GEOMETRIA I Corso di Geometria I (seconda parte)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "GEOMETRIA I Corso di Geometria I (seconda parte)"

Transcript

1 Corso di Geometria I (seconda parte) anno acc. 2009/2010

2 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo stesso punto avrà coordinate P (x, y, z ) in R. Vogliamo trovare la relazione tra (x, y, z) e (x, y, z ). I caso R e R differiscono solo per l origine: stessa direzione e stesso verso degli assi, U = U. Siano (a, b, c) le coordinate dell origine O (del sistema di riferimento R ) rispetto al sistema di riferimento R O = (a, b, c) in R P (x, y, z), x = OX, y = OY, z = OZ P (x, y, z ), x = O X, y = O Y, z = O Z Indichiamo con Q il punto dell asse x proiezione di O parallelamente al piano degli assi y e z. Si ha OQ = a. Per le identità segmentarie fondamentali si ha allora x = OX = OQ + QX = a + x (si ha infatti QX = O X, perché si tratta di segmenti tagliati dagli stessi due piani paralleli su rette parallele) e analogamente y = = b + y, z = = c + z x = x a; y = y b z = z c

3 II caso R e R differiscono solo per il verso di uno o più assi: stessa direzione e stessa origine, U = U. In questo caso è immediato verificare che, se ad esempio si cambia solo il verso dell asse x, risulta x = x; y = y; z = z. Si noti che in realtà, perché sia R che R verifichino la convenzione adottata sulla scelta dell ordinamento degli assi, un cambiamento nel verso deve avvenire necessariamente su un numero pari (zero o due) di assi. III caso R e R differiscono solo per le unità di misura: stessa direzione, stesso verso e stessa origine. Supponiamo che sia U = ku, con k > 0. In tal caso è x = OX (misurata rispetto a U ) pertanto il segmento OX di estremi O e X è tale che OX = x U. Inoltre x = OX (misurata rispetto a U) pertanto il segmento OX di estremi O e X è tale che OX = x U.

4 Ma nel nostro caso (stessa origine e stessi assi, quindi stessi punti proiezione) è X = X e anche OX = OX. Ne segue che x U = OX = OX = x U = x ku e quindi x = k x. Siccome però i versi dei due riferimenti sono uguali, x e x sono concordi, da cui x = kx. IV caso R e R differiscono solo per la direzione degli assi: stessa origine, U = U. Indichiamo con i, j e k i versori dei tre assi del riferimento R e con i, j e k i versori dei tre assi del riferimento R. Si ha e anche ( ) OP = xi + yj + zk, OP = x i + y j + z k,

5 Si avrà anche i = a 1,1 i + a 2,1 j + a 3,1 k, j = a 1,2 i + a 2,2 j + a 3,2 k, k = a 1,3 i + a 2,3 j + a 3,3 k, per opportuni a p,q R, con 1 p, q 3. Allora OP = xi + yj + zk = x(a 1,1 i + a 2,1 j + a 3,1 k ) + y(a 1,2 i + a 2,2 j + a 3,2 k ) + z(a 1,3 i + a 2,3 j + a 3,3 k ) = (a 1,1 x+a 1,2 y+a 1,3 z)i +(a 2,1 x+a 2,2 y+a 2,3 z)j +(a 3,1 x+a 3,2 y+a 3,3 z)k dal confronto con la ( ) si ricava allora x = a 1,1 x + a 1,2 y + a 1,3 z y = a 2,1 x + a 2,2 y + a 2,3 z z = a 3,1 x + a 3,2 y + a 3,3 z.

6 ovvero, ( in notazioni matriciali x ) ( ) ( a1,1 a 1,2 a 1,3 xy y = a 2,1 a 2,2 a 2,3 z a 3,1 a 3,2 a 3,3 z PROPRIETÀ DELLA MATRICE A = ). ( a1,1 a 1,2 a 1,3 a 2,1 a 2,2 a 2,3 a 3,1 a 3,2 a 3,3 Poiché (i, j, k) (e (i, j, k )) è una terna di versori mutuamente ortogonali, si ha 1 =< i, i >=< a 1,1 i + a 2,1 j + a 3,1 k, a 1,1 i + a 2,1 j + a 3,1 k >= = a 2 1,1 + a2 2,1 + a2 3,1 e analogamente 1 =< j, j >= a 2 1,2 + a2 2,2 + a2 3,2 1 =< k, k >= a 2 1,3 + a2 2,3 + a2 3,3 0 =< i, j >=< a 1,1 i + a 2,1 j + a 3,1 k, a 1,2 i + a 2,2 j + a 3,2 k >= = a 1,1 a 1,2 + a 2,1 a 2,2 + a 3,1 a 3,2 e analogamente 0 =< i, k >= a 1,1 a 1,3 + a 2,1 a 2,3 + a 3,1 a 3,3 0 =< j, k >= a 1,2 a 1,3 + a 2,2 a 2,3 + a 3,2 a 3,3. ).

7 ( a1,1 a 2,1 a 3,1 ) In altri termini, indicata con A T = a 1,2 a 2,2 a 3,2 la matrice ( ) a 1,3 a 2,3 a 3, trasposta di A, e con I = la matrice identità, si ha AA T = I. Si dice allora che A è una matrice ortogonale. Più avanti vedremo che ad ogni matrice quadrata M si può associare un numero reale det(m) detto determinante di M e che tutte le matrici ortogonali hanno determinante ±1. Inoltre si potrebbe dimostrare che, poichè tanto R quanto R devono soddisfare la convenzione sulla scelta di ordinamento tra gli assi, per la matrice A del cambiamento di sistema di riferimento si ha in realtà det(a) = 1 (matrice ortogonale speciale).

8 caso generale Il cambiamento di sistema di riferimento più generale in E 3 si ottiene componendo i quattro casi sopra descritti (si noti peraltro che il caso II risulta un caso particolare del IV), pertanto risulterà descritto da un legame del tipo x = ρ(a 1,1 x + a 1,2 y + a 1,3 z) + α y = ρ(a 2,1 x + a 2,2 y + a 2,3 z) + β z = ρ(a 3,1 x + a 3,2 y + a 3,3 z) + γ, ( ) a1,1 a 1,2 a 1,3 con ρ, α, β, γ R, ρ > 0 e A = a 2,1 a 2,2 a 2,3 matrice a 3,1 a 3,2 a 3,3 ortogonale speciale (cioè con AA T = I e det(a) = 1). Con ( notazioni ) matriciali, ( posto xy x ) ( ) αβ x =, x = y, v =, si scrive z z γ ( ) x = ρax + v.

9 Cambiamento del sistema di riferimento in A 3 Consideriamo ora due sistemi di riferimento affini R ed R e vediamo in questo caso come siano legate le coordinate (x, y, z) e (x, y, z ) che uno stesso punto P ha nei due riferimenti. Consideriamo tre vettori non nulli a, b, c rispettivamente sugli assi x, y e z ed altri tre vettori non nulli a, b, c sugli assi x, y e z. Ripetiamo nel caso affine le considerazioni fatte sopra nel caso euclideo sostituendo (a, b, c) al posto di (i, j, k) e (a, b, c ) al posto di (i, j, k ). Tutti gli argomenti esposti continuano a valere salvo che quando si utilizza il fatto che (i, j, k) e (i, j, k ) sono terne di versori mutuamente ortogonali. Ne ricaviamo che il più generale cambiamento di sistema di riferimento affine è della forma ( ) x = Mx + v,

10 dove M è una matrice 3 3, v è un vettore a 3 componenti e inoltre si potrebbe dimostrare che det(m) 0 (vedremo più avanti che quest ultima condizione è equivale a dire che le colonne di M sono linearmente dipendenti e questo a sua volta, per come M è costruita, equivale al fatto che i vettori (a, b, c) sono linearmente indipendenti). In realtà se si vuole che i due sistemi di riferimento verifichino la convenzione sull ordinamento degli assi risulta det(m) > 0. ESERCIZIO - Si consideri una matrice in cui le colonne sono liearmente dipendenti, ad esempio, ( 1 1 ) e l applicazione f di E 3 in sè definita da x = Mx. Si stabilisca se f è biunivoca.

11 Trasformazioni geometriche in A 3 Consideriamo ora A 3 con un sistema di riferimento fissato. L equazione matriciale ( ) x = Mx + v, con det(m) 0, può essere interpretata come una trasformazione (corrispondenza biunivoca) α : A 3 A 3 ; vediamo come. Dato P (x, y, z) si può considerare P (x, y, z ), e definire α(p) = P. Vedremo più avanti che la condizione det(m) 0 garantisce l invertibilità della α. Le trasformazioni α : A 3 A 3 definite come sopra verranno dette affinità.

12 Denotiamo con Aff (3) l insieme delle affinità di A 3 in sè. OSSERVAZIONE - Aff (3) è un gruppo rispetto alla composizione. Cenno di dimostrazione - La composizione della trasformazione α di espressione x = Ax + a con la trasformazione β di espressione x = Bx + b, è la trasformazione γ = β α data da x = BAx + Ba + b, dove BA è il prodotto riga per colonna di B per A (A Ax + a B(Ax + a) + b = BAx + Ba + b, per le proprietà del prodotto tra matrici). L applicazione identica è un affinità (di espressione x = Ix + 0.) L inversa dell affinità α espressa da x = Ax + a è l affinità α 1 data da x = A 1 x A 1 a, dove A 1 denota la matrice inversa della matrice A.

13 Geometria affine OSSERVAZIONE - Abbiamo definito le affinità come trasformazioni che corrispondono ai cambiamenti di sistema di riferimento affine. Pertanto è naturale considerare equivalenti in A 3 due sottoinsiemi dello spazio (figure) che si ottengano l uno dall altro con un affinità (sono solo diversi modi in cui la stessa figura viene vista da sistemi di riferimento diversi). PROPRIETÀ DELLE AFFINITÀ α Aff (3), si ha 1 α è continua; 2 α trasforma piani in piani (e conseguentemente rette in rette); 3 α trasforma piani paralleli in piani paralleli (e conseguentemente rette parallele in rette parallele); 4 α conserva i rapporti tra le misure con segno di segmenti allineati.

14 Cenno di dimostrazione 1 La continuità segue dal fatto che le coordinate x, y ed y sono espresse come polinomi (di primo grado) nelle coordinate x, y e z. 2 Sia α l affinità espressa da x = Ax + a, e π il piano di equazione cartesiana Hx + Ky + Lz + M = 0 ((H, K, L) (0, 0, 0)). Notiamo che tale equazione può anche essere scritta come h T x + M = 0, dove si è posto h T = (H, K, L). Un punto P appartiene al piano α(π) se e solo se P = α 1 (P ) appartiene a π. Indicata con x = Bx + b, l espressione di α 1, si ha quindi che P α(π) se e solo se h T (Bx + b) + M = 0, e questa è un equazione lineare in x, y ed z. L unica cosa che resta da verificare è che tale equazione rappresenti effettivamente un piano, ovvero che sia effettivamente di primo grado in almeno una delle variabili. Questo segue dal fatto che il vettore h T B (le cui componenti sono i coefficienti delle variabili nell equazione del piano) non può essere il vettore nullo perchè h 0 e B è invertibile.

15 3 Siano π e σ due piani paralleli, e consideriamo i piani α(π) e α(σ). Se α(π) e α(σ) non fossero paralleli esisterebbe un punto P α(π) α(σ), ma allora si avrebbe P = α 1 (P ) π σ. 4 Consideriamo la retta r rappresentata in forma parametrica da P = P 0 + λv. λ esprime la misura con segno del segmento P 0 P, sulla retta affine r in cui v individua tanto l unità di misura quanto il verso. Consideriamo poi l affinità α di espressione x = Ax + a. Il punto P 0 è trasformato da α in P 0 = AP 0 + a, e il generico punto P di r è trasformato in P = A(P 0 + λv) + a = AP 0 + Aλv + a = Aλv + AP 0 + a = P 0 + λav. La retta α(r) risulta così individuata come la retta passante per P 0 e parallela al vettore Av. λ esprime quindi anche la misura con segno del segmento P 0P, sulla retta affine α(r) in cui Av individua tanto l unità di misura quanto il verso. Allora se AB e CD sono segmenti orientati su r, il rapporto tra le misure con segno di AB e CD su r è uguale al rapporto tra le misure con segno di α(a)α(b) e α(c)α(d) su α(r).

16 Siano dati tre punti A, B e C in A 3 appartenti ad una stessa retta r e si consideri un sistema di riferimento affine su r. Si dice rapporto semplice della terna (A, B, C) (in quest ordine) il numero reale (ABC) = AC BC, ottenuto come rapporto tra le misure con segno dei segmenti orientati AC e BC. Ad esempio, se C è il punto medio tra A e B, risulta (ABC) = AC BC = AC AC = 1. La proprietà 4 delle affinità può essere riscritta nel seguente modo 4 α conserva i rapporti semplici di terne di punti allineati.

17 OSSERVAZIONE - Le proprietà 1, 2, 3 e 4 (o 4 ) caratterizzano le affinità, ovvero si potrebbe dimostrare che una trasformazione di A 3 che verifichi 1, 2, 3 e 4 (o 4 ) è necessariamente un affinità. ESERCIZIO - Dare un esempio di affinità che NON conserva le misure degli angoli.

18 Trasformazioni geometriche in E 3 Analogamente a quanto fatto in A 3, possiamo considerare in E 3 un sistema di riferimento (ortonormale) fissato ed interpretare le equazioni di un cambiamento di sistema di riferimento come rappresentative di una trasformazione di E 3 in sè. Le trasformazioni ε : E 3 E 3 definite da ( )x = ρax + v, con A matrice ortogonale speciale, ρ > 0, e v vettore colonna a 3 componenti, vengono dette similitudini dirette, e congruenze dirette o isometrie dirette se ρ = 1. Il numero reale ρ viene detto rapporto di similitudine. OSSERVAZIONE - L insieme delle similitudini dirette Sim + (3) (e anche l insieme delle congruenze dirette Iso + (3)) è un gruppo rispetto alla composizione. Più precisamente si ha un inclusione di sottogruppi Iso + (3) Sim + (3) Aff (3).

19 Geometria euclidea simile e geometria euclidea metrica Le similitudini dirette sono le trasformazioni che corrispondono ad un cambiamento di sistema di riferimento da R ortonormale a R ortonormale, per cui è naturale identificare due figure di E 3 che si ottengano l una dall altra con una similitudine diretta (geometria euclidea simile). Nel caso delle congruenze dirette inoltre queste corrispondono a cambiamenti di sistema di riferimento in cui non viene alterata l unità di misura, pertanto, quando si vogliano fare considerazioni di natura metrica, risulta naturale identificare due figure di E 3 che si ottengano l una dall altra con una congruenza diretta (geometria euclidea metrica). Se nella definizione di similitudine (risp. di congruenza) diretta si sostituisce la condizione ρ > 0 con la condizione ρ 0 si ottiene la nozione di similitudine (risp. di congruenza). In questo caso il rapporto di similitudine è il numero reale ρ.

20 Anche l insieme Sim(3) delle similitudini (e l insieme Iso(3) delle congruenze) è un gruppo. Le similitudini (e analogamente le congruenze) corrispondono a cambiamenti nel sistema di riferimento euclideo quando non si tenga conto della convenzione sulla scelta dell ordinamento degli assi. Le similitudini (e anche le congruenze) che non sono dirette vengono dette inverse. OSSERVAZIONE - Quanto detto finora a proposito di geometria affine ed euclidea, di cambiamenti di sistema di riferimento, di trasformazioni, ecc., continua a valere con ovvi cambiamenti (semplificazioni) nel caso del piano. Si parlerà quindi anche di affinità in A 2 come trasformazioni che corrispondono ai cambiamenti di sistema di riferimento, di similitudini e congruenze in E 2 (nel caso cioè di sistemi di riferimento ortonormali), ecc., di congruenze e similitudini dirette e inverse. Hanno ovvio significato i simboli Aff (2), Sim(2), ecc.

21 PROPRIETÀ DELLE SIMILITUDINI I Tutte quelle delle affinità II Conservano i rapporti tra le misure assolute di segmenti (anche non allineati) III Conservano le misure degli angoli. PROPRIETÀ DELLE CONGRUENZE i Tutte quelle delle similitudini. ii Conservano le misure (in valore assoluto) dei segmenti. OSSERVAZIONE - Si potrebbe dimostrare che la proprietà II caratterizza le similitudini, nel senso che una trasformazione di E 3 che conserva i rapporti tra le misure (in valore assoluto) dei segmenti è necessariamente una similitudine. Si anche potrebbe dimostrare che la proprietà ii caratterizza le congruenze, nel senso che una trasformazione di E 3 che conserva le misure assolute dei segmenti è necessariamente una congruenza.

22 Esempi di similitudini e congruenze in E 2 e E 3 TRASLAZIONE Dato un vettore v, la traslazione τ v è la trasformazione che associa ad un punto P quell unico punto P = τ v (P) tale che [ PP ] = v. OSSERVAZIONI 1 L espressione della traslazione τ v in coordinate è data da τ v è x = x + v. 2 La stessa definizione "funziona" sia in E 2 che in E 3 3 La traslazione è un isometria diretta

23 RIFLESSIONE Nel piano, fissata una retta r, la riflessione rispetto a r è la trasformazione σ r che associa al punto P quell unico punto P = σ r (P) tale che P = P, se P r, r è l asse del segmento PP, se P / r. Quindi la retta s per P e P è ortogonale a r e H = r s è il punto medio di PP. Nello spazio, fissato un piano α, la riflessione rispetto a α è la trasformazione σ α che associa al punto P quell unico punto P = σ α (P) tale che P = P, se P α, α è il piano assiale del segmento PP, se P / α. Quindi la retta s per P e P è ortogonale a α e H = α s è il punto medio di PP.

24 OSSERVAZIONE - La riflessione è una congruenza inversa. ESERCIZIO - Verificare che nel piano la trasformazione data da ( ) ( ) x ( ) cos(θ) sen(θ) xy y =, sen(θ) cos(θ) è la riflessione rispetto alla retta per l origine che forma un angolo di θ/2 con l asse x. ROTAZIONE Nel piano, fissato un punto C e un amgolo θ, con 0 θ < 2π, si dice rotazione ρ (C,θ) di centro C e angolo θ la trasformazione che associa al punto P( C) quell unico punto P = ρ (C,θ) (P) tale che la misura del segmento CP sia uguale alla misura del segmento CP, e l angolo PCP sia di ampiezza θ. Il trasformato di C è C stesso.

25 Nello spazio, fissata una retta orientata r ed un numero reale θ, con 0 θ < 2π, si dice rotazione di asse r e ampiezza θ la trasformazione ρ (r,θ) che associa al punto P quell unico punto P = ρ (r,θ) (P) tale che: P appartiene al piano α passante per P e ortogonale a r P è il punto trasformato di P rispetto alla rotazione, nel piano α, di centro il punto C = α r e angolo θ (in senso antiorario se osservato dalla semiretta positiva dell asse r). OSSERVAZIONE - Se P r, allora ρ (r,θ) (P) = P. OSSERVAZIONE - La rotazione è una congruenza diretta. ESERCIZIO - Verificare che nel piano la trasformazione data da ( ) ( ) x ( ) cos(θ) sen(θ) xy y =, sen(θ) cos(θ) è la rotazione di angolo θ intorno all origine.

26 OMOTETIE Fissato un punto C ed un numero reale λ 0, l omotetia di centro C e rapporto λ è la trasformazione ω (C,λ) che associa al punto P( P 0 ) il punto P = ω (C,λ) (P) che giace sulla retta per C e P e tale che sia CP = λ CP. Se P = C, si pone P = P. OSSERVAZIONE - 1 Un omotetia di rapporto λ è una similitudine di rapporto λ 2 L espressione in coordinate di una omotetia di centro l origine è x = λx. 3 Quanto detto "funziona" sia nel piano che nello spazio. 4 Nel piano le omotetie sono sempre dirette, nello spazio sono dirette se e solo se λ > 0. ESERCIZIO - Come si può descrivere in altro modo un omotetia di rapporto 1?

27 Classificazione delle isometrie in E 2 e in E 3 PROBLEMA - Ci sono altre isometrie o similitudini (oltre a quelle prima descritte)? Risposta: poche altre. TEOREMA 1- Nel piano una qualunque isometria rientra in una delle seguenti quattro tipologie: a rotazione b riflessione c traslazione d glissoriflessione dove la glissoriflessione γ (r,v) di asse r e vettore v è la trasformazione che si ottiene componendo la riflessione di asse r con la traslazione di vettore v, con v r.

28 TEOREMA 2- Nello spazio una qualunque isometria rientra in una delle seguenti sei tipologie: a rotazione b riflessione c traslazione d glissoriflessione (composizione di una riflessione rispetto a un piano α e di una traslazione rispetto a un vettore v, con v α) e rotoriflessione (composizione di una rotazione di asse r e di una riflessione rispetto a un piano α r) f vite (composizione di una rotazione di asse r e di una traslazione rispetto a un vettore v, con v r).

29 TEOREMA 3 - (Sia nel piano che nello spazio) Una qualunque similitudine è la composizione di una isometria e di una omotetia. Il teorema 3 si dimostra facilmente (ESERCIZIO - Suggerimento: componendo una similitudine di rapporto k con una omotetia di rapporto 1/k si ottiene una similitudine di rapporto 1, cioè... ) I teoremi 1 e 2 sono conseguenza del seguente risultato. TEOREMA - Ogni isometria del piano (rispett. dello spazio) è composizione di al più 3 (rispett. 4) riflessioni.

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA

LA GEOMETRIA ANALITICA DELLO SPAZIO. Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 CONVEGNO MATHESIS VERONA LA GEOMETRIA ANALITICA DELLO SPAZIO CONVEGNO MATHESIS Liceo G. GALILEI - Verona Venerdì 10 Aprile 2015 Perché Assenza di ogni riferimento alla geometria analitica dello spazio nel quadri di Mondrian La

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

GEOMETRIA 1 Corso di Geometria 1 (prima parte)

GEOMETRIA 1 Corso di Geometria 1 (prima parte) GEOMETRIA 1 Corso di Geometria 1 (prima parte) Maria Dedò e Cristina Turrini 2011/2012 Maria Dedò e Cristina Turrini (2011/2012) GEOMETRIA 1 1 / 109 index Vettori 1 Vettori 2 Retta, piano e spazio affini

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Processo di rendering

Processo di rendering Processo di rendering Trasformazioni di vista Trasformazioni di vista Il processo di visione in tre dimensioni Le trasformazioni di proiezione 2 Rendering nello spazio 2D Il processo di rendering (visualizzazione)

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Applicazioni lineari

Applicazioni lineari CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Capitolo 9 Esponenziali e logaritmi... Capitolo 0 Funzioni circolari 0. Descrizione di fenomeni periodici Tra le funzioni elementari ne esistono due atte a descrivere fenomeni che si ripetono periodicamente

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Insiemi di livello e limiti in più variabili

Insiemi di livello e limiti in più variabili Insiemi di livello e iti in più variabili Insiemi di livello Si consideri una funzione f : A R, con A R n. Un modo per poter studiare il comportamento di una funzione in più variabili potrebbe essere quello

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. A01 178 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Moti e sistemi rigidi

Moti e sistemi rigidi Moti e sistemi rigidi Dispense per il corso di Meccanica Razionale 1 di Stefano Siboni 1. Moto rigido di un sistema di punti Sia dato un sistema S di N 2 punti materiali P i, i = 1,..., N. Per configurazione

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Corso introduttivo pluridisciplinare Strutture algebriche

Corso introduttivo pluridisciplinare Strutture algebriche Corso introduttivo pluridisciplinare Strutture algebriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 17 index

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli