni ricorsive. Unità 60 Prerequisiti: - Operare con i numeri reali - Rappresentare punti e curve elementari in un piano cartesiano L unità è rivolta al 2 biennio del Liceo Scientifico, compresa l opzione Scienze applicate. OBIETTIVI

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Fondamenti di Informatica Ingegneria Clinica Lezione 15/10/2009. Prof. Raffaele Nicolussi

Fondamenti di Informatica Ingegneria Clinica Lezione 15/10/2009. Prof. Raffaele Nicolussi Fondamenti di Informatica Ingegneria Clinica Lezione 15/10/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi rnicolussi@fub.it Lezioni

Dettagli

Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria

Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria Introduzione all Informatica 1 Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria Programma del corso Programma di

Dettagli