1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici"

Transcript

1 Matrici R. Notari 1

2 1. Proprietà della somma di matrici 1. (A + B) + C = A + (B + C) qualunque siano le matrici A, B, C Mat(m, n; K). 2. A + B = B + A qualunque siano le matrici A, B Mat(m, n; K). 3. Sia O la matrice di tipo m n le cui entrate sono tutte nulle (matrice nulla). Allora A + O = A qualunque sia A Mat(m, n; K). 4. Sia A una matrice di tipo m n su K. La matrice A di tipo m n le cui entrate sono opposte a quelle di A, posizione per posizione (matrice opposta), è l unica matrice di tipo m n per cui A + ( A) = O. 2

3 2. Proprietà del prodotto scalare-matrice 1. x(ya) = y(xa) = (xy)a qualunque siano x, y K e qualunque sia A Mat(m, n; K). 2. 1A = A qualunque sia A Mat(m, n; K). 3. x(a + B) = xa + xb qualunque sia x K e qualunque siano A, B Mat(m, n; K). 4. (x+y)a = xa+ya qualunque siano x, y K e qualunque sia A Mat(m, n; K). Vale la Legga di Annullamento del prodotto scalare-matrice. Infatti abbiamo Proposizione 1 Sia x K, e sia A una matrice di tipo m n su K. Se O è la matrice nulla di tipo m n allora xa = O se, e solo se, x = 0 o A = O. 3

4 3. Proprietà della trasposizione 1. t ( t A) = A per ogni A Mat(m, n; K). 2. t (A+B) = t A+ t B qualunque siano A, B Mat(m, n; K). 3. t (xa) = x t A qualunque sia x K, e qualunque sia A Mat(m, n; K). 4

5 4. Matrici simmetriche ed antisimmetriche Teorema 2 L unica matrice quadrata di ordine n che è sia simmetrica sia antisimmetrica è la matrice nulla. Inoltre, data una matrice M quadrata di ordine n, esistono un unica matrice quadrata S di ordine n simmetrica ed un unica matrice A quadrata di ordine n antisimmetrica che verificano l uguaglianza M = S + A. 5

6 5. Proprietà del prodotto di matrici 1. Siano A, B, C tre matrici qualsiasi su K di tipo m n, n p, p q, rispettivamente. Allora (AB)C = A(BC). 2. Sia I p la matrice identica di ordine p. Allora, qualunque sia A Mat(m, n; K) si ha I m A = AI n = A. 3. Siano A, B Mat(m, n; K) e siano C, D Mat(n, p; K). Valgono le uguaglianze e (A + B)C = AC + BC A(C + D) = AC + AD. 6

7 4. Siano A, B matrici su K di tipo m n, n p, rispettivamente, e sia x K. Allora si ha x(ab) = (xa)b = A(xB). 5. Siano A, B matrici su K di tipo m n, n p, rispettivamente. Allora abbiamo t (AB) = t B t A. Non valgono la proprietà commutativa e la Legge di Annullamento del Prodotto di due matrici. 7

8 6. Operazioni elementari e rango Teorema 3 Data una matrice A su K di tipo m n, esiste una successione finita di operazioni elementari sulle righe che trasforma A in una matrice A di tipo m n ridotta per righe. Lemma 4 Sia A una matrice su K di tipo m n, e sia B una matrice ridotta per righe ottenuta da A con operazioni elementari sulle righe, ma senza usare scambi di righe. Allora la riga t esima di B è nulla se, e solo se, la riga t esima di A è combinazione lineare delle righe 1,..., t 1 di A. Teorema 5 Sia A una matrice su K di tipo m n, e siano B, C matrici di tipo m n ridotte per righe trasformando A con successioni diverse di operazioni elementari sulle righe di A. B e C hanno lo stesso numero di righe non nulle. 8

9 7. Teoremi sui determinanti Teorema 6 (di Laplace) Sia A una matrice quadrata di ordine n. Allora 1. Qualunque sia la riga i di A si ha a i1 A i1 + + a in A in = det(a). 2. Qualunque sia la colonna j di A si ha a 1j A 1j + + a nj A nj = det(a). 3. Scelte le due righe distinte i ed h di A si ha a i1 A h1 + + a in A hn = Scelte le due colonne distinte j e k di A si ha a 1j A 1k + + a nj A nk = 0. 9

10 Corollario 7 Sia A una matrice quadrata di ordine n. Allora det( t A) = det(a). Teorema 8 (di Binet) Siano A e B matrici quadrate di ordine n su K. Allora det(ab) = det(a) det(b). Corollario 9 Sia x K e sia A una matrice quadrata di ordine n. Allora det(xa) = x n det(a). 10

11 8. Determinante ed operazioni elementari Teorema 10 Sia A una matrice quadrata di ordine n su K, e siano A 1, A 2, A 3 le matrici ottenute da A effettuando l operazione elementare R i R h, R i ar i, R h R h + ar i, rispettivamente. Allora abbiamo ed infine det(a 1 ) = det(a), det(a 2 ) = a det(a), det(a 3 ) = det(a). 11

12 9. Determinante e rango Teorema 11 (di Kronecker) Sia A una matrice su K di tipo m n. Allora r(a) = p se, e solo se, esiste un minore di A di ordine p non nullo e tutti i minori di A di ordine p + 1 sono nulli, ossia, p è il massimo ordine di un minore non nullo di A. Corollario 12 Sia A una matrice quadrata di ordine n su K. Abbiamo che r(a) = n se, e solo se, det(a) 0. Inoltre, se r(a) = n, allora, detta A una matrice ridotta per righe ottenuta da A con sole operazioni elementari di tipo E1 ed E3, abbiamo che det(a) è uguale, a meno del segno, al prodotto degli elementi speciali di A. 12

MATRICI. 1. Esercizi

MATRICI. 1. Esercizi MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +

Dettagli

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m.

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m. MATRICI Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: 11 a 12 a 1 3 a 1m A=(a a 21 a 2 3 a 2m con a a n1 a n2 a n 3 a nm i j R, 1 i n, 1 j m. per

Dettagli

Lo scopo della teoria dei determinanti è di definire una funzione. det : M n R. sia calcolabile facendo somme e prodotti delle entrate delle matrici

Lo scopo della teoria dei determinanti è di definire una funzione. det : M n R. sia calcolabile facendo somme e prodotti delle entrate delle matrici Determinanti 1 / 44 Lo scopo della teoria dei determinanti è di definire una funzione det : M n R chiamata determinante tale che: sia calcolabile facendo somme e prodotti delle entrate delle matrici det(a)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

RIDUZIONE E RANGO , C = 2 5 1

RIDUZIONE E RANGO , C = 2 5 1 MATRICI E SISTEMI RIDUZIONE E RANGO Riduzione di matrici (definizioni, trasformazioni elementari). Calcolo del rango e dell inversa (metodo di Gauss, metodo di Gauss-Jordan). 3 4 Esercizio Ridurre per

Dettagli

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A

PROBLEMA. Costruire matrici quadrate contenute. Fare i determinanti delle matrici quadrate contenute in A A = PROBLEMA 0 1 2 7 2 5 3 0 (2 4) Costruire matrici quadrate contenute in A (possibili solo matrici quadrate 2 2 e 1 1) Fare i determinanti delle matrici quadrate contenute in A Questo porta al concetto

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Elementi di Algebra Matriciale. (richiami)

Elementi di Algebra Matriciale. (richiami) Elementi di Algebra Matriciale Definizione di matrice (richiami) Matrice quadrata, diagonale, identità, triangolare, simmetrica Matrice trasposta Principali operazioni su matrici e vettori: somma, sottrazione,

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Il prodotto tra matrici non è commutativo. Nelle notazioni precedenti, ponendo n = p e m = q si hanno:

Il prodotto tra matrici non è commutativo. Nelle notazioni precedenti, ponendo n = p e m = q si hanno: L anello delle matrici Esempio. Siano A = [ ] 0 1 3 0 2 1, B = 1 2 0 0 1 2 3 4, 1 0 calcolare AB e BA. Osservazioni Siano A Mat m,n (K) e B Mat p,q (K). Il prodotto AB è definito se n = p. Si ha AB Mat

Dettagli

Si noti che la matrice trasposta A ha lo stesso determinante. Questa proprietà è generale;

Si noti che la matrice trasposta A ha lo stesso determinante. Questa proprietà è generale; Ottavio Serra Matrici e determinanti In questa nota estenderemo a matrici quadrate di ordine n qualsiasi il concetto di determinante introdotto nelle scuole secondarie per matrici di ordine 2 come tecnica

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

Elementi di Algebra Lineare Il determinante

Elementi di Algebra Lineare Il determinante Elementi di Algebra Lineare Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 17 index 1 2 Sottomatrici e minori Cristina Turrini (UNIMI - 2015/2016)

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

DETERMINANTE DI MATRICI QUADRATE

DETERMINANTE DI MATRICI QUADRATE DETERMINANTE DI MATRICI QUADRATE Definizioni e Proprietà 12 Novembre 2015 Pietro Pennestrì pennestri1694905@studentiuniroma1it Università di Roma Sapienza SOMMARIO 1 Introduzione 11 Cenni Storici 12 Definizione

Dettagli

LEZIONE 1 C =

LEZIONE 1 C = LEZIONE 1 11 Matrici a coefficienti in R Definizione 111 Siano m, n Z positivi Una matrice m n a coefficienti in R è un insieme di mn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

VETTORI E MATRICI. De nizione 1 Chiamiamo vettore x una n-pla ordinata di numeri reali. x 1 x 2. x n

VETTORI E MATRICI. De nizione 1 Chiamiamo vettore x una n-pla ordinata di numeri reali. x 1 x 2. x n VETTORI E MATRICI De nizione 1 Chiamiamo vettore x una n-pla ordinata di numeri reali x 1 x. x n 5 L insieme di tutti i vettori con n componenti reali si indica con R n :I numeri reali si possono pensare

Dettagli

4. Richiami: sistemi lineari e matrici

4. Richiami: sistemi lineari e matrici 4 Richiami: sistemi lineari e matrici Vettori 4a Combinazioni lineari Indichiamo con R n l insieme delle n-uple ordinate di elementi di R, { } R n := x = (x 1, x 2,, x n ) x i R, i = 1,,n Si dice che x

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A G Parmeggiani, 2/12/2013 Algebra Lineare 1 A, corso di laurea SGI, aa 2013/2014 Nota 4: Calcolo di determinanti Sia A una matrice quadrata di ordine n Il determinante di A è un numero che dipende da A

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

I determinanti. a11 a A = 12 a 21 a 22

I determinanti. a11 a A = 12 a 21 a 22 I determinanti. Queste note, basate sugli appunti delle lezioni, riepilogano rapidamente la definizione e le proprietà del determinante. Vengono inoltre illustrati i metodi di calcolo e alcune dimostrazioni.

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI G Parmeggiani, 17/5/2018 Algebra Lineare, aa 2017/2018, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA

Dettagli

1 2 1 x = Quando sapremo calcolare i determinanti potremo ricavare:

1 2 1 x = Quando sapremo calcolare i determinanti potremo ricavare: 5 NOVEMBRE 2009 Esempio: Risolviamo il sistema: 3x + 2y + 4z = 1 2x y + z = 0 x + 2y + 3z = 1 1 2 4 3 1 4 3 2 1 0 1 1 2 0 1 2 1 0 1 2 3 1 1 3 1 2 1 x =, y =, z = 3 2 4 3 2 4 3 2 4 2 1 1 2 1 1 2 1 1 1 2

Dettagli

ALGEBRA LINEARE E GEOMETRIA: ESERCIZI 5. Indice. 2. Esercizi 5

ALGEBRA LINEARE E GEOMETRIA: ESERCIZI 5. Indice. 2. Esercizi 5 ALGEBRA LINEARE E GEOMETRIA: ESERCIZI 5 Indice 1. Principali definizioni 1 2. Esercizi 5 Operazioni con le matrici 1. Principali definizioni Ricordiamo le principali definizioni legate alle matrici a coefficienti

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA DETERMINANTE AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Definizione induttiva di determinante 1 2 Caratterizzazione delle matrici quadrate di rango massimo 5 3 Regole di Laplace 6

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

Argomento 12 Matrici

Argomento 12 Matrici Argomento 2 Matrici 2 Vettori di R n eoperazioni I Vettore di R n : x =(x i ) i=n =(x i ) n i=,conx i R componenti di x I R n = spazio dei vettori reali a n componenti = spazio vettoriale reale n-dimensionale

Dettagli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli Introduzione all algebra delle matrici ppunti a cura di Lara Ercoli Indice Definizioni 3. Matrici particolari............................ 4 2 Operazioni con le matrici 8 2. Somma di matrici.............................

Dettagli

ALGEBRA LINEARE PARTE II

ALGEBRA LINEARE PARTE II DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

Il determinante. a11 a A = 12 a 21 a 22

Il determinante. a11 a A = 12 a 21 a 22 Il determinante Queste note, basate sugli appunti delle lezioni, riepilogano rapidamente la definizione e le proprietà del determinante Vengono inoltre illustrati i metodi di calcolo e alcune dimostrazioni

Dettagli

Contenuti aggiuntivi su matrici e determinanti, Dimostrazioni del Capitolo 3

Contenuti aggiuntivi su matrici e determinanti, Dimostrazioni del Capitolo 3 Contenuti aggiuntivi su matrici e determinanti, Dimostrazioni del Capitolo 3 Dimostrazione 310 Sia W = L(C A ) K Osserviamo che S è una base di W Infatti S è indipendente, inoltre ogni vettore di W dipende

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

LEZIONE i 0 3 Le sottomatrici 2 2 di A sono. 1 2 i i 3. Invece (

LEZIONE i 0 3 Le sottomatrici 2 2 di A sono. 1 2 i i 3. Invece ( LEZIONE 6 6 Determinanti In questa lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Fabrizio Silvestri December 14, 010 Matrice Sia R il campo dei numeri reali. Si indica con R m n l insieme delle matrici ad elementi reali con m righe ed n colonne. Se A R n

Dettagli

Operazioni tra matrici. Moltiplicazione per uno Scalare Moltiplicare ogni elemento della matrice per lo scalare. Sia c = 3

Operazioni tra matrici. Moltiplicazione per uno Scalare Moltiplicare ogni elemento della matrice per lo scalare. Sia c = 3 Operazioni tra matrici Definizione di matrice a ij è un elemento di A a ij è detto l elemento ij-esimo di A Moltiplicazione per uno Scalare Moltiplicare ogni elemento della matrice per lo scalare. Sia

Dettagli

Algebra matriciale. Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale

Algebra matriciale. Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale Algebra matriciale Algebra Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale In algebra matriciale un numero è chiamato scalare

Dettagli

Anno Accademico 2015/2016

Anno Accademico 2015/2016 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2015/2016 Scuola di Scienze Corsi di Laurea o di Diploma Triennale in Matematica (nuovo ordinamento) Insegnamento Geometria I Docente

Dettagli

Capitolo 3. Determinante e rango Permutazioni

Capitolo 3. Determinante e rango Permutazioni Capitolo 3 Determinante e rango 303 Permutazioni Ricordiamo innanzitutto che, dato un insieme, l insieme S () delle applicazioni biunivoche da in sè stesso, può essere munito di una operazione, indicata

Dettagli

Matrici. Prof. Walter Pugliese

Matrici. Prof. Walter Pugliese Matrici Prof. Walter Pugliese Le matrici Una matrice è un insieme di numeri reali organizzati in righe e colonne. Se n è il numero delle righe e m e il numero delle colonne si dice che la matrice è di

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

MATRICI E OPERAZIONI

MATRICI E OPERAZIONI MATRICI E SISTEMI MATRICI E OPERAZIONI Matrici, somma e prodotto (definizioni, esempi, non commutatività del prodotto, legge di annullamento del prodotto Potenze e inverse di matrici quadrate (definizioni

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Esempi Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Osservazioni per le matrici quadrate a) Data A M n (K) è possibile definire ricorsivamente

Dettagli

Esercizi di Algebra Lineare Determinanti

Esercizi di Algebra Lineare Determinanti Esercizi di Algebra Lineare Determinanti Anna M. Bigatti 3-6 dicembre 2012 Calcolo del determinante Proposizione 1. Alcune proprietà dei determinanti: (a) Il determinante del prodotto è il prodotto dei

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale.

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale. 8 gennaio 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

MATRICI e DETERMINANTI. Prof.ssa Maddalena Dominijanni

MATRICI e DETERMINANTI. Prof.ssa Maddalena Dominijanni MATRICI e DETERMINANTI Le matrici non sono altro che tabelle di elementi ordinati per righe e colonne. Se m = n la matrice si dice quadrata Matrice quadrata di ordine 3 Matrice rettangolare di tipo 2 3

Dettagli

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017 Corso di Laurea in Fisica GEOMETRIA I Prima Prova Intermedia Novembre 017 Cognome: Nome: Matricola: PARTE 1 Test a risposta multipla Una ed una sola delle quattro affermazioni è corretta. Indicarla con

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

Determinante. Sia M(n, n, K) lo spazio delle matrici quadrate n n a coefficienti in un campo K, vogliamo provare il seguente Teorema:

Determinante. Sia M(n, n, K) lo spazio delle matrici quadrate n n a coefficienti in un campo K, vogliamo provare il seguente Teorema: Determinante 1 Proprieta Sia M(n, n, K) lo spazio delle matrici quadrate n n a coefficienti in un campo K, vogliamo provare il seguente Teorema: Theorem 1.1 Esiste un unica mappa F dallo spazio delle matrici

Dettagli

CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Matrici associate a un applicazione lineare 1 2 Cambiamenti di base 4 3 Diagonalizzazione 6 1 MATRICI ASSOCIATE

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

Anno Accademico 2016/2017

Anno Accademico 2016/2017 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2016/2017 Scuola di Scienze Corsi di Laurea o di Diploma Triennale in Matematica (nuovo ordinamento) Insegnamento Geometria I Docente

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia

CORSO DI ALGEBRA (M-Z) Prof. A. Venezia CORSO DI ALGEBRA (M-Z) Prof. A. Venezia 2015-16 Complementi ed Esercizi 1. AUTOVETTORI e AUTOVALORI di ENDOMORFISMI e MATRICI Una applicazione lineare avente per dominio e condominio lo stesso spazio vettoriale

Dettagli

0.1 Soluzioni Foglio di esercizi 1: Matrici

0.1 Soluzioni Foglio di esercizi 1: Matrici 0.1 Soluzioni Foglio di esercizi 1: Matrici Esercizio 1 (dal Test di Autovalutazione 3/11/2015 M.Manaresi) Siano 1 1 1 1 A 2 2 0, B 1, 1 0 X M 3 (R) Si stabilisca per quali valori del parametro reale k

Dettagli

3 Soluzione di sistemi lineari

3 Soluzione di sistemi lineari 3 Soluzione di sistemi lineari Prima di addentrarci nello studio dei metodi numerici, è doveroso introdurre le matrici e alcune strutture particolari di matrici nonchè alcuni concetti fondamentali quali

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

PROGRAMMA del corso di. GEOMETRIA 1 - Algebra Lineare. Laurea Triennale in Matematica. Anno Accademico 2007/08. docente : Bruno Zimmermann

PROGRAMMA del corso di. GEOMETRIA 1 - Algebra Lineare. Laurea Triennale in Matematica. Anno Accademico 2007/08. docente : Bruno Zimmermann PROGRAMMA del corso di GEOMETRIA 1 - Algebra Lineare Laurea Triennale in Matematica Anno Accademico 2007/08 docente : Bruno Zimmermann (Il presente programma è stato redatto sulla base degli appunti del

Dettagli

Richiami di algebra delle matrici

Richiami di algebra delle matrici Richiami di algebra delle matrici (S. Terzi) 1. SPAZI VETTORIALI I. ALCUNE DEFINIZIONI 1) Definizione di spazio vettoriale Sia S un insieme di vettori di ordine n. S è detto spazio lineare se e' un insieme

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

0.1 Soluzioni esercitazione IV, del 28/10/2008

0.1 Soluzioni esercitazione IV, del 28/10/2008 1 0.1 Soluzioni esercitazione IV, del 28/10/2008 Esercizio 0.1.1. Risolvere, usando il teorema di Cramer, i seguenti sistemi lineari 2x + y + z = 0 x + 3z = 1 x y z = 1 kx + y z = 1 x y + 2z = 1 2x + 2y

Dettagli

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI FOGLIO DI ESERCIZI # GEOMETRIA E ALGEBRA 009/0 Esercizio.. Dati i vettori di R : v (,, ), v (, 4, 6), v (,, 5), v 4 (,, 0) determinare se v 4 è combinazione

Dettagli

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2015 Rossi Algebra Lineare 2015 1 / 41 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Matrici e sistemi. Geometria. Matrici e operazioni tra matrici. Operazioni elementari e riduzione Sistemi lineari Matrici invertibili Determinante

Matrici e sistemi. Geometria. Matrici e operazioni tra matrici. Operazioni elementari e riduzione Sistemi lineari Matrici invertibili Determinante Geometria Matrici e sistemi Operazioni elementari e riduzione Sistemi lineari Matrici invertibili Determinante 2 2006 Politecnico di Torino 1 Matrici e sistemi Matrici: definizione e notazioni Somma e

Dettagli

LEZIONE 4. Le sottomatrici 2 2 di A sono. Invece ( 1 3 non è sottomatrice di A.

LEZIONE 4. Le sottomatrici 2 2 di A sono. Invece ( 1 3 non è sottomatrice di A. LEZIONE 4 4 Determinanti In questa lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

Matrici e sistemi. Sistemi lineari. Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer

Matrici e sistemi. Sistemi lineari. Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer Sistemi lineari Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer 2 2006 Politecnico di Torino 1 Prodotto tra matrici quadrate Date comunque A e B matrici quadrate

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata Autovalori e autovettori di una matrice quadrata Data la matrice A M n (K, vogliamo stabilire se esistono valori di λ K tali che il sistema AX = λx ammetta soluzioni non nulle. Questo risulta evidentemente

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij Recupero. 2, Determinanti. 1. Determinanti Consideriamo una matrice A = a 11... a 1n.. a n1... a nn quadrata di ordine n ad elementi in R. Sappiamo che sono equivalenti la affermazioni 1- tutti i sistemi

Dettagli

1.1 Matrici a coefficienti in R. Vi sono alcuni casi particolari che vale la pena evidenziare:

1.1 Matrici a coefficienti in R. Vi sono alcuni casi particolari che vale la pena evidenziare: Lezione Matrici a coefficienti in R Definizione Siano m, n Z numeri interi positivi Una matrice m n acoefficientiinrèuninsiemedimn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

Determinante, autovalori e autovettori

Determinante, autovalori e autovettori Determinante, autovalori e autovettori Lorenzo Pareschi Dipartimento di Matematica, Universitá di Ferrara http://wwwlorenzopareschicom lorenzopareschi@unifeit Lorenzo Pareschi (Univ Ferrara) Determinante,

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli