, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download ", x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:"

Transcript

1 Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x x 2 + x +!+ n x n = b con 1, 2,,, n numeri fissti Un sistem di equzioni lineri consider simultnemente più equzioni lineri, l su soluzione è dt di vlori per le incognite che verificno simultnemente tutte le equzioni considerte. Un sistem può non vere soluzione (in questo cso si dice che il sistem è incomptibile), vere un sol soluzione (comptibile) o infinite soluzioni (indeterminto). Due equzioni in due incognite L soluzione di un sistem di due equzioni lineri in due incognite è dt dlle coordinte del punto (o dei punti) di intersezione tr le due rette. Già nello studio di funzione si risolve un sistem di equzioni per trovre le intersezioni tr l funzione studit e l sse delle x: ( ) y = f x y = 0 d cui si ottiene (per sostituzione): f ( x ) = 0; se l f ( x) rppresent nche ess un rett vremo un sistem di due equzioni lineri in due incognite: y = x+ b y = 0 Dl punto di vist geometrico il ftto che il sistem mmett nessun, un o infinite soluzioni corrisponde i tre csi seguenti: 1) rette prllele: due rette con lo stesso coefficiente ngolre e diverso termine noto non hnno punti in comune. Il sistem non h soluzione; y x 2) rette con coefficiente ngolre diverso: le due rette si intersecno in un punto, le cui coordinte (x 0 ;y 0 )sono l soluzione del sistem;

2 y y 0 x 0 x ) le due rette hnno si lo stesso coefficiente ngolre che lo stesso termine noto: essendo coincidenti, tutti i punti di un rett pprtengono nche ll ltr rett, e pertnto il sistem vrà infinite soluzioni. y x Dl punto di vist lgebrico vremo: y = 1x+ b1 y = x + b 2 2 Nel qule se 1 è diverso d 2 le due rette vrnno coefficiente ngolre diverso e, quindi, il sistem vrà un sol soluzione Se invece 1 è ugule d 2 le due rette vrnno lo stesso coefficiente ngolre: dobbimo verificre se nche i termini noti sono uguli, in questo cso le due rette coincidono (sistem indeterminto, infinite soluzioni). Se le due rette hnno lo stesso coefficiente ngolre m i termini noti sono diversi, llor le due rette sono prllele in senso proprio, e il sistem è incomptibile (nessun soluzione). Per permettere un deguto sviluppo del problem dobbimo cmbire l rppresentzione delle equzioni portndo tutti i termini noti destr e le vribili con i loro coefficienti sinistr: x + by = c dx + gy = h O nche, per permetterne un più fcile estensione:

3 x + x = b x + x = b Nel qule il coefficiente ngolre di ciscun delle due rette dipende di coefficienti delle due vribili. Se se se il sistem h un sol soluzione; b1 = il sistem è incomptibile (nessun soluzione) b b1 = = il sistem è indeterminto (infinite soluzioni) b D un ltro punto di vist, possimo considerre nche che le due rette sono prllele (hnno lo stesso coefficiente ngolre) qundo il determinnte dell mtrice dei coefficienti delle vribili ugule zero, ossi: = 0 Dobbimo quindi definire mtrice e determinnte. Mtrice: è un tbell di numeri disposti in righe e colonne, del tipo! " 11 12! 1m 21 22! 2m! "! n1 n2! nm $ % Usulmente le mtrici vengono indicte con gli elementi rcchiusi tr prentesi tonde, o con lettere miuscole, o con indiczione dell elemento generico e dimensioni (righe per colonne), ovvero: = = 1 2 A2 ij 2 Il primo indice si riferisce sempre lle righe, il secondo lle colonne, si per qunto rigurd le dimensioni dell mtrice che per l individuzione dell elemento, d esempio 5 è l elemento dell terz rig e quint colonn. Determinnte di un mtrice: è un numero rele ssocito d ogni mtrice qudrt (stesso numero di righe e colonne), ottenuto come segue A = (mtrice qudrt di ordine o dimensione 1) Se ( ) Il suo determinnte è ugule ll unico elemento dell mtrice det A= 11

4 Se A = Il suo determinnte è ugule : det A= = (mtrice qudrt di ordine o dimensione 2) Per i determinnti di mtrici di ordine superiore n qulsisi, l regol seguente permette di ricondurre il clcolo determinnti di ordine n-1: Il determinnte di un mtrice è ugule ll somm del prodotto di ciscun elemento di un rig o di un colonn per il suo complemento lgebrico. Ad esempio, sviluppndo sull prim rig bbimo: det A n n = 11 A A A 1!+ ( 1) 1+n 1n A 1n Nel qule A11è il complemento lgebrico di 11, ossi il determinnte dell mtrice qudrt di dimensione n-1 ottenut escludendo l prim rig e l prim colonn. Similmente A12srà il determinnte dell mtrice ottenut escludendo l prim rig e l second colonn, e così vi. Ciscuno di tli elementi v preso con il segno + se l somm degli indici di rig e colonn è un numero pri, con il segno se, vicevers, l somm degli indici è dispri. Così nell esempio indicto sopr il primo termine A è positivo perché l somm degli indici (1+1) è pri, mentre il secondo 12 A12 è negtivo perché 1+2= è dispri. A, moltiplicndo per -1 Lo stesso risultto si può ottenere come indicto per l ultimo termine, 1n 1n 1 elevto l somm degli indici, nell esempio + ( 1) + n, che vle -1 se 1+n è dispri, e +1 se 1+n è pri. Esempio: A = Sviluppndo sull terz rig bbimo: det A = 1 2 = ( 1) 0 + ( 1) 1 + ( 1) = = 0(2 2) 1( 2 6) + (1 + ) = = 20

5 Soluzione di un sistem di n equzioni in n incognite: Il teorem di Crmer ci ssicur che: un sistem con lo stesso numero di equzioni e di incognite mmette soluzione unic se e solo se l mtrice dei coefficienti delle vribili h determinnte diverso d zero. Quindi considerto un sistem del tipo:! 11 x x x +!+ 1n x n = b 1 21 x x x +!+ 2n x n = b " 2! $ n1 x 1 + n2 x 2 + n x +!+ nn x n = b n Esso vrà un sol soluzione se e soltnto se: 11 12! 1n 21 22! 2n! "! n1 n2! nn 0 L regol di Crmer ci permette di clcolrne l soluzione: Il vlore dell soluzione per ciscun vribile è ottenut ponendo l denomintore il determinnte dell l mtrice dei coefficienti delle vribili, e l numertore il determinnte dell stess mtrice modifict sostituendo l colonn dei coefficienti dell vribile ricerct con l colonn dei termini noti, ovvero, per il sistem generico precedente, l prim vribile è dt d: b 1 12! 1n x 1 = b 2 22! 2n " " b n n2! nn 11 12! 1n 21 22! 2n " " n1 n2! nn Esempio: risolvimo il sistem: x y+ 2z = 5 x+ y 2z = 1 y + z = 11 L mtrice dei coefficienti è

6 A = Il suo determinnte: det A = 1 2 = Il teorem di Crmer ci ssicur che il sistem h soluzione unic. L regol di Crmer ci indic l soluzione: ( 1) x = = = = y = = = = ( 1) z = = = = L soluzione del sistem srà quindi: x = 1; y = 2; z =

7 Crtteristic di un mtrice Dt un mtrice generic A, di n righe per m colonne, chimimo minore di ordine k di A il determinnte di un qulsisi mtrice di k righe per k colonne estrtt dll mtrice A prendendo ordintmente gli elementi delle qulsisi k righe e k colonne. Esempio: dt l mtrice A = I minori di ordine due sono tre: 1 1 = = = 2 L Crtteristic di un mtrice è l dimensione del mssimo minore non nullo dell mtrice Dto che il teorem di Crmer si pplic soltnto sistemi con lo stesso numero di equzioni e incognite, qundo il numero di equzioni è diverso dl numero di incognite o qundo il determinnte dell mtrice dei coefficienti è ugule zero si può pplicre il seguente Teorem di Rouchè-Cpelli Un sistem di n equzioni in m incognite mmette soluzione se l mtrice incomplet e l mtrice complet hnno l stess crtteristic Come evidente dll enuncito, non ci sono vincoli sul numero di equzioni e incognite, m solo sull crtteristic delle mtrici incomplet (coefficienti delle vribili) e complet (coefficienti dell vribili più l colonn dei termini noti). Esempio: x 2y = 1 2x + y = 5 2x + y = 2 L mtrice incomplet è L cui crtteristic è 2 dto che lmeno il minore L mtrice complet è 1 2 = 0

8 Il cui unico minore di ordine è ugule zero = ( 2 ) = ( ) + 2( +10) +1( 8+ 2) = 0 = Lo stesso minore considerto per l mtrice incomplet 1 2 = 0 è nche minore dell mtrice complet, pertnto nche l mtrice complet vrà crtteristic 2. Quindi, per il teorem di Rouchè-Cpelli il sistem mmette soluzione. Per trovre l soluzione ricordimo che il determinnte di un mtrice qudrt è ugule zero se lmeno un rig o un colonn sono combinzione linere delle restnti (nell esempio precedente l terz rig è ottenut sommndo l second rig ll prim moltiplict per -2). In questo cso, visto che il minore di ordine 2 non nullo è ottenuto escludendo l terz rig dll mtrice incomplet, possimo trlscire l terz equzione e risolvere il sistem restnte con l regol di Crmer (sppimo già che l mtrice incomplet h determinnte diverso d zero). x 2y = 1 2x + y = x = = = y = = = 1 2 Possimo verificre che le soluzioni trovte soddisfno nche l terz equzione: = = 2 Riepilogo: 1) il sistem h lo stesso numero di equzioni e di incognite. L mtrice incomplet h determinnte diverso d zero: il sistem (per il teorem di Crmer) mmette soluzione unic ottenibile ttrverso l ppliczione dell regol di Crmer b. L mtrice incomplet h determinnte ugule d zero: pplichimo il teorem di Rouchè-Cpelli, se è verificto (l mtrice incomplet e complet hnno l stess crtteristic) il sistem mmette infinite soluzioni, ottenibili prendendo riferimento il minore non nullo che ci h permesso di determinre l crtteristic

9 dell mtrice incomplet, trlscindo le equzioni (righe) che non ne fnno prte, e portndo destr le vribili (colonne) che non fnno prte dello stesso minore. c. L mtrice incomplet h determinnte ugule zero, l mtrice incomplet e l mtrice complet hnno crtteristic divers: il sistem è incomptibile. 2) Il sistem h più equzioni che incognite:. l mtrice incomplet e complet hnno l stess crtteristic: il sistem mmette soluzioni, ottenibili prendendo riferimento il minore non nullo che ci h permesso di determinre l crtteristic dell mtrice incomplet, trlscindo le equzioni (righe) che non ne fnno prte (eventulmente portndo destr le vribili che non fnno prte dello stesso minore). b. l mtrice incomplet e complet hnno l stess crtteristic divers: il sistem è incomptibile ) Il sistem h più incognite che equzioni:. l mtrice incomplet e complet hnno l stess crtteristic: il sistem mmette infinite soluzioni, ottenibili portndo destr (e trttndole come prte del termine noto) le vribili che non fnno prte del minore dell mtrice incomplet che ci h permesso di determinre l crtteristic. Le soluzioni srnno quindi funzione delle vribili portte destr. b. l mtrice incomplet e complet hnno l stess crtteristic divers: il sistem è incomptibile Esercizio: Determinre per quli vlori del prmetro k il sistem seguente mmette soluzione e determinrne l soluzione. x y+ z = 0 2x y+ kz = k x y + 2z = Risoluzione: Il sistem h lo stesso numero di equzioni e di incognite; pplicndo il teorem di Crmer ottenimo l seguente condizione: il sistem mmette soluzione unic se e solo se k ovvero, dto che k = k 1 2 se k In tle cso vremo k 1 k x = 1 2 k = = k 2 1 k 1 2 e, similmente y = 2; z = 1

10 Se invece k = vremo: x y+ z = 0 2x y+ z = x y + 2z = ; con = E tutti i minori di ordine estribili dll mtrice complet (escludendo l prim o l second o l terz colonn) uguli zero. Essendo 1 1 = si l mtrice incomplet che l mtrice complet vrnno crtteristic 2. Quindi per il teorem di Rouchè Cpelli il sistem mmette soluzione. Trlscindo l terz rig (equzione) vremo: x y = z 2x y = z D cui ricvimo x = z 1 z =! z + " z $ % = 1 z + z = z + y = 1 z 2 z = z + 2z 1 z +8z = = 5z + L verific dell correttezz dell soluzione può essere ftt fcilmente sostituendo i vlori trovti nel sistem inizile e verificndo l tenut dell uguglinz: " z + 5z + $ = z $ 2 z + 5z + = % $ z

11

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica ed Informatica Applicata. Università di Salerno. Lezione n 3 Lezioni di Ricerc Opertiv Corso di Lure in Informtic ed Informtic pplict Richimi di lgebr vettorile: - Mtrici ed Operzioni tr mtrici - Invers di un mtrice Lezione n - Risoluzione di un sistem di equzioni

Dettagli

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1

MATRICI E DETERMINANTI CENNI SUI SISTEMI LINEARI. Angela Donatiello 1 MTRICI E DETERMINNTI CENNI SUI SISTEMI LINERI ngel Dontiello Considerimo un insieme di numeri reli rppresentti tr prentesi qudre o tonde n n ij m m mn ( ) [ ] ij i,,m j,,n Si definisce mtrice un tbell

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Algebra delle Matrici

Algebra delle Matrici lgebr delle Mtrici Definizione di un mtrice Un mtrice esempio: è definit d m righe e d n colonne come d 8 9 8 In questo cso l mtrice è compost d righe e colonne Se il numero delle righe è ugule l numero

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Le Matrici. 001 ( matrice unità)

Le Matrici. 001 ( matrice unità) Le Mtrici Un mtrice è un tbell di numeri o più in generle di elementi disposti quindi secondo righe e colonne. Le mtrici si indicno con le lettere miuscole dell lfbeto, gli elementi con quelle minuscole

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è :

ESERCITAZIONE N.3 DETERMINANTI. il determinante di una matrice 1x1 è l elemento stesso det (a) = a. il determinante di una matrice 2x2 è : DETERMINANTI ESERCITAZIONE N 5 mrzo Ad ogni mtrice qudrt coefficienti in R ( o C o un qulsisi K cmpo) è ssocito un numero rele che or definimo,detto det(a),(d(a)) determinnte di A il determinnte di un

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

(da dimostrare); (da dimostrare).

(da dimostrare); (da dimostrare). Proprietà delle trsposte Sino, K m,n e si K, llor vlgono le seguenti relzioni: 1) ( )= 2) (+)= + 3) ()= (d dimostrre); (d dimostrre). (dimostrt di seguito); DIM. 2): Devo dimostrre che l mtrice ugule ll

Dettagli

2 Generalità sulle matrici

2 Generalità sulle matrici 2 Generlità sulle mtrici 21 Definizione e csi prticolri Definizione 21 Mtrice n m Un mtrice n m è un tbell rettngolre di n righe e m colonne i cui elementi sono numeri reli (o complessi) indicizzti con

Dettagli

Algebra lineare. Capitolo VETTORI

Algebra lineare. Capitolo VETTORI Cpitolo Algebr linere.. VETTORI In generle, nell geometri elementre un segmento AB è introdotto come l prte di rett compres tr i due punti A, B fissti su di ess, senz specificre un ordine tr gli estremi

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica:

calcolare la ragione q. Possiamo risolvere facilmente il problema ricordando la formula che dà il termine n-esimo di una progressione geometrica: PROGRESSIONI ) Di un progressione geometric si conosce: 9 9 clcolre l rgione q. Possimo risolvere fcilmente il problem ricordndo l formul ce dà il termine n-esimo di un progressione geometric: n q n Applicimol

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Rom Tre - Corso di Lure in Mtemtic Tutorto di GE0 AA 04-05 - Docente: Prof Angelo Felice Lopez Tutori: Federico Cmpnini e Giuli Slustri Soluzioni Tutorto 8 Aprile 05 Si determinino

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.mtefili.it ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si D il dominio di un funzione rele di vribile rele f (x) e si x 0 un elemento di D: definire l continuità e l discontinuità di

Dettagli

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:...

Sistemi di equazioni algebriche lineari. Una equazione algebrica lineare in n incognite si presenta nella forma:... Sistemi di equzioni lgebriche lineri Un equzione lgebric linere in n incognite si present nell form: 1 1+ 2 2 +... + n n = b dove ( 1, 2,... n ) rppresentno le incognite, 1, 2,... n sono i coefficienti

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Introduzione alle disequazioni algebriche

Introduzione alle disequazioni algebriche Introduzione lle disequzioni lgebriche Giovnni decide di fre ttività fisic e chiede informzioni due plestre. Un plestr privt chiede un quot d iscrizione nnu di 312, più 2 per ogni ingresso. L plestr comunle

Dettagli

Materia: MATEMATICA Data: 5/04/2005

Materia: MATEMATICA Data: 5/04/2005 Mteri: MATEMATICA Dt: 5/4/25 L disequzione e' un disuguglinz che e' verifict per certi intervlli di vlori Ad esempio l disequzione x - 4 e' verifict per tutti i vlori dell x mggiori di 4, cioè se l posto

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

Tutorato di GE110. (a)det(a) = k 2. Se k 0 si ha che r(a) = 3 e quindi! soluzione del tipo: k ; 2; 5 )

Tutorato di GE110. (a)det(a) = k 2. Se k 0 si ha che r(a) = 3 e quindi! soluzione del tipo: k ; 2; 5 ) Universitá degli Studi Rom Tre - Corso di Lure in Mtemtic Tutorto di GE0 AA 0-0 - Docente: Prof Angelo Felice Lopez Tutori: Drio Ginnini e Giuli Slustri Tutorto 7 4 Aprile 0 Si determinino esplicitmente,

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n

a 0 n a 1 n... a n n 2a i j x i x j + 1 i<j n Coniche e qudriche Un qudric è il luogo degli zeri in E n, lo spzio euclideo di dimensione n, di un polinomio di grdo nelle vribili,, n Polinomi proporzionli dnno luogo ll stess qudric Se n = un qudric

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI

MATRICI DETERMINANTI SISTEMI LINEARI TEORIA ED ESERCIZI I PRTE LGEBR LINERE TEORI ED ESERCIZI DIPRTIMENTO DI GRRI FCOLT DI INGEGNERI DEI SISTEMI LOGISTICI E GRO- LIMENTRI LEZIONI DI GEOMETRI E LGEBR DISPENS MTRICI DETERMINNTI SISTEMI LINERI TEORI ED ESERCIZI

Dettagli

Geometria I. Prova scritta del 2 marzo 2016

Geometria I. Prova scritta del 2 marzo 2016 Geometri I Anno ccdemico 0/06 Prov scritt del mrzo 06 Esercizio. Si E il pino euclideo numerico munito delle coordinte cnoniche (x, y). Si consideri il tringolo T con vertici P = (0, 0), P = (, 0), P =

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti

Algebra lineare. Algebra. Vettori. Vettori. Vettori: uguaglianza. Vettori: elementi corrispondenti Algebr linere Algebr Un lgebr è un sistem di segni in cui sono definite delle operzioni Algebr sclre Algebr dei vettori Algebr mtricile In lgebr mtricile un numero è chimto sclre Vettori Vettori vettore

Dettagli

UNITA 13. GLI ESPONENZIALI

UNITA 13. GLI ESPONENZIALI UNITA. GLI ESPONENZIALI. Le potenze con esponente intero, rzionle e rele.. Le proprietà delle potenze.. Equzioni esponenzili che si riconducono ll stess bse. 4. L funzione esponenzile. 5. Il grfico dell

Dettagli

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare

Matematica corso base a.a.2018/19. Elementi di logica Algebra lineare Mtemtic corso bse..08/9 Elementi di logic Algebr linere OBIETTIVO del corso Acquisire strumenti mtemtici utili per l nlisi e per l soluzione di problemi concreti L mtemtic è un linguggio rigoroso e non

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14

Materiale didattico relativo al corso di Matematica corso base Prof. G. Rotundo a.a.2013/14 Mterile didttico reltivo l corso di Mtemtic corso bse Prof. G. Rotundo..03/4 ATTENZIONE: questo mterile contiene i lucidi utilizzti per le lezioni. NON sostituisce il libro, che deve essere comunque consultto

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no.

0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no. Edutecnic.it Sistemi di disequzioni Sistemi di disequzioni Esercizio no. Esercizio no. Esercizio no. ) ) Esercizio no. ) ) 9 ) Soluzione pg. [ ] Soluzione pg. [ ] Soluzione pg. 9 Soluzione pg. Esercizio

Dettagli

Matrici. (Tabelle di elementi disposti su m righe e n colonne) Di particolare interesse le matrici quadrate (m=n): Es. (m=n=3):

Matrici. (Tabelle di elementi disposti su m righe e n colonne) Di particolare interesse le matrici quadrate (m=n): Es. (m=n=3): Mtrici (Tbelle di elementi disposti su m righe e n colonne) Di prticolre interesse le mtrici qudrte (m=n): Es. (m=n=3): V = 11 21 31 12 22 32 13 23 33 Mtrici Un vettore n componenti (coordinte), cioè pprtenente

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova

Algebra lineare - Applicazioni. Antonino Polimeno Dipartimento di Scienze Chimiche Università degli Studi di Padova Algebr linere - Appliczioni Antonino Polimeno Diprtimento di Scienze Chimiche Università degli Studi di Pdov 1 Sistemi lineri - 1 Sistem sottodeterminto (n>m), sovrdeterminto (n

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

equazioni e disequazioni

equazioni e disequazioni T Cpitolo equzioni e disequzioni Disequzioni e princìpi di equivlenz Le disuguglinze sono enunciti fr espressioni che confrontimo medinte le seguenti relzioni d ordine: (minore), (mggiore), # (minore o

Dettagli

Numerica e aritmetica dei calcolatori. Introduzione

Numerica e aritmetica dei calcolatori. Introduzione NUC Cpitolo Ivn Zivko Introduzione Un mtrice si può descrivere come un tbell ordint di elementi, ognuno dei quli h un posizione ben precis. M 4 7 5 8 3 6 9 NUC Docente: Ivn Zivko Introduzione Se il numero

Dettagli

Geometria BAER Canale I Esercizi 13

Geometria BAER Canale I Esercizi 13 Geometri BAER Cnle I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che bbimo ftto quest prte un po in frett, m si può sempre provre. Esercizio. Si scrivno le equzioni delle prbole

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

ITIS GALILEO FERRARIS

ITIS GALILEO FERRARIS ITIS GLILEO FERRRIS Sn Giovnni Vldrno rezzo lunno: Giusti ndre Clsse: IV specilizzzione elettronic e telecomuniczioni L dimostrzione è nelle pgine che seguono Il prolem di Dicemre 3 Si consideri un generic

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase 1 Compito in Clsse D/PNI Liceo Scientifico Sttle G. Stmpcchi Tricse Tempo di lvoro 75 minuti Argomenti: Clcolo di determinnti del terzo ordine- Risoluzione di sistemi di equzioni di primo grdo di tre equzioni

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA.. 7-8 Corso di lure in Economi Aziendle Fscicolo n. Alger linere delle mtrici Operzioni con le mtrici. Determinnte di un mtrice qudrt Mtrice invers Rngo di un mtrice

Dettagli

Unità Didattica N 02. I concetti fondamentali dell aritmetica

Unità Didattica N 02. I concetti fondamentali dell aritmetica 1 Unità Didttic N 0 I concetti fondmentli dell ritmetic 01) Il concetto di potenz 0) Proprietà delle potenze 0) L nozione di rdice ritmetic 0) Multipli e divisori di un numero 05) Criteri di divisibilità

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

5. Autovalori e autovettori di matrici reali.

5. Autovalori e autovettori di matrici reali. 5 Autovlori e utovettori di mtrici reli Definizione 5 Dt un mtrice A M n si dice utovlore di A un numero rele tle che X per cui n, n, AX = λ X L mtrice X si dice utovettore reltivo ll'utovlore λ λ Vicevers

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Compito di matematica Classe III ASA 26 marzo 2015

Compito di matematica Classe III ASA 26 marzo 2015 Compito di mtemtic Clsse III ASA 6 mrzo 05 Quesiti. Per quli vlori di l espressione può rppresentre l eccentricità di un ellisse? Dovrà risultre 0 < e

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Scheda per il recupero 2

Scheda per il recupero 2 Sched A Ripsso Sched per il recupero Numeri rzionli e introduzione i numeri reli Definizioni principli DOMANDE RISPOSTE ESEMPI Che cos è un frzione? Qundo un frzione si dice ridott i minimi termini? Un

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Problemi 24/11/ ) = n=

Problemi 24/11/ ) = n= Problemi /11/006 Problem 1 Clcolre l somm dei primi n numeri nturli elevti l cubo: Si di l rispost in funzione di n 1 3 + 3 + 3 3 + + n 3 k 3 Problem Semplificre il prodotto 1 + 1 ) 1 + 1 ) 1 + 1 ) 1 +

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

Principali proprietà delle operazioni

Principali proprietà delle operazioni Principli proprietà delle operzioni Proprietà commuttiv dell ddizione + b b +,b N Proprietà commuttiv dell moltipliczione b b,b N Proprietà distributiv dell moltipliczione (b + c) (b + c) b + c (b c) (b

Dettagli