Esercizi di Segnali Aleatori per Telecomunicazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Segnali Aleatori per Telecomunicazioni"

Transcript

1 Corso di Lur in Inggnri Inormic corso di Tlcomunicioni (ro. G. Giun) (diing cur dll ing. F. Bndo) srcii di Sgnli Alori r Tlcomunicioni Diniioni di momni sisici (di rimo scondo ordin) di vriili lori: - Vlor so [ ] d; - Vlor qudrico mdio VQ - Vrin Vr - NOTA: Vr VQ - ; [ ] d ; [( [ ]) ] ( [ ]) d ini: [( [ ]) ] [ ] [ ] [ ] ( [ ]) [ ] ( [ ]). Nl cso di vriili lori discr i momni divngono: - Vlor so - Vlor qudrico mdio VQ - Vrin Vr [ ] d i ( i) ; N i N [ ] i ( i) ; i N N i i i i i i d [( [ ]) ] ( ) ( ) - NOTA: r simr vlor mdio, vlor qudrico mdio vrin d un sri discr di di ossrv, s orr ( i ) nll srssioni rcdni. N

2 Dnsià di roilià no Gussin: m VQ Vr m m Uniorm: 4 VQ Vr Binomil [ ] VQ Vr /(-) - m

3 sonnil monolro () VQ Vr U sonnil ilro VQ Vr Sviluo di ingrli ricolri d usr ngli srcii [ ] d Ingrion r ri du v v u dv u d d d d

4 4 Clcolo di momni dll d.d. no Dnsià di roilià Uniorm: Vlor mdio: [] d d Vlor qudrico mdio: [ ] d d VQ Vrin: [] [ ] 4 VQ Vr /(-) ()

5 5 Dnsià di roilià sonnil monolro: U Vlor mdio: d d licion dll ormul di ingrion r ri [ ] d Vlor qudrico mdio: d d VQ licion dll ormul di ingrion r ri [ ] d d ingrion r ri d Vrin: [] [ ] VQ Vr ()

6 6 Dnsià di roilià sonnil ilro: Vlor mdio: d d d ormul di ingrion r ri d d Vlor qudrico mdio: d d d VQ ormul di ingrion r ri Vrin: [] [ ] VQ Vr ()

7 7 srciio : Somm di Vriili Alori (V. A.) indindni Sino d l du vriili lori indindni, dscri risivmn dll dnsià di roilià () (). Clcolr l dnsià di roilià (d.d..) dll vriil lori onu dll sgun rsormion: Soluion: L unioni crrisich ch dscrivono l r vriili lori sono, risivmn: [ ] d [ ] d [ ] d oiché l du V. A. sono indindni, l dnsià di roilià congiun si uò orir nl rodoo dll singol dnsià di roilià scondo l sgun:,, Allor, l union crrisic di divn: [ ] [ ] d d dd,, Ovvro il rodoo dll singol unioni crrisich di. Concludndo, ossimo or clcolr l d.d.. di ch risulrà ri : N.B.: L d.d.. crc risulrà ssr ri ll convoluion dll singol d.d..

8 srciio : Somm di Vriili Alori (V. A.) indindni Sino d l du vriili lori indindni d idnicmn disriui (i.i.d.), dscri risivmn dll dnsià di roilià () (), rrsn gricmn in igur. Clcolr l dnsià di roilià (d.d..) dll vriil lori onu dll sgun rsormion: () / () Soluion: / / D quno viso nll srciio rcdn, l d.d.. di lro non è ch l convoluion dll singol d.d.. di : ovvro l convoluion r du rc vni l sss s. Il risulo di l orion, com è n noo, risul ssr un ri di s doi. L l dll ri srà l ch l r dll d.d.. si smr uniri. () / Clcolimo or l vrin dll d.d. di, un vol no qull di : [ ] d [ ] [ ] [ ( ) ] [ ] [ ] [ ] [ ] Ini si h: [ ] dd d d 6 N.B.: Si ossono riuilir ui i risuli novoli sull convoluion r sgnli. 8

9 srciio : Ricion inri r Tlcomunicioni Si d l sgun rsormion rsn, dov l V.A. r rrsn il sgnl ricvuo in un sism di TLC onuo com somm dll comonn dl sgnl uil s dl rumor n rrsni risivmn dll sguni d.d..: S () s [ δ ( n ) δ ( n ) ] / - S (s) N ( n) n, gussin vlor mdio nullo N (n) Clcolr l d.d.. R (r). Soluion: D quno viso ngli srcii rcdni, l R (r) è oniil com convoluion r l d.d.. dl sgnl uil qull dl rumor, ovvro: - L roilià d rror () è dini ri : Sogli di dcision () ( s ) ( s ) ( s ) ( s ) S (s ) (s -) ½, d: Q d, union d rror (rror uncion), union ul Allor, sclo, d smio, () ( s -)si oin () Q(/), con un smlic cmio di vriil nll ingrl. N.B.: / è un roro sgnl rumor (SNR: Signl-o-Nois rio). 9

10 srciio 4: Cmio di scl Si d l sgun rsormion α, ssndo l V.A. dscri dll d.d. () com indico in igur. Clcolr l (). / () / / Soluion: L d.d.. crc è oniil rmi l sgun rsormion: α α In orm gric si h: () / α α/ α/

11 srciio 5: Cmio di vriil Si θ un vriil lori uniormmn disriui nll inrvllo [, ], l cui d.d.. è rrsn in igur. Si un vriil lori onu d θ rmi l sgun rsormion: cosθ. Clcolr l (). θ (θ) / Soluion : L d.d.. crc uò ssr onu scondo l sgun: d dθ sinθ cos θ θ ( θ ) Soluion : ssndo cosθ invriil in [, ], onndo θ rccos (), l d.d.. crc si uò ricvr d: dθ d θ ( θ ) in quno: dθ d d ( rccos ) d

12 srciio5is:cmiodivriil Si θ un vriil lori uniormmn disriui nll inrvllo [, ], l cui d.d.. è rrsn in igur. Si un vriil lori onu d θ rmi l sgun rsormion: cosθ. Clcolr l (). θ (θ) / Soluion: ssndo θ dini in [, ], l union θ rccos()non invriil. Tuvi, ossiil sr in du l inrvllo onndo [, ] U [,], rndndo cosi l unioni θ rccos ( ) θ rccos ( ), invriili ni du domini sri [, ] [,]. Do ch risul (vdi srciio rcdn): θ (θ) dθ θ ( θ) d / θ (θ) dθ θ ( θ) d / l d.d.. crc si uò onr mdin il orm dll roili ol (insimi di vni {θ } muumn sclusivi) dll somm dll du d.d.. condiion l o ch θ si in uno di du insimi ngolri rim dinii, molilic ciscun r l rori roili ch cio si vriichi: θ ( θ ) < θ ( < θ ) N.B.: l d.d.. risul idnic l cso rcdn.

13 srciio 5: Cmio di vriil Si u un vriil lori uniormmn disriui nll inrvllo [, ], l cui d.d.. è rrsn in igur. Si un vriil lori onu d u rmi l sgun rsormion: -log(u). Clcolr l (). u (u) Soluion: ssndo u -, l d.d.. crc si uò onr d: du u, con [, ] d ( u) Ovvro l d.d.. di è qull di un sonnil monolro.

14 srciio 6: Cominion linr di V.A. Sino u d u du vriili lori indindni d uniormmn disriui nll inrvllo [,]. Si l vriil lori onu com cominion linr scondo l sgun: u 4u. Clcolr l (). Soluion: Inroducimo du nuov vriili lori v w onu, risivmn dll sguni rsormioni l cui d.d.. sono rrsn in igur: v (v) / vu w (w) /4 w-4u 4 Si l vriil lori onu d w l cui d.d.. è : w () /4 Or, l d.d.. di è smlicmn l convoluion di () con v (v): () A/4-5 Si oin un rio, l cui l A è l ch l r dll d.d.. si uniri, ovvro: A /4 4

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingrl Indinio l Anidriv Il prosso invrso dll drivzion si him ingrzion. No l vrizion isnn di un grndzz p.s. l vloià è nssrio spr om si ompor l grndzz isn pr isn p.s. l posizion. No llor un unzion il problm

Dettagli

18. La nozione di integrale

18. La nozione di integrale 8. L nozion di inrl L driv uò com imo viso considrrsi un rinmno dll nozion di dirnz dà cono dll rorià rliv ll vrizion di un unzion si nsi d smio ll vrizioni dli indici di ors. L nozion di inrl è invc srmn

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 6/7 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 7 Lezione 8.

Argomento 5. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 7 Lezione 8. Argomno 5 Lion 7 Lion 8 Frncsc Apollonio Diprimno Inggnri lronic -mil: quion dll ond dominio dl mpo B r L-S-O-I-nonD r D r ε r B r µ r D r r J r J r cosni Pr smplicià di noion frmo rifrimno d ssn di crich

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x

Matematica per l Economia (A-K) e Matematica Generale 09 aprile 2018 (prof. M. Bisceglia) Traccia A. x 2x Matmatica pr l Economia (A-K) Matmatica Gnral 9 april (pro. M. Biscglia) Traccia A. Dtrminar s possibil un punto di approssimaion con un rror dll quaion nll intrvallo.. Data la union.. Studiar la union

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: LI02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: LI02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica www.mmicmn.i Nicol D Ros Murià Esm di so di isruzion scondri suprior Indirizzi: LI SCIENIFICO LI - SCIENIFICO - OPZIONE SCIENZE APPLICAE m di mmic Il cndido risolv uno di du problmi rispond qusii dl qusionrio

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 7/8 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Analisi Matematica I Soluzioni del tutorato 3

Analisi Matematica I Soluzioni del tutorato 3 Corso di lur in Fisic - Anno Accdmico 07/08 Anlisi Mmic I Soluzioni dl uoro 3 A cur di Dvid Mcr Esrcizio ( i) Dominio di dfinizion: L funzion h un problm in, mnr d è dfini pr ogni lro. Quindi, il dominio

Dettagli

MATEMATICA I Esercitazione del

MATEMATICA I Esercitazione del FACOLTA DI INGEGNERIA Corso di lur in Inggnri Mccnic.. 9- MATEMATICA I Esrcizion dl..9 Cognom... Nom... Mricol n.... Svolgr gli srcizi sguni moivndo l rispos. Uilizzo di sofwr grfico-simbolico: Si No )

Dettagli

Frequenza relativa e probabilità

Frequenza relativa e probabilità Frequenz reltiv e roilità L roilità e' un numero che indic con qule frequenz si resentno eventi ssociti d un insieme di ossiili risultti di un eserimento. Esemio: Eserimento: Lncio csule di un ddo Risultto:

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Un esempio significativo

Un esempio significativo Un smio significativo 1 Si considri il sistma massa-molla in figura. Si vuol ffttuar un confronto tra l rstazioni dl sistma a ciclo chiuso qull a ciclo arto., r quanto riguarda il controllo dlla osizion

Dettagli

App.Cap.II: Dettagli e sviluppi per il capitolo 2. App.Cap.II-1: Risposta di un sistema del primo ordine con ingresso a impulso.

App.Cap.II: Dettagli e sviluppi per il capitolo 2. App.Cap.II-1: Risposta di un sistema del primo ordine con ingresso a impulso. SCPC n C.II.C.II: Dgl svlu r l olo.c.ii-: sos un ssm l rmo orn on ngrsso mulso. () () δ () Pr l soluon onvn suvr l ss m n u r rsolvr u vrs E.D.O. Pr

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni Esrcizio. Isiuzioni di Mamaica I (Chimica) canal A-L 4 fbbraio 204 i) Si sudi la funzion Soluzioni f(x) = arcan ( log x x ) s n disgni il grafico, solo pr por rispondr all sguni domand: ii) pr quali α

Dettagli

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare

Nota Come sinonimo di funzione lineare spesso si usano i termini operatore lineare o applicazione lineare o trasformazione lineare Funioni Linari tra Spai Vttoriali D. Siano V V du spai vttoriali sia : V V. è dtta FUNZIONE LINEARE s: v, v V, k R si ha : v v v additività v kv k omognità v Oppur con l unica proprità: v v v v Nota Com

Dettagli

TEMA 1: Nella rete in figura tracciare l andamento della corrente it (). Dati e 1

TEMA 1: Nella rete in figura tracciare l andamento della corrente it (). Dati e 1 Esm di Elttrotcnic dl 04/07/0. Tutti i tmi hnno lo stsso pso. Link: http://prsonl.dln.polito.it/vito.dnil/ Gli studnti immtricolti nll A.A 007-08 o succssivi dvono obbligtorimnt sostnr l sm complto Esm

Dettagli

Matematica e Fisica classe 5G Dinamiche delle popolazioni

Matematica e Fisica classe 5G Dinamiche delle popolazioni Mmic Fisic clss 5G Dinmich dll popolzioni Modlli di crsci Crsci linr d/d D cosn + c + c c, l coninuo: d c d c + c è l pndnz dll r (). Crsci sponnzil rcg(c) o D linr Thoms Mlhus, 798 λ frzion di nuovi ni

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

Spettro di densità di potenza e rumore termico

Spettro di densità di potenza e rumore termico Spro di dnsià di ponza rumor rmico lcomunicazioni pr l rospazio. Lombardo DI, Univ. di Roma La Sapinza Spro di dnsià di onza- roprià sprali: rasormaa di Fourir RSFORM DI FOURIR NI-RSFORM DI FOURIR S s

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti Politcnico di ilno Fcoltà di Innri Industril Corso di Lur in Innri roszil Insnmnto di Proulsion roszil nno ccdmico / C. 4 Sz. d Ulli r sorttori ndorttori Esrcizi svolti rv. dicmbr ESERCIZIO 4d. Un ullo

Dettagli

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T

Oscillazioni e onde. Oscillatore armonico. x( t) e sostituendo nell equazione originale si ha. dx dt. x cos infatti. Periodo del moto armonico T No il k:\scuola\corsi\corso isica\ond\oscillaori aronico sorzao orzaodoc Crao il 5// 87 Dinsion il: 86 b ndra Zucchini Elaborao il 5// all or 885, salao il 5// 87 sapao il 5// 88 Wb: hp://digilandrioli/prozucchini

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario Risolvi i segueni esercizi rispondi quesii scel r quelli proposi nel quesionrio Clcol le segueni primiive. Quindi c ln e. Pongo d cui segue, llor: ( e ) d ( e ) c ( e ) c e e d. sin ( ) Pongo d cui segue,

Dettagli

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford.

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford. CORSO DI OOGRAFIA A - A.A. 006-007 ESERCIAZIOI - 09.05.06 ESERCIZI DI GEODESIA ESERCIZIO 1 Clcolr i rggi di curvtur dll szioni normli principli nl olo ord dll' llissoid di Hyford. 1) Szioni ormli rincipli

Dettagli

Esame di Teoria dei Segnali

Esame di Teoria dei Segnali Esam di Toria di Sgnali April Esrcizio Daa una variabil alaoria con dnsià di probabilià com in igura, drminar la dnsià di probabiià la disribuzion di probabilià dlla variabil alaoria onua mdian la sgun

Dettagli

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro:

La tabella presenta 4 casi ed i relativi differenziali di rendimento tra un investimento in Dollari ed uno in Euro: MONETA E FINANZA INTERNAZIONALE Lzion 3 ARBITRAGGIO SUI TASSI DI INTERESSE Invsimno sro domanda di valua sra Disinvsimno rischio di cambio prché rndimno ral dipnd da R La ablla prsna 4 casi d i rlaivi

Dettagli

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x)

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x) Cpiolo 6 Inegrzione 6 Inegrle Indeinio DEFINIZIONE Si ( :(, R ; l unzione F( :(, R si dice primiiv dell unzione ( se F ( è derivile in (, ed F' ( = ( (, OSSERVAZIONE In generle non ue le unzioni sono doe

Dettagli

Sistemi lineari a tempo continuo. Un sistema lineare analogico, in generale tempo variante, caratterizzato da una risposta

Sistemi lineari a tempo continuo. Un sistema lineare analogico, in generale tempo variante, caratterizzato da una risposta Capiolo V SISTEMI LIERI CO IGRESSI LETORI Sisi linari a po coninuo V. - Cararizzazion nl doinio dl po. Un sisa linar analogico, in gnral po arian, cararizzao da una risposa ipulsia daa da h (, ) rasfora

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

, allora H (ν ) è continua e limitata in R.

, allora H (ν ) è continua e limitata in R. rsormt di ourir. Proprità gnrli DEIIZIOE: si dic trsormt di ourir di un unzion dinit in R l unzion H ( ν dt. L vriil t indic il dominio tmporl, l vriil ν il dominio dll rqunz o spttrl. Com si vd, l trsormt

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

ALLEGATO 4 al Disciplinare di gara DICHIARAZIONE DI OFFERTA ECONOMICA. Procedura per l affidamento della gestione del

ALLEGATO 4 al Disciplinare di gara DICHIARAZIONE DI OFFERTA ECONOMICA. Procedura per l affidamento della gestione del Allgo 4 ALLEGAT 4 l Disciplin di g DICHIARAZINE DI FFERTA ECNMICA Pocdu p l idmno dll gsion dl «Svizio di css vo dll Isiuo Compnsivo PISSASC I» p il innio 01/01/2014 31/12/2016 (Schm di o: compil su c

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Dispensa del corso di FLUIDODINAMICA DELLE MACCHINE. Argomento: Meccanismi di perdita

Dispensa del corso di FLUIDODINAMICA DELLE MACCHINE. Argomento: Meccanismi di perdita Disnsa dl corso di FLUIDODINMIC DLL MCCHIN rgomnto: Mccanismi di rdita Pro. Pir Ruggro Sina Diartimnto di Inggnria Coicinti di rdita s s T h h s T h h h h h h Y s s s Comrssion s s T h h s T h h h h h

Dettagli

Rivelazione su singolo impulso

Rivelazione su singolo impulso Rivlio su sigolo imulso RRSN DE Uivsià i Rom L Si Rivlio oi ll cisio Sism smio i cisio bii: il v ci u iosi: bsglio ss: sgl icvuo solo isubo bsglio s: sgl icvuo sgl uil iù isubo M: Sio gli vi M : bsglio

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 09//203 PIANI DI AMMORTAMENTO Pino di mmortmento Itlino Esercizio 2 ESERCIZIO Si clcoli il pino di mmortmento quot cpitle costnte e rt semestrle reltivo d un prestito

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 27 giugno 2018 (prof. M. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 27 giugno 2018 (prof. M. Bisceglia) Traccia A Matmatica pr l Economia (-K) Matmatica Gnral 7 iuno 8 (pro M isclia) Traccia s,, dir s è dotata di minimo; dir s è s, invrtibil, s lo è, riportar la sua invrsa, dir s è itata Data la sunt unzion: :, Data

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali

Creep nei metalli. Comportamento a caldo di strutture mono e bi-dimensionali Creep ei melli Compormeo cldo di sruure moo e bi-dimesioli Curve di creep - diverse emperure Curve di creep emperur cose T T m T B T T r Sforzo-empo di rour Di rour Relzioi empirice ell curv - T

Dettagli

Unità Didattica N 14 : le funzioni circolari. 3) Relazioni tra i lati e gli angoli di un triangolo rettangolo

Unità Didattica N 14 : le funzioni circolari. 3) Relazioni tra i lati e gli angoli di un triangolo rettangolo Unità Didattica N 14 : L funzioni circolari 1 Unità Didattica N 14 : l funzioni circolari 1) L funzioni circolari ) Alcun rlazioni fra l vari funzioni circolari 3) Rlazioni tra i lati gli angoli di un

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Algebra lineare Geometria aprile 2006

Algebra lineare Geometria aprile 2006 Algbra linar Gomtria april ) Nllo spaio vttorial R [] si considrino i sottoinsimi U {p() R [] p() } V {p() R [] p() p(-)} la union : R [] R [] tal ch p() R [] (p()) p(-) i) Si vriichi ch U V sono sottospai

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

TRASFORMATA DI LAPLACE

TRASFORMATA DI LAPLACE TRASFORMATA DI LAPLACE. Inrodzion. In qo cpiolo dirmo n opror ingrl noo com l rorm di Lplc. Prim di dcrivr l opror ingrl prmimo lcn dinizioni. Un nzion F i dic conin ri in [,] è dini conin in [,], d cczion,

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10. Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi 4. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

2) Uniforme: (43) 3) Di Laplace (o esponenziale bilatera): (44) 4) Esponenziale unilatera: 5) Di Rayleigh: x exp x 0 (46) 6) Binomiale: 7) Di Poisson:

2) Uniforme: (43) 3) Di Laplace (o esponenziale bilatera): (44) 4) Esponenziale unilatera: 5) Di Rayleigh: x exp x 0 (46) 6) Binomiale: 7) Di Poisson: Eserciio N. 5 Si deterinino vlor edio e vrin delle vribili letorie seguenti tutte di notevole interesse prtico: 1) gussin; ) unifore; 3) di Lplce; 4) esponenile unilter; 5) di Rleigh; 6) binoile; 7) di

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

di Enzo Zanghì 1

di Enzo Zanghì 1 M@t_cornr d Enzo Zngì Intgrl ndfnto S dc c l funzon F () è un prmtv dll funzon f (), contnu nll'ntrvllo I s F '( ) f ( ) S un funzon mmtt n un ntrvllo I un prmtv, llor n mmtt nfnt c dffrscono tr loro mno

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo)

9. Eventuali Punti di non derivabilità: Punti angolosi, cuspidi e flessi a tangente verticale. 10.Derivata seconda (calcolo) Capisaldi:. Insim di sisnza Sudio di una funzion.. Evnuali simmri pari, dispari, priodicià. Grafico riconducibil. Inrszioni con gli assi. Sgno dlla funzion [f 0] 5. Limii alla fronira dll insim di dfinizion

Dettagli

IV. L EQ. DI VAG MEDIANTE EQ. POLARE

IV. L EQ. DI VAG MEDIANTE EQ. POLARE IV. L EQ. DI VAG MEDIANTE EQ. POLARE LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG Euzion Polr C. IV Pg. 1 Essndo nll E. di Vg il vlor OA (dll'origin d un unto, d in gnrl tr unto unto) un vlor ssoluto, non

Dettagli

LA LOGICA. La scienza che fornisce all uomo gli strumenti per controllare la validità dei suoi ragionamenti.

LA LOGICA. La scienza che fornisce all uomo gli strumenti per controllare la validità dei suoi ragionamenti. LA LOGICA La scinza ch fornisc all uomo gli strumnti r controllar la validità di suoi ragionamnti. ENNCIATI O ROOSIZIONI: indicano affrmazioni dichiarativ di cui è ossibil stabilirn la vrità la falsità

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

RUMORE TERMICO - SOLUZIONI

RUMORE TERMICO - SOLUZIONI UMOE EMICO - SOLUZIONI Nl circuio in i. è una rsisnza rumorosa alla mpraura assolua L è un induanza. Si uol drminar il alor quadraico mdio dlla corrn i ch scorr all inrno dll induor. Da un puno di isa

Dettagli

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo.

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo. Politcnico di Bari Laur in Inggnria dll Automazion, Elttronica Informatica corso B Esam di Analisi matmatica II A.A. 2006/2007-8 sttmbr 2007 - TRACCIA A. Studiar gli vntuali punti critici dlla funzion

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione:

Il candidato risolva uno dei due problemi e risponda a 5 dei 10 quesiti del questionario. PROBLEMA 1 Si consideri la funzione: Sssion suppliv PNI 8 9 Soluzion cur di Nicol D Ros ESAME DI STATO DI LICEO SCIENTIFICO Indirizzo Y: P.N.I. sciniico uonomi sciniico sciniico-cnologico Brocc Proo. CORSO SPERIMENTALE Sssion suppliv 9 Tm

Dettagli

Cammini minimi in un grafo orientato pesato. Un problema di percorso. Problemi di ottimizzazione

Cammini minimi in un grafo orientato pesato. Un problema di percorso. Problemi di ottimizzazione Cmmn mnm n un gro orntto sto Algortm Dkstr Bllmn-For r l rolm l mmno mnmo sorgnt sngol Un rolm rorso Dt un m strl on stnz s. n lomtr un unto rtnz s tror rors ù r s sun ll ltr loltà Prolm ottmzzzon Prolm:

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area=

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area= ( ) Cso : r fr du fuzioi oiu sgo divrso. Il prodio o i. Espio: Clolr l r oprs fr l fuzioi y r ( ) y ll irvllo [ ;]. r ( ) ( ) 9 0 6 Idi Igrl idfiio... Clolo dll igrl.... Prodoo fr os fuzio.... So/Diffrz

Dettagli

Gestione della soglia di Rivelazione

Gestione della soglia di Rivelazione stion lla soglia i Rivlazion RRSN DIE, Univrsità i Roma La Sainza Soglia i rivlazion robabilità i falso allarm soglia fissa Sotto l iotsi H a= ho un Falso Allarm s z ~ z f t oiché f t è aussiana a valor

Dettagli

Gestione della soglia di Rivelazione

Gestione della soglia di Rivelazione stion lla soglia i Rivlazion Sistmi Raar RRSN DIET, Univrsità i Roma La Sainza Soglia i rivlazion robabilità i falso allarm soglia fissa Sotto l iotsi H a= ho un Falso Allarm s z ~ z f t T oiché f t è

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli