Funzioni numeriche elementari. y B è l'immagine dell'elemento x A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Funzioni numeriche elementari. y B è l'immagine dell'elemento x A"

Transcript

1 Le funzioni numeriche (in simboli f() ), sono delle leggi, in molti casi espresse da equazioni y=f(), che associano dei numeri appartenenti a un certo insieme di partenza (A), ad altri numeri appartenenti ad un secondo insieme di arrivo (B). Il domino (D)è fomato dall'insieme degli elementi di A che possono essere associati agli elementi di B : l'insieme degli elementi di B associati agli elementi di A, detti immagini, formano codominio (C). La lettera, che sta ad indicare tutti i valori che possono essere sostituiti nella formula f(), prende il nome di variabile indipendente, mentre la lettera y indica invece tutti i valori ottenibili dai rispettivi valori di e prende il nome di variabile dipendente. Nel linguaggio matematico si usa dire che un certo elemento y B è l'immagine dell'elemento A secondo una data funzione f() quando y=f() e, in simboli si può scrivere: f : y. Pertanto, l'uso delle due lettere sta anche ad indicare dei singoli elementi e non solo degli insiemi di numeri. Funzione: è una relazione tra due insiemi A e B che associa ad ogni elemento di A uno ed un solo elemento di B. Le funzioni possono essere rappresentate in forma di diagrammi, di tabelle e grafici cartesiani e di formule matematiche nel caso delle funzioni numeriche. Esistono quattro tipologie principali di funzioni numeriche elementari, ciascuna dotata di propria formula: Proporzionalità diretta: y k ; legge lineare: y k q Proporzionalità quadratica: k y k ; proporzionalità inversa: y. Prof. I. Savoia - _0

2 Gli insiemi numerici di partenza e di arrivo di un funzione numerica, se non specificato diversamente coincidono con l'insieme R dei numeri reali. I numeri reali si possono considerare un sovrainsieme dei numeri razionali. I numeri reali, oltre ai numeri razionali che si possono esprimere come frazioni oppure numeri decimali, includono l'insieme dei numeri irrazionali: gli irrazionali, come ad esempio le radici numeriche di numeri razionali che non sono quadrati di altri numeri, come,,..., sono espressi in formato decimale con un numero di infinite cifre non periodiche dopo la virgola e non possono scriversi come frazioni. La radice quadrata numerica y di un numero positivo è definita in questo modo: y y. Alcuni esempi: 9 9, , , 5, 56,56, 5. Analogalmente, si definisce la radice n-esima positiva di un dato numero quel numero che elevato all'esponente n N fornisce il numero di partenza: y n y n. Ad esempio: numero 7 7. Dimostriamo che il è un numero irrazionale, ovvero non si può esprimere come rapporto tra due numeri interi primi tra loro (cioè senza divisori comuni). Infatti, se per assurdo supponiamo che esistano due numeri interi p, q primi tra loro, tali che p : q p per la definizione di radice quadrata si ha quindi, per cui si sarebbe vera la q relazione p q. Il numero p dovrebbe essere un numero pari essendo divisibile per e, di conseguenza, il numero p srebbe necessariamente pari in quanto i quadrati dei numeri dispari sono dispari. Ma allora tale numero si può esprimere come p n con n numero intero. Da ciò deriva, dopo avere sostituito nella relazione precedente: 4 n q, ovvero q n. Quindi, si può ripetere il ragionamento affermando ora che anche q è un numero pari essendo pure esso divisibile per ma questa è una contraddizione in quanto i due numeri p e q sarebbero entrambi pari e quindi con un divisore in comune, contrariamente all'ipotesi. Ne consegue, pertanto, che è irrazionale. Prof. I. Savoia - _0

3 Il riquadro seguente mostra la rappresentazione insiemistica dei vari tipi di numeri. I numeri rrazionali quali, ad esempio, la radice quadrata di o la radice quadrata di 5 si rappresentano anche essi lungo una retta orientata, collocati tra due interi consecutivi:, , 5, In generale, i numeri irrazionali si possono approssimare ad un numero prestabilito di cifre dopo la virgola, arrotondando l'ultima cifra, per eccesso se la cifra successiva è 5 oppure per difetto se l'ultima cifra è 5. Ad esempio, rappresentiamo la radice di 5: con cifra dopo la virgola 5, per difetto, con cifre 5, 4 per eccesso. Ogni numero reale è determinato da due serie di numeri decimali approssimanti, rispettivamente quelli per difetto e quelli per eccesso che convergono al numero stesso: Prof. I. Savoia - _0

4 4, 4, 4, 44, 44Grafici... delle funzioni..., 44, 45, 4, 5 Serie per difetto Serie per eccesso Grafico di un funzione y=f(), è 'insieme dei punti del piano cartesiano di coodinate P[;f()]. I grafici si possono ottenere, in pratica, calcolando un certo numero di valori della variabile y in corrispondenza dei rispettivi valori attribuiti alla variabile in base alle rispettive formule, da porre prima in una tabella e poi come punti di un piano cartesiano O associati alle coppie di coodinate. Maggiore è il numero dei punti calcolati e migliore, in generale, è la rappresentazione della funzione anche se, per talune funzioni come ad esempio la retta, sono sufficienti anche solo o coppie di valori. Passiamo ora a esaminare i tipi più comuni di funzioni semplici. Proporzionalità diretta: y k Legge lineare: y k q Si tratta di una retta che passa sempre per l'origine O(0;0), diretta verso l'alto da sinistra a destra per k>0 e, invece, diretta verso il basso da sinistra a destra nel caso di valori di k<0. Si tratta di una retta che passa sempre per il punto A(0; q), diretta verso l'alto da sinistra a destra per k>0 e, invece, diretta verso il basso da sinistra a destra per valori di k<0. y -4-6 y y -4 - y u 0 4 u u u y y -6 4 y y u 6-4 u - u u Prof. I. Savoia - _0

5 5 Proporzionalità quadratica: y k Il grafico della proporzionalità quadratica è una curva, la parabola, che passa sempre per l'origine O(0; 0) ed è rivolta verso l'alto per k>0 e verso il basso per k<0. Proporzionalità inversa: y k La curva descritta dalla formula, detta iperbole, è diviso in due rami simmetrici rispetto all'origine O(0;0), nel I O e nel III O quadrante se k>0 e nel II O e IV O se k<0. y -4 4 y 4 6 y Esempio Esempio y y y In questo esempio si notino le due diverse spaziature delle tacche tra i numeri: quella dell'asse, formata da tacche, permette di rappresentare facilmente i valori di y della tabella che hanno il denominatore. Si noti come la curva tende a salire verso l'alto o scendere verso il basso in prossimità del valore =0, avvicininandosi all'asse senza però toccarlo: l'asse, in questo caso, è detto asintoto della curva. Prof. I. Savoia - _0

6 6 Dalle tabelle alle formule Riconoscere una legge a partire dai dati di una tabella è un tipo di esercizio molto importante che ha delle applicazioni dirette in ogni ambito scentifico. Infatti, la fisica, la biologia e le altre scienze, si servono di modelli dei fenomeni naturali in forma di leggi matematiche che descrivono il legame tra le grandezze e, tali leggi, derivano dalla interpretazioni di dati sperimentali raccolti dall'osservazione e dalla ricerca. Ad ogni tipo di legge è associata una proprietà caratteristica basata su una semplice operazione di calcolo tra i valori delle variabili. DI seguito esaminiamo le proprietà e illustriamo gli esempi di riconoscimento delle quattro tipologie di funzioni elementari considerate:; in genere, a partire dai dati di una tabella, si costruisce una nuova colonna (o riga se la tabella è orizzontale) nella quale si effettua il calcolo: se il risultato è un valore costante (k) esso è quello che caratterizza la formula da scrivere. Poi, in base alla formula trovata, si possono eventualmente aggiungere ulteriori valori alla tabella e, in base ad essi, tracciare il grafico della funzione. Le caratteristiche delle quattro funzioni consiserate sono esperesse da semplici relazioni che derivano dalle loro formule: Proporzionalità Legge lineare : Proporzionalità Proporzionalità diretta : quadratica : inversa : y k y k q y k y k y y k. y q k. k y k.. Per riconoscere un tipo di funzione a partire dai dati di una tabella, distinguendola dagli altri tre tipi, spesso non è necessario effettuare calcoli ma basta osservare i dati stessi in relazione alle proprietà: La proporzionalità diretta include il punto O(0; 0); la legge lineare include invece il punto A(0; q) dove q è un numero diverso da 0. La proporzionalità quadratica include i punti A(; k) e B(-;k) dove k è la costante della f(). La proporzionalità inversa non include mai i tipi di punti 0(0;0), A(0; q) e A(k; k ). Esempi di riconoscimento di funzioni in base alle due prime colonne delle tabelle numeriche y y/ y (y-)/ y y/ y y - -/ / - -/ -/5 /5 -/ -/ - 0 q= / / 4/ / 4/ -/ / 4/ -6 5/ / 0/ -0 / y y 4 y 0 y Prof. I. Savoia - _0

7 7 Determinazione di valori numerici associati da una funzione Tipici esercizi consistono nel calcolare un valore della variabile y (immagine) associato ad un dato valore della o, viceversa, calcolare l'elemento che associa un dato valore di y. Il calcolo di tali valori, in generale, si può ottenere risolvendo le equazioni che esprimono le funzioni con incognite una delle due lettere. Quando l'incognita è si possono applicare i due principi di equivalenza delle equazioni: O : trasportare da un membro all'altro un numero qualsiasi cambiato di segno che equivale a sommare o sottrarre dai due membri uno stesso numero; O: moltiplicare o dividere per uno stesso numero diverso da zero i due membri dell'equazione; Ricordiamo, preliminarmente, che il valore di y associato ad un dato valore di si può scrivere, in simboli, sia come y() che come f(). Esempio. Data f, calcolare i valori mancanti: 9 6 ; B) f... 4 A) f... ; C) f... ; D) f... 6 f ; B) A) f ; 4 4 C) ; D) Esempio. Data f, calcolare i valori mancanti: A) f... ; B) f... ; C) f... ; D) f... A) 0 f ; B) 5 f ; C) 4 4 ; D) 4 Prof. I. Savoia - _0

8 8 Nell'esempio che segue, relativo alla funzione di proporzionalità quadratica, per determinare il valore della, noto il valore della y (punti C e D), si ottengono due opposti valori dalla radice quadrata: a. Ad esempio, le soluzioni di 00 sono 00 0 ; infatti, entrambi i numeri (+0) e (-0) se elevati al quadrato forniscono il valore iniziale 00. Esempio. Data f, calcolare i valori mancanti: ; B) f... A) f... f. 9 ; C) f... 8 ; D)... f ; B) A) 4 4 f ; 9 9 C) ; D) Esempio 4. Data f, calcolare i valori mancanti: 4 6 ; B) f... A) f... f. 4 ; C) f... 8 ; D)... 4 f ; B) f 9 ; A) 6 C) ; 4 4 D) 6 4. Prof. I. Savoia - _0

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

SIMMETRIE NEL PIANO CARTESIANO

SIMMETRIE NEL PIANO CARTESIANO Simmetrie nel piano cartesiano - Marzo 011 SIMMETRIE NEL PIANO CARTESIANO SIMMETRIE RISPETTO AGLI ASSI CARTESIANI ASSE X: P ( x,y ) a P1 ( x, y ) ; punto medio: M1 ( x,0) ASSE Y: P ( x,y ) a P ( x, y ),

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Liceo Classico Statale Vittorio Emanuele II Matematica in analisi

Liceo Classico Statale Vittorio Emanuele II Matematica in analisi Liceo Classico Statale Vittorio Emanuele II Matematica in analisi Le funzioni Definizione di funzione Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA)

Prof. I. Savoia. SISTEMI LINEARI E RETTA (VERSIONE PROVVISORIA NON ULTIMATA) SISTEMI LINEARI E RETTA 1 Proprietà e rappresentazione grafica dei sistemi lineari. I sistemi lineari in due incognite sono insiemi di due equazioni di primo grado, nei qualiciascuna di esse rappresenta

Dettagli

Disequazioni in una incognita. La rappresentazione delle soluzioni

Disequazioni in una incognita. La rappresentazione delle soluzioni Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici A. A ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2013-2014 1 INSIEMI NUMERICI sono la base su cui la matematica si è sviluppata costituiscono le tappe di uno dei più importanti

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

Funzioni esponenziali e logaritmiche

Funzioni esponenziali e logaritmiche Funzioni esponenziali e logaritmiche Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y = exp a (x) che fa corrispondere ad ogni x R il numero reale positivo a x. Proprietà

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Numeri Aritmetica e Numerazione

Numeri Aritmetica e Numerazione Numeri Aritmetica e Numerazione Insiemi Numerici Gli Insiemi Numerici nel diagramma di di Eulero - Venn Enumerazione Numeri Naturali Numeri Composti Numeri Primi I primi 1000 Numeri Primi Numeri Interi

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario Lezione di mar. 15 Settembre 2015 (1 e 3 ora) Disciplina: MATEMATICA Esercizi di ripasso 1. 4 5>0 4>5 > : > 2. 4 5>0 +3 0 > 3 > : 3 Soluzione

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

PROGRAMMA DI MATEMATICA CONTENUTI.

PROGRAMMA DI MATEMATICA CONTENUTI. PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Dispense di Analisi Matematica 1 - prima parte

Dispense di Analisi Matematica 1 - prima parte Dispense di Analisi Matematica 1 - prima parte Andrea Braides Queste dispense seguono approssimativamente le lezioni di Analisi Matematica 1 da me tenute. Non sono pensate come un sostituto per un libro

Dettagli

Y = ax 2 + bx + c LA PARABOLA

Y = ax 2 + bx + c LA PARABOLA LA PARABOLA La parabola è una figura curva che, come la retta, è associata ad un polinomio che ne definisce l'equazione. A differenza della retta, però, il polinomio non è di primo grado, ma è di secondo

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente:

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente: Definizione di potenza Si definisce potenza ennesima di A, con n intero maggiore di 1, il prodotto di A per se stesso eseguito n volte A n =(AxAxAx A) n volte 2 5 = 2 2 2 2 2=32 Se la base è 10, il risultato

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2008/2009 Docente Ing. Andrea Ghedi Docente: Dott. Ing. Andrea Ghedi Ingegnere Biomedico, specialista

Dettagli

Lezione 2. Percentuali. Equazioni lineari

Lezione 2. Percentuali. Equazioni lineari Lezione 2 Percentuali Equazioni lineari Percentuali Si usa la notazione a % per indicare a/100 Esempio: 25%= 25/100=0.25 30% = 30/100=0.30 Inoltre: Applicare la percentuale a % a un numero b è come moltiplicare

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

FRAZIONI e NUMERI RAZIONALI

FRAZIONI e NUMERI RAZIONALI FRAZIONI e NUMERI RAZIONALI Frazioni Come per i numeri naturali, anche per gli interi relativi si definisce l'operazione di divisione come operazione inversa della moltiplicazione: Divisione di numeri

Dettagli

Equazioni lineari con due o più incognite

Equazioni lineari con due o più incognite Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA / Emanuele Fabbiani marzo Funzioni in più variabili. Dominio Determinare e rappresentare gracamente il più grande insieme di R n che può essere dominio delle seguenti funzioni.

Dettagli

EQUAZIONI E PROBLEMI: GUIDA D'USO

EQUAZIONI E PROBLEMI: GUIDA D'USO P.1\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 EQUAZIONI E PROBLEMI: GUIDA D'USO EQUAZIONI LINEARI INTERE: PROCEDURA RISOLUTIVA Per risolvere le equazioni numeriche intere, si può

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

Contenuti Competenze Conoscenze. elementi dell insieme N proprietà dell insieme N numeri naturali (2 ore) Saper rappresentare i

Contenuti Competenze Conoscenze. elementi dell insieme N proprietà dell insieme N numeri naturali (2 ore) Saper rappresentare i Progetto SIRIO Monoennio Moduli di matematica 1 A Insiemi numerici (28 ore) Saper individuare gli elementi dell insieme N proprietà Proprietà dell insieme N dei Saper rappresentare i dell insieme N numeri

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE

SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)

Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari) Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari). Piano cartesiano Per piano cartesiano si intende un piano dotato

Dettagli

CURRICOLO DI ISTITUTO

CURRICOLO DI ISTITUTO ISTITUTO COMPRENSIVO G.PERLSC Ferrara CURRICOLO DI ISTITUTO NUCLEO TEMTICO Il numero CONOSCENZE BILIT S C U O L P R I M R I classe 1^ L alunno conosce: i numeri naturali, nei loro aspetti cardinali e ordinali,

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

Frazioni e numeri decimali

Frazioni e numeri decimali Frazioni e numeri decimali Sappiamo che uno stesso numero razionale può essere rappresentato sia sotto forma di frazione (in infiniti modi tra loro equivalenti) che sotto forma di numero decimale. Precisiamo

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI

I NUMERI RELATIVI ALGEBRA PER RICORDARE PREREQUISITI ALGEBRA I NUMERI RELATIVI PREREQUISITI l conoscere le proprietaá delle quattro operazioni con i numeri naturali e saperle applicare l svolgere calcoli con le frazioni CONOSCENZE gli insiemi Z, Q, R la

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I

IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I IC BOSCO CHIESANUOVA - CURRICOLO UNITARIO - SCUOLA SECONDARIA I MATEMATICA Classe PRIMA secondaria 1 COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE IL NUMERO - Utilizzare in modo corretto le tecniche, le procedure

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli