informatica di base per le discipline umanistiche

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "informatica di base per le discipline umanistiche"

Transcript

1 informatica di base per le discipline umanistiche vito pirrelli Istituto di Linguistica Computazionale CNR Pisa Dipartimento di linguistica Università di Pavia

2 sesta lezione: la dinamica del testo vito pirrelli Istituto di Linguistica Computazionale CNR Pisa Dipartimento di linguistica Università di Pavia

3 come cresce il vocabolario di un testo? il lessico di un testo cresce quando introduciamo nel testo una parola mai usata prima intuitivamente la crescita di un lessico è rapida all inizio, in quanto ogni parola che usiamo ha la tendenza ad essere nuova (raramente ci sono ripetizioni nella stessa frase) aumentando il numero di frasi, tuttavia, aumenta la probabilità di riusare parole già usate il ritmo di crescita del lessico di un testo tende quindi a diminuire all aumentare del numero di frasi... (per saperne di più clicca sulle parole evidenziate in giallo!)

4 come cresce il vocabolario di un testo (prime 1000 parole) coefficiente angolare intercetta coefficiente angolare

5 come cresce il vocabolario di un testo (prime 1000 parole, interpolazione a potenza) (fine (fine excursus)

6 come cresce il vocabolario di un testo? (II) esistono classi di parole che è praticamente impossibile non ripetere all interno di un testo anche molto breve queste classi sono formate dalle cosiddette parole grammaticali (articoli, preposizioni, ausiliari ecc.), che costituiscono l impalcatura morfosintattica di una frase queste classi sono, tipicamente, relativamente ristrette (contengono pochi elementi) e chiuse, cioè non sono soggette ad espandersi attraverso processi produttivi del lessico come la derivazione o la composizione (per saperne di più clicca sulle parole evidenziate in giallo!)

7 come cresce il vocabolario di un testo? (III) un altro fattore evidente che ritarda la crescita esponenziale del vocabolario all interno dello stesso testo è la coerenza lessicale : la necessità, cioè,di ripetere concetti che sono legati al dominio o alla situazione specifica di cui parla il testo

8 la frequenza media la frequenza media di una parola nel testo è data dal rapporto tra la lunghezza del testo e la grandezza del suo lessico: C / V all inizio ogni parola è usata in media poco più di una sola volta (freq media 1) non appena ripetiamo una stessa parola, tuttavia, la freq media cresce (freq media > 1) in generale freq media tende a crescere per due ragioni: le parole grammaticali si ripetono, andando ad aggiungersi a C ma lasciando V invariato; il vocabolario a sua volta, come abbiamo visto, rallenta il suo ritmo di crescita col passare del testo (per saperne di più clicca sulle parole evidenziate in giallo!)

9 come cresce freq media? il ritmo di crescita di freq media tende a rallentare col passare del testo perché? la frequenza cresce linearmente al crescere del testo se il peso del lessico fosse costante, la crescita di freq media resterebbe lineare, ma avrebbe un ritmo inferiore (la retta che descrive questo andamento sarebbe più inclinata verso l asse delle x) se il peso del lessico aumentasse in modo lineare, freq media sarebbe costante dal momento che il lessico cresce in modo non lineare (con una potenza di poco inferiore all unità) solo una crescita di frequenza non lineare (con esponente di poco inferiore a 2) potrebbe consentire a freq media di crescere linearmente (per saperne di più clicca sulle parole evidenziate in giallo!)

10 crescita di freq media in un testo di parole (fine excursus)

11 curve di crescita del vocabolario

12 crescita di freq media (fine (fine excursus)

13 cresce tutto in questo modo? no! la lunghezza media di una parola tende a stabilizzarsi col passare del testo, cioè tende ad assumere un valore costante dopo una serie di oscillazioni casuali (legge dei grandi numeri)

14 campionamento casuale analogamente se invece di monitorare lo stesso testo nel tempo, se ne estraggono tanti campioni casuali, e se ne calcola per ciascuno lun media, il valore più volte attestato tenderà a riprodurre lun media di tutto il testo...

15 campionamento casuale (II)... tanto meglio, quanto maggiore è la lunghezza dei campioni:

16 campionamento casuale (III) per il teorema del limite centrale, i valori campionari di lunghezza media tenderanno a distribuirsi intorno al valore più attestato (valor medio) secondo una caratteristica forma a campana (curva gaussiana) e cioè con valori progressivamente decrescenti, disposti simmetricamente rispetto all asse della campana... (per saperne di più clicca sulle parole evidenziate in giallo!)

17 la legge di Zipf all interno di una porzione di testo, esiste una correlazione inversa tra le frequenza di una parola e la sua posizione relativa (rango) in una lista di parole che va dalla più frequente alla meno frequente f = C r α, di 2258 il 1309 e 1297 la 1165 a 914 che 864 e' 847 in 830 per 789 un 693 L' 647 del 587 I 585 con 467 si 467 le 466 ha 456 una 449 non 441 della 435 : 400 da 393 al sono 291 dei 262 Piu' 260 dell' 251 ( 241 Ma 239 ) 238 Nel 238 anche 213 gli 213 alla 208 hanno 186 dal 181 anni 173 delle 159 all' 158 come 149 stato 145 Lo 143

18 Zipf in Pinocchio rango forma frequenza rango forma frequenza 1 e ma di i che come a da il io la mi un le non più per l' in disse Pinocchio lo si burattino gli se una con è era 185

19 Zipf (II)

20 Zipf (III) su doppia scala logaritmica la legge di Zipf dà origine a una retta inclinata verso il basso... log( f ) = log( C) α log( r) y = x (per saperne di più clicca sulle parole evidenziate in giallo!)

21 la struttura del vocabolario (classi di frequenza) chiamiamo V i la classe di parole che appaiono con frequenza i volte ciascuna nel testo allora V = V 1 + V V max, dove max è la frequenza massima con cui una parola appare nel nostro testo

22 le frequenze cumulate % 99.20% % 60.91% 28.18% % classe di frequenza percentuale lessico percentuale testo

23 sesta lezione la dinamica del testo fine sesta lezione (lezione 7)

24 logaritmo e funzione esponenziale

25 conseguenze della scala logaritmica le potenze di 10 vengono compresse in un intervallo unitario il livello di compressione cresce al crescere della potenza (fine excursus)

26 derivazione la derivazione è uno di quei processi morfologici produttivi attraverso i quali il nostro vocabolario si arricchisce la derivazione consiste nel generare una parola nuova a partire da un altra già esistente attraverso l uso di un suffisso derivazionale ad esempio, dal sostantivo industria possiamo derivare l aggettivo industriale, da quest ultimo il verbo industrializzare e da quest ultimo il sostantivo industrializzazione una parola derivata è una parola nuova, con una sua categoria grammaticale autonoma e un suo paradigma flessionale, non una forma flessa di una parola esistente (fine excursus)

27 composizione la composizione è uno di quei processi morfologici produttivi attraverso i quali il nostro vocabolario si arricchisce la composizione, a differenza della derivazione, consiste nel generare una parola nuova giustapponendo due (o più) parole esistenti ad esempio, oggetto ricordo, conferenza stampa, nave scuola, sala riunioni ecc. (fine excursus)

28 la distribuzione gaussiana 68.27% (fine excursus)

informatica di base per le discipline umanistiche

informatica di base per le discipline umanistiche informatica di base per le discipline umanistiche vito pirrelli Istituto di Linguistica Computazionale CNR Pisa Dipartimento di linguistica Università di Pavia ottava lezione: la dinamica del testo vito

Dettagli

informatica di base per le discipline umanistiche

informatica di base per le discipline umanistiche informatica di base per le discipline umanistiche vito pirrelli Istituto di Linguistica Computazionale CNR Pisa Dipartimento di linguistica Università di Pavia sesta lezione: la dinamica del testo vito

Dettagli

Linguistica Computazionale

Linguistica Computazionale Linguistica Computazionale La Legge di Zipf 13 ottobre 2014 Distribuzione della frequenza delle parole Rango di una parola (r v ) posizione occupata da una parola in un ordinamento di frequenza discendente

Dettagli

Parole e frequenze. Alessandro Lenci

Parole e frequenze. Alessandro Lenci Parole e frequenze Alessandro Lenci Università di Pisa, Dipartimento di Linguistica Via Santa Maria, 36, 5600 Pisa, Italy alessandro.lenci@ilc.cnr.it Linguaggio e comunicazione - LO042 Rango di una parola

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Distribuzione normale

Distribuzione normale Distribuzione normale istogramma delle frequenze di un insieme di misure relative a una grandezza che varia con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini

Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 2010/2011 Prof. C. Perugini Microeconomia (C.L. Economia e Legislazione di Impresa); A.A. 010/011 Prof. C. Perugini Esercitazione n.1 1 Obiettivi dell esercitazione Ripasso di matematica Non è una lezione di matematica! Ha lo scopo

Dettagli

Analisi dei Dati Tabelle e Grafici

Analisi dei Dati Tabelle e Grafici Analisi dei Dati Tabelle e Grafici Spesso una misurazione consiste nello studio di una grandezza,y i in funzione di un altra, x i. Esempi: o lo spazio percorso da un oggetto in funzione di un intervallo

Dettagli

By Fabriziomax. Storia del concetto di derivata:

By Fabriziomax. Storia del concetto di derivata: By Fabriziomax Storia del concetto di derivata: Introduzione: La derivata fu inventata da Newton per risolvere il problema pratico di come definire una velocita e un accelerazione istantanea a partire

Dettagli

CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 2016/17

CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 2016/17 CORSO DI MATEMATICA E LABORATORIO ESERCIZI ASSEGNATI NELL A.A. 26/7 GABRIELE BIANCHI Gli esercizi che seguono sono quelli che assegnerò durante il corso 26/7. Tutti gli esercizi presenti in un compito

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

Correzione secondo compitino, testo B

Correzione secondo compitino, testo B Correzione secondo compitino, testo B 7 aprile 2010 1 Parte 1 Esercizio 1.1. Tra le funzioni del vostro bestiario, le funzioni che più hanno un comportamento simile a quello cercato sono le funzioni esponenziali

Dettagli

Linguistica Computazionale

Linguistica Computazionale Linguistica Computazionale Frequenze di parole 7 ottobre 2014 Statistica terminologia di base Popolazione (collettivo) l insieme delle entità (oggetti, individui, eventi, ecc.) che rappresentano il dominio

Dettagli

INDICE. XIII Prefazione

INDICE. XIII Prefazione INDICE XIII Prefazione Capitolo zero Prerequisiti 3 Unità uno Statistica descrittiva 5 Capitolo uno Statistica descrittiva di base 5 1.1 Tipi di dati in biologia 6 1.2 Sintesi della statistica descrittiva

Dettagli

Trasformazioni Logaritmiche

Trasformazioni Logaritmiche Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log

Dettagli

Utilizzo di index() per determinare la colonna delle x

Utilizzo di index() per determinare la colonna delle x Utilizzo di inde() per determinare la colonna delle In generale devo essere in grado di costruire un foglio dati con una colonna delle i cui estremi siano (a,b) bbiamo visto che le righe sono individuate

Dettagli

Programma Didattico Annuale

Programma Didattico Annuale LICEO STATALE SCIENTIFICO - LINGUISTICO - CLASSICO GALILEO GALILEI - LEGNANO PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 10: Interpolazione lineare Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Il concetto di interpolazione In matematica, e in particolare in

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica

Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Università del Piemonte Orientale Specializzazioni di area sanitaria Statistica Medica Regressione Lineare e Correlazione Argomenti della lezione Determinismo e variabilità Correlazione Regressione Lineare

Dettagli

Teoria e tecniche dei test. Concetti di base

Teoria e tecniche dei test. Concetti di base Teoria e tecniche dei test Lezione 2 2013/14 ALCUNE NOZIONI STATITICHE DI BASE Concetti di base Campione e popolazione (1) La popolazione è l insieme di individui o oggetti che si vogliono studiare. Questi

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIONE NORMALE Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma La più nota ed importante distribuzione di probabilità è, senza alcun dubbio, la Distribuzione normale, anche

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

0 altimenti 1 soggetto trova lavoroentro 6 mesi}

0 altimenti 1 soggetto trova lavoroentro 6 mesi} Lezione n. 16 (a cura di Peluso Filomena Francesca) Oltre alle normali variabili risposta che presentano una continuità almeno all'interno di un certo intervallo di valori, esistono variabili risposta

Dettagli

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi:

le scale di misura scala nominale scala ordinale DIAGNOSTICA PSICOLOGICA lezione si basano su tre elementi: DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it si basano su tre elementi: le scale di misura sistema empirico: un insieme di entità non numeriche (es. insieme di persone; insieme

Dettagli

Statistica a breve termine: metodo delle onde apparenti

Statistica a breve termine: metodo delle onde apparenti Esercitazione 1 Statistica a breve termine: metodo delle onde apparenti Si calcolino, applicando il metodo delle onde apparenti, le seguenti proprietà della registrazione ondametrica fornita nelle figure

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia

Funzioni Esponenziale e Logaritmica. Prof. Simone Sbaraglia Funzioni Esponenziale e Logaritmica Prof. Simone Sbaraglia Funzione Esponenziale Vogliamo definire propriamente le funzioni esponenziali e logaritmiche che abbiamo introdotto in precedenza. Qual e` il

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016

Statistica Sociale e Criminale (12 CFU) A.A. 2015/2016 Statistica Sociale e Criminale (1 CFU) A.A. 015/016 CdL Sociologia e Criminologia Simone Di Zio Dove siamo MODULO 3. L Inferenza statistica 3.1 Probabilità e variabili casuali 3. Le tecniche di campionamento

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Elementi di matematica - dott. I. GRASSI

Elementi di matematica - dott. I. GRASSI Gli assi cartesiani e la retta. Il concetto di derivata. È ormai d uso comune nei libri, in televisione, nei quotidiani descrivere fenomeni di varia natura per mezzo di rappresentazioni grafiche. Tali

Dettagli

Indici di eterogeneità e di concentrazione

Indici di eterogeneità e di concentrazione Indici di eterogeneità e di concentrazione Dario Malchiodi e Anna Maria Zanaboni 12 gennaio 2016 1 Indici di eterogeneità Nel caso di variabili qualitative nominali la varianza e gli altri indici da essa

Dettagli

Ricerca di massimi e minimi col metodo della derivata prima

Ricerca di massimi e minimi col metodo della derivata prima Massimi e minimi con la derivata prima pag. 1 di 6 Ricerca di massimi e minimi col metodo della derivata prima Ricordiamo che il significato geometrico della derivata prima è quello di coefficiente angolare

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1 www.matefilia.it SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA 216 - PROBLEMA 2 Nella figura 1 è rappresentato il grafico Γ della funzione continua f: [, + ) R, derivabile in ], + ), e sono indicate le coordinate

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89)

Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89) Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89) Secondo biennio Indirizzo: IPSSAR Disciplina: MATEMATICA 1. 1 Asse culturale: matematico 1. utilizzare il linguaggio

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016

RELAZIONE FINALE DEL DOCENTE. Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA E COMPLEMENTI DI MATEMATICA Classe 4BPT A. S. 2015/2016 In relazione alla programmazione curricolare sono stati conseguiti, in termini di livello medio,

Dettagli

Analisi Matematica II

Analisi Matematica II Analisi Matematica II Limiti e continuità in R N Claudio Saccon 1 1 Dipartimento di Matematica, Via F. Buonarroti 1/C,56127 PISA email: claudio.sacconchiocciolaunipi.it sito web: http://pagine.dm.unipi.it/csblog1

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati:

Analisi descrittiva: calcolando medie campionarie, varianze campionarie e deviazioni standard campionarie otteniamo i dati: Obiettivi: Esplicitare la correlazione esistente tra l altezza di un individuo adulto e la lunghezza del suo piede e del suo avambraccio. Idea del progetto: Il progetto nasce dall idea di acquistare scarpe

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

Dispensa sulla funzione gaussiana

Dispensa sulla funzione gaussiana Sapienza Università di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulla funzione gaussiana Paola Loreti e Cristina Pocci A. A. 011-01 1 Introduzione:

Dettagli

Sia y una grandezza che varia, in funzione del tempo, secondo la legge

Sia y una grandezza che varia, in funzione del tempo, secondo la legge Il tasso di crescita Sia y una grandezza che varia, in funzione del tempo, secondo la legge dove è un numero reale positivo diverso da 1 e è il valore che y assume nell istante t=0. Se a>1 la funzione

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello FUNZIONI ESPONENZIALI Crescita

Dettagli

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati Laboratorio di Statistica 1 con R Esercizi per la Relazione I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati nel corso. Esercizio 1. 1. Facendo uso dei comandi

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Problema. Determinare come la media campionaria x e la deviazione standard campionaria s misurano la media µ e la deviazione standard σ della popolazione. È data una popolazione

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi

Dettagli

ITCG Sallustio Bandini

ITCG Sallustio Bandini ANNO SCOLASTICO 2015/2016 PROGRAMMA DI MATEMATICA CLASSE I sez. A corso GRAFICA INSEGNANTE: prof. MARIO SCACCIA Libro di Testo: Matematica.verde Vol. 1 multimediale- Algebra, Geometria, Statistica M.Bergamini

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

Economia Politica (Mod I) Nota integrativa n. 3

Economia Politica (Mod I) Nota integrativa n. 3 Economia Politica (Mod I) Nota integrativa n. 3 I costi di produzione Mankiw, Capitolo 13 Premessa Nell analisi della legge dell offerta, vista fino a questo momento, abbiamo sinteticamente descritto le

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUINTA E SESTA SETTIMANA In sintesi, una tecnologia costituisce un insieme di piani

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Esercizi di Ricapitolazione

Esercizi di Ricapitolazione Esercizio 1. Sono dati 150g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare

Dettagli

L elasticità e le sue applicazioni in economia Introduzione

L elasticità e le sue applicazioni in economia Introduzione L elasticità e le sue applicazioni in economia Introduzione Fino ad ora l analisi su domanda, offerta ed equilibrio di mercato è stata di tipo qualitativo. Se vogliamo avere una misura quantitativa degli

Dettagli

La logistica: una curva semplice con molte applicazioni

La logistica: una curva semplice con molte applicazioni La logistica: una curva semplice con molte applicazioni Francesco Galvagno Relatore: Franco Pastrone Università degli studi di Torino Scuola di Studi Superiori di Torino Torino, 27 giugno 2017 Francesco

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza.

Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Ogni misura è composta di almeno tre dati: un numero, un'unità di misura, un'incertezza. Misure ripetute forniscono dati numerici distribuiti attorno ad un valore centrale indicabile con un indice (indice

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE

PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE PROBABILITÀ - SCHEDA N. 3 VARIABILI ALEATORIE CONTINUE E SIMULAZIONE (da un idea di M. Impedovo Variabili aleatorie continue e simulazione Progetto Alice n. 15, ) 1. La simulazione Nelle schede precedenti

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

CURVE DI DURATA: Introduzione e Rappresentazione analitica

CURVE DI DURATA: Introduzione e Rappresentazione analitica CURVE DI DURATA: Introduzione e Rappresentazione analitica Premesse Si definisce durata di una portata Q riferita ad una sezione di misura, l'intervallo di tempo in cui le portate naturali del corso d

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità.

TEORIA SULLE DERIVATE SECONDA. La condizione di continuità di una funzione è condizione necessaria ma non sufficiente per la sua derivabilità. PROF.SSA MAIOLINO D. TEORIA SULLE DERIVATE SECONDA CONTINUITA DELLE FUNZIONI DERIVABILI Se una unzione y( è derivabile in un punto 0, allora è continua in 0. La condizione di continuità di una unzione

Dettagli

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva

Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Fondamenti di Informatica Ester Zumpano Programmazione con Foglio di Calcolo Cenni di Statistica Descrittiva Lezione 5 Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di

Dettagli

La casualità nello spazio o nel tempo: la distribuzione di Poisson

La casualità nello spazio o nel tempo: la distribuzione di Poisson La casualità nello spazio o nel tempo: la distribuzione di Poisson Cosa potrebbero rappresentare questi punti? o Organismi o eventi presenti in una certa area Per esempio, ci interessa capire come avviene

Dettagli

lezione 10 AA Paolo Brunori

lezione 10 AA Paolo Brunori AA 2016-2017 Paolo Brunori Redditi svedesi - il dataset contiene i dati di reddito di 838 individui - il dataset contiene le variabili: sex = sesso age = età edu = anni di istruzione y_gross = reddito

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

QUADRO DI RIFERIMENTO DI ITALIANO PROVE INVALSI 2009

QUADRO DI RIFERIMENTO DI ITALIANO PROVE INVALSI 2009 QUADRO DI RIFERIMENTO DI ITALIANO PROVE INVALSI 2009 RIFERIMENTI NORMATIVI INDICAZIONI NAZIONALI 2003 (OSA) L. n 53/2003 e D. Lgs 59/2004 INDICAZIONI NAZIONALI PER IL CURRICULO 2007 QUADRO DI RIFERIMENTO

Dettagli

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. Anno Accademico 2008/2009 Docente: ing. Salvatore

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Facoltà di AGRARIA anno accademico 2009/10

Facoltà di AGRARIA anno accademico 2009/10 Facoltà di AGRARIA anno accademico 2009/10 Attività didattica MATEMATICA E STATISTICA [AG0233], MATEMATICA E STATISTICA [AG0233] Periodo di svolgimento: Primo Semestre Docente titolare del corso: FREDDI

Dettagli

La produzione. (R. Frank, Capitolo 9)

La produzione. (R. Frank, Capitolo 9) La produzione (R. Frank, Capitolo 9) LA PRODUZIONE Le imprese utilizzano i fattori produttivi (input) per produrre beni e servizi (output) La produzione trasforma un insieme di input in un insieme di output

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Dipartimento di Management. Anno accademico 2014/2015. Macroeconomia (9 CFU)

Dipartimento di Management. Anno accademico 2014/2015. Macroeconomia (9 CFU) Università degli Studi di Torino Dipartimento di Management Anno accademico 2014/2015 Macroeconomia (9 CFU) Notizie pratiche Orari: lunedì 14.00-17.00 (3-4 ore accademiche) venerdì 14.00-17.00 (3-4 ore

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Matematica Capitolo 1. Funzioni. Ivan Zivko

Matematica Capitolo 1. Funzioni. Ivan Zivko Matematica Capitolo 1 Funzioni Ivan Zivko Introduzione Una unzione è un qualcosa che mette in relazione un valore in entrata ( input ) con un altro in uscita ( output ). Input FUNZIONE Output Matematica

Dettagli

PROBABILITÀ ELEMENTARE

PROBABILITÀ ELEMENTARE Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti

Dettagli

Regressione Lineare Semplice e Correlazione

Regressione Lineare Semplice e Correlazione Regressione Lineare Semplice e Correlazione 1 Introduzione La Regressione è una tecnica di analisi della relazione tra due variabili quantitative Questa tecnica è utilizzata per calcolare il valore (y)

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli