= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);"

Transcript

1 La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi ella sezioe. G s La sezioe ha due assi di simmetria (uo verticale, che coicide co l asse di sollecitazioe s-s, e l altro orizzotale) e pertato il baricetro G si trova ell itersezioe di questi assi. L asse eutro - è l asse perpedicolare all asse s-s e passate per il baricetro. s Per il calcolo del mometo d ierzia della sezioe rispetto all asse eutro si può cosiderare la sezioe come composta dal rettagolo j (area piea) meo i due rettagoli k (area vuota).

2 Il mometo d ierzia della sezioe completa rispetto all asse eutro - è uguale alla differeza tra il mometo d ierzia del rettagolo j ed il mometo d ierzia dei rettagoli k, etrambi ovviamete calcolati sempre rispetto all asse -. Poichè l asse - passa per il baricetro del rettagoli j e dei rettagoli k, i mometi d ierzia delle aree piea ( p, rettagolo j) e dell area vuota ( v, rettagoli k) valgoo: 0 60 p v Pertato mm p v M y Per la formula di Navier ( σ ), gli sforzi ormali σ più elevati ella sezioe varrao: N σ 6 6 MPa alle fibre superiori più distati dall assse eutro (sforzo mm di compressioe); N σ 6 6 MPa alle fibre iferiori più distati dall assse eutro(sforzo di mm trazioe).

3 T S( y) Per la formula di ourawski ( τ ), poichè l asse eutro baricetrico passa per la parte più b stretta della sezioe (aima), gli sforzi tageziali τ massimi si avrao all asse eutro. Il mometo statico S di ua delle due parti di sezioe idividuate dall asse eutro (si preda ad esempio la parte di sezioe superiore, tratteggiata ella figura seguete) può essere calcolato come differeza dei mometi statici dell area piea (rettagolo di base 0 ed altezza 0) e dell area vuota (due rettagoli di base 5 ed altezza 0) Si avrà duque: 0 0 S S p Sv ( 0 0) mm Lo sforzo τ all asse eutro varra duque: ( 5*0) 000 τ N mm MPa Lo sforzo τ sulla liea - dell aima (immediatamete sotto l ala della sezioe) vale ivece: [(0 0) 5] T S( y) 5000 τ b N mm 7 MPa

4

5 La sezioe di figura è soggetta ad u mometo flettete M 5 knmm (che agisce sul piao verticale di simmetria e che tede le fibre iferiori) e ad ua azioe di taglio pari a kn. Calcolare gli sforzi s massimi ella sezioe e la t all asse eutro utilizzado rispettivamete le formule di Navier e di ourawski. La sezioe ha due assi di simmetria e duque la posizioe del baricetro G è ota (G si trova all itersezioe dei due assi di simmetria). s L asse eutro - passa per il baricetro della sezioe ed è ortogoale all asse di sollecitazioe s-s- (itersezioe del piao su cui giace il mometo flettete co il piao della sezioe). s 5

6 La sezioe può essere vista come ua sezioe composta da due triagoli: il triagolo superiore j e quello iferiore k, etrambi aveti base 5 mm ed altezza.5 mm. Il mometo d ierzia della sezioe completa rispetto all asse eutro - si può pertato scrivere come la somma del mometo d ierzia del triagolo j rispetto all asse - ( ) e del mometo d ierzia del triagolo k sempre rispetto all asse - ( ): + Per i triagoli j e k, l asse - coicide co la base (di lughezza 5 mm); ricordado che il mometo d ierzia di u area triagolare di base b ed altezza h rispetto ad ua retta passate per la base vale b h, si ricavao e come 5.5. mm Di cosegueza mm M y Per la formula di Navier ( σ ), gli sforzi massimi geerati dal mometo flettete sarao pari i valore assoluto a σ MPa 88.8 I particolare si avrà: - uo sforzo egativo (compressioe) pari a σ 8 MPa el puto A, - uo sforzo positivo (trazioe) pari a σ +8 MPa el puto B. 6

7 5 Per la formula di ourawski, gli sforzi tageziali all asse eutro valgoo: T S( y) τ b dove S(y) è il mometo d ierzia di metà sezioe (area tratteggiata della figura sottostate) rispetto all asse eutro. Poichè il baricetro di u triagolo si trova ad u terzo della sua altezza, il mometo statico cercato vale:.5 S( y) ( 5.5) 90.6 mm Lo sforzo τ all asse eutro vale quidi τ MPa

8 La sezioe di trave i figura è soggetta ad u mometo flettete pari a MNmm e ad ua forza di taglio di 7 kn ageti lugo la traccia s-s. Si richiede il calcolo degli sforzi s massimi (positivi e egativi) e t massimi..00 s 0 Il baricetro G si trova certamete sull asse di simmetria s-s. Per ricavare la posizioe i altezza del baricetro possiamo immagiare la sezioe come composta dai rettagoli j, k (destra e siistra) e (destra e siistra). s 55 5 I baricetri dei rettagoli j, k e hao le segueti ordiate (itese come distaze y dall asse x) Baricetro G del rettagolo j y G 6 mm Baricetri G dei rettagoli k y G.5 mm Baricetri G dei rettagoli y G mm 8

9 I mometi statici rispetto all asse x delle aree j, k e soo i segueti: Area S x_ (55 ) mm Aree S x_ [(.5 5)] mm Aree S x_ [( )] 70 mm L area totale della sezioe vale A (55 ) + (.5 5) + ( ) 90 mm Il mometo statico della sezioe completa rispetto all asse x vale duque: S x S x_ + S x_ + S x_ mm L ordiata y G del baricetro è quidi: y S x A G. mm 9

10 L asse eutro - passa per il baricetro ed è ortogoale all asse di sollecitazioe s-s. Per calcolare il mometo d ierzia della sezioe rispetto all asse eutro possiamo acora cosiderare la sezioe come composta dai rettagoli j, k e. Per ogi rettagolo si procede dapprima al calcolo del mometo d ierzia rispetto ad u asse parallelo all asse eutro che passa per il baricetro del sigolo rettagolo. Successivamete si utilizza la formula di trasporto per calcolare il mometo d ierzia del rettagolo rispetto all asse eutro per la sezioe completa (asse -). Rettagolo j Mometo d ierzia del rettagolo rispetto all asse eutro -, calcolato utilizzado la formula di trasporto: 55 + (55 ) (. 6) 70 mm Rettagoli k Mometo d ierzia dei rettagoli rispetto all asse eutro -, calcolati utilizzado la formula di trasporto: (.5 5) (.5.) 558 mm 0

11 Rettagoli Mometo d ierzia dei rettagoli rispetto all asse eutro -, calcolati utilizzado la formula di trasporto: + ( ) (.) 670 mm mm M y Per la formula di Navier ( σ ), gli sforzi massimi positivi geerati dal mometo flettete sarao quelli sulle fibre superiori: σ 0. MPa 506 Gli sforzi massimi di compressioe (egativi) sarao quelli sulle fibre iferiori σ 95.6 MPa 506 s Sforzo massimo positivo (trazioe) 0. MPa G MNmm s Sforzo massimo egativo (compressioe) MPa

12 Poichè l asse eutro baricetrico passa per la parte più stretta della sezioe (aima), gli sforzi T S( y) tageziali τ massimi sarao quelli all asse eutro (formula di ourawski, τ. b Il mometo statico S di ua delle due parti i cui l asse eutro divide la sezioe (è coveiete cosiderare la parte di sezioe iferiore, tratteggiata ella figura seguete) può essere calcolato come differeza dei mometi statici dell area piea (rettagolo di base 55 ed altezza.) e dell area vuota (rettagolo di base 0 ed altezza.) rispetto all asse eutro. Il mometo statico dell area tratteggiata rispetto all asse eutro vale quidi.. S( y) S p Sv ( 55.) ( 0.) 066 mm Lo sforzo tageziale all asse eutro è pari a τ 0 MPa 5 506

13 Calcolare i valori degli sforzi s i corrispodeza delle fibre superiori ed iferiori (liee - e -) della sezioe trapezoidale di figura, soggetta ad u mometo flettete M 00 knmm, agete lugo l asse di simmetria vertical della sezioe. La sezioe ha u asse di simmetria verticale (asse y i figura) ed il baricetro G si trova certamete su tale asse. Per ricavare la posizioe i altezza del baricetro possiamo immagiare la sezioe come composta dal rettagolo j e dai triagoli k. Il mometo statico del rettagolo j rispetto alla base (asse x) vale 0 S mm Ricordado che il baricetro di u triagolo si trova ad u terzo della sua altezza, il mometo statico dei triagoli k rispetto all asse x vale S 500 mm Il mometo statico dell area totale (trapezio) rispetto all asse x vale duque: S S + S mm Poichè l area A del trapezio è pari a 650 mm, l ordiata y G del baricetro della sezioe completa vale: y S 500. mm G A 650 6

14 L asse eutro - passa per il baricetro ed è ortogoale all asse y di sollecitazioe. Per calcolare il mometo d ierzia della sezioe rispetto all asse eutro possiamo acora cosiderare la sezioe come composta dal rettagolo j e dai triagoli k. Il mometo d ierzia del rettagolo j rispetto all asse che passa per il suo baricetro G vale bh mm Il mometo d ierzia del rettagolo rispetto all asse eutro - vale pertato (formula di trasporto): ( 0 0) (5.6) 90mm Il mometo d ierzia dei triagoli k rispetto all asse che passa per il loro baricetro e parallelo all asse - vale bh mm 6 6 Il mometo d ierzia dei triagoli rispetto all asse eutro - vale pertato (formula di trasporto): ( 5 0) (.6 ) 5mm Il mometo d ierzia rispetto all asse eutro della sezioe completa vale quidi: 90 mm

15 M y Per la formula di Navier ( σ ), gli sforzi prodotti dal mometo flettete sulle fibre della liea - (fibre superiori) valgoo: σ 8.8 MPa 665 Gli sforzi sulle fibre della liea --(fibre iferiori) valgoo σ +. MPa

16 La sezioe di trave i figura è soggetta ad u mometo flettete pari a 50 Nm e ad ua forza di taglio di 000 N ageti lugo la traccia s-s. Si richiede il calcolo degli sforzi s massimi (positivi e egativi) e degli sforzi t massimi. La sezioe ha u asse di simmetria verticale (asse s-s) ed il baricetro G si trova certamete su tale asse. Per ricavare la posizioe i altezza del baricetro possiamo immagiare la sezioe come composta dal rettagolo j (avete base 5 mm ed altezza 5 mm) e dal semicerchio k (di diametro D 5 mm). 5.8 Il mometo statico del rettagolo j rispetto alla base (asse x di figura) vale 5 S mm Ricordado che il baricetro di u semicerchio si trova ad ua distaza dal diametro di base pari a D, il mometo statico del semicerchio rispetto all asse x vale π π D D π 5 S 5 + ( 5 +.8) 90 mm π 6

17 Il mometo statico dell area completa rispetto all asse x vale duque: S S 688 mm + S Poichè l area della sezioe completa è pari ad A 6. mm, l ordiata y G del baricetro della sezioe completa vale: S 778 y G 5. 9 mm A 6. L asse eutro è quidi l asse perpedicolare all asse s-s e passate per il baricetro G della sezioe completa. Il mometo d ierzia della sezioe completa rispetto all asse eutro è uguale alla somma del mometo d ierzia del rettagolo j e del mometo d ierzia del semicerchio k, etrambi sempre calcolati rispetto all asse -. Il mometo d ierzia del rettagolo j rispetto all asse eutro - vale ( 5 5) mm 7

18 Il mometo d ierzia del semicerchio k rispetto all asse x 0 che passa per il suo bariceto (vedi ota della pagia seguete) vale π D π D D xo 7 mm 6 π Il mometo d ierzia del semicerchio rispetto all asse eutro - vale pertato, per il teorema del trasporto: π 5 + xo 576mm + ( ) 7 9 Il mometo d ierzia della sezioe completa rispetto all asse eutro è quidi : 88 mm M y Per la formula di Navier ( σ ), gli sforzi prodotti dal mometo flettete sulle fibre superiori ed iferiori della sezioe valgoo rispettivamete: σ e σ (.5 5.9) MPa MPa 760 Gli sforzi tageziali τ massimi soo quelli all asse eutro (formula di ourawski, τ valgoo τ 8MPa T S( y) ) e b 8

19 9 MOMENTO D INERZIA DI UN SEMICERCHIO RISPETTO AD UN ASSE BARICENTRICO 6 x π D Poichè il mometo d ierzia di u cerchio di diametro D rispetto ad u asse diametrale (x i figura) vale 6 πd, il mometo d ierzia del semicerchio rispetto allo stesso asse diametrale x varrà la metà ( 6 πd ). 6 x π D Per la formula di trasporto, il mometo d ierzia del semicerchio rispetto all asse x si può scrivere come + π π D D xo x dove xo è il mometo d ierzia rispetto all asse z baricetrico; D π è l area del semicerchio; π D è la distaza tra gli assi x e xo. Di cosegueza, il mometo d ierzia di u semicerchio rispetto all asse baricetrico x o vale 6 π π π π π D D D D D x xo

SOLLECITAZIONI SEMPLICI

SOLLECITAZIONI SEMPLICI Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SOLLECITAZIONI SEPLICI AGGIORNAENTO 04/10/2011 Corso di COSTRUZIONI EDILI Prof. Ig. Fracesco Zaghì SFORZO NORALE CENTRATO Lo

Dettagli

SOLLECITAZIONI COMPOSTE

SOLLECITAZIONI COMPOSTE Sussidi didattici per il corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì SOLLECITZIOI COPOSTE GGIORETO 8/10/011 Corso di COSTRUZIOI EDILI Prof. Ig. Fracesco Zaghì FLESSIOE DEVIT Si ha flessioe deviata

Dettagli

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità)

Il centro di pressione C risulta esterno al nocciolo (e > GX ) (grande eccentricità) Il cemeto armato: metodo alle tesioi ammissibili Uità 5 Flessioe semplice retta e sforzo ormale Il cetro di pressioe risulta estero al occiolo (e > X ) (grade eccetricità) 0L asse eutro taglia la sezioe,

Dettagli

Cerchi di Mohr - approfondimenti

Cerchi di Mohr - approfondimenti Comportameto meccaico dei materiali Cerchi di Mohr - approfodimeti Stato di tesioe e di deformazioe Cerchi di Mohr - approfodimeti L algebra dei cerchi di Mohr Proprietà di estremo dei cerchi di Mohr Costruzioe

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Inflessione nelle travi

Inflessione nelle travi Ifessioe ee travi Caso dea trave icastrata ad u estremità Data a trave a mesoa AB di ughezza, sottoposta a azioe de carico cocetrato F appicato a estremo ibero B, questa risuta soecitata, i ogi sezioe,

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Seconda prova d esonero del Tema B

Seconda prova d esonero del Tema B UNIVRSITÀ DGLI STUDI G. D ANNUNZIO DI CHITI-PSCARA FACOLTÀ DI ARCHITTTURA CORSO DI LAURA QUINQUNNAL, CORSI DI LAURA TRINNALI INSGNAMNTO DI SCINZA DLL COSTRUZIONI a.a. - Docete M. VASTA Secoda prova d esoero

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Dispositivi e Sistemi Meccanici. 7 Esercizi. Politecnico di Torino CeTeM

Dispositivi e Sistemi Meccanici. 7 Esercizi. Politecnico di Torino CeTeM eem Dispositivi e Sistemi Meccaici Eserciio 7 Due ruote detate cilidriche a deti elicoidali ad assi paralleli hao detatura co profilo ad evolvete co agolo di pressioe ormale α 19, rapporto di igraameto

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

17. Funzioni implicite

17. Funzioni implicite 17. Fuzioi implicite 17.a Fuzioi defiite implicitamete Sia data l equazioe lieare implicita i R 2 ax + by = 0. Se b 0, si puo ricavare la variabile y i fuzioe della x come y = ( a/b)x. Equivaletemete possiamo

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

169. Segmenti paralleli

169. Segmenti paralleli 169. Segmeti paralleli Matematicamete.it UMERO 17 APRILE 01 Bruo Sachii bruosachii@yahoo.it Suto y ta x k b a ta ak x R cos ak Si utilizza il sistema: di ua grade famiglia di superfici. Lo scopo di questo

Dettagli

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ).

14. TENSIONI. Le tensioni sono lo strumento della meccanica dei continui per rappresentare lo stato di sforzo in un punto. n,n, n ). 14. Le tesioi soo lo strumeto della meccaica dei cotiui per rappresetare lo stato di sforo i u puto. Defiiioe della tesioe secodo Cauch. f A V f Cosideriamo u geerico puto. uppoiamo di seioare idealmete

Dettagli

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g Correti a superficie libera 5 F p (8-) La proiezioe su s della forza di ierzia è ivece pari a: d ρ A ds ρ A ds + (8-) dt Sommado le (8-3), (8-4), (8-9), (8-0), (8-), (8-) e uguagliado a zero si ottiee:

Dettagli

Lezione n. 8. Le cupole La soluzione in regime di membrana

Lezione n. 8. Le cupole La soluzione in regime di membrana Lezioe. 8 Le cupole La soluzioe i regime di membraa Le volte sottili I geerale, si possoo idividuare delle strutture bidimesioali curve ello spazio, di piccolo spessore, che predoo il ome di volte sottili

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Lezione 10 - Tensioni principali e direzioni principali

Lezione 10 - Tensioni principali e direzioni principali Lezioe 10 - Tesioi pricipali e direzioi pricipali ü [A.a. 2011-2012 : ultima revisioe 23 agosto 2011] I questa lezioe si studiera' cio' che avviee alla compoete ormale di tesioe s, al variare del piao

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

FUNZIONAMENTO CON MANCANZA DI FASE DI UN MOTORE ASINCRONO TRIFASE. Idoneità del relè termico a proteggere il motore

FUNZIONAMENTO CON MANCANZA DI FASE DI UN MOTORE ASINCRONO TRIFASE. Idoneità del relè termico a proteggere il motore FUNZONAMENTO CON MANCANZA D FASE D UN MOTORE ASNCRONO TRFASE doeità del relè termico a proteggere il motore 1) - Poteza el uzioameto co macaza di ase Nel uzioameto ormale (triase) la poteza del motore

Dettagli

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm

Flessione deviata. A B t mm A 1. x 50 mm y mm x mm y mm Esercizio N.1 (pag. 81) La coppia M agisce in un piano verticale passante per l asse baricentrico di una trave la cui sezione trasversale è mostrata in figura. Determinare la tensione nel punto A. Soluzione

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Esercitazione 11: Stato di tensione nella sezione di trave

Esercitazione 11: Stato di tensione nella sezione di trave Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

Statica e Sismica. delle Costruzioni Murarie. Cerchio di Mohr

Statica e Sismica. delle Costruzioni Murarie. Cerchio di Mohr Uiversità degli Studi di Messia Facoltà di Igegeria A.A. 006/007 Statica e Sisica delle Costruzioi Murarie Docete: Ig. Alessadro Paleri Lezioe. 3: Circofereze di Mohr τ t P Sia P u puto geerico del cotiuo

Dettagli

STATISTICA 1 ESERCITAZIONE 5

STATISTICA 1 ESERCITAZIONE 5 STATISTICA ESERCITAZIONE 5 Dott. Giuseppe Padolfo 28 Ottobre 203 VARIABILITA IN TERMINI DI DISPERSIONE DA UN CENTRO Cetro Me o μ La dispersioe viee misurata come sitesi delle distaze tra le uità statistiche

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Progetto di elementi strutturali per solaio: trave secondaria, trave principale, giunto trave secondaria-principale, giunto trave-trave

Progetto di elementi strutturali per solaio: trave secondaria, trave principale, giunto trave secondaria-principale, giunto trave-trave Progetto di elemeti strutturali per solaio: trave secodaria, trave pricipale, giuto trave secodaria-pricipale, giuto trave-trave Giuto trave secodaria-trave pricipale: soluzioe ulloata La progettazioe

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

A8 - Campi vettoriali conservativi e solenoidali

A8 - Campi vettoriali conservativi e solenoidali A8 - Campi vettoriali coservativi e soleoidali A8.1 Campi coservativi e campi irrotazioali Sia V(x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω.

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Esercitazioni. Costruzione di Macchine A.A

Esercitazioni. Costruzione di Macchine A.A Esercitazioni di Costruzione di Macchine A.A. 2002-200 Manovellismo ordinario centrato Esercitazione n 1 2 Una macchina per prove di fatica su molle a balestra aziona, attraverso un giunto che trasmette

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2).

Esercizi proposti. f(x), f(x), f(x), f(x + 1), f(x) + 1. x 2 x 1 se x 1, 4 x se x > 1 2, 2). Esercizi proposti 1. Risolvere la disequazioe + 1.. Disegare i grafici di a) y = 1 + + 3 ; b) y = 1 ; c) y = log 10 + 1). 3. Si cosideri la fuzioe f) = ; disegare i grafici di f), f), f), f + 1), f) +

Dettagli

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N

POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea in INGEGNERIA MECCANICA (Corso B) A.A. 2011/2012. per ogni n N POLITECNICO di BARI - I Facoltà di INGEGNERIA Corso di Laurea i INGEGNERIA MECCANICA Corso B) A.A. / ) Dimostrare, utilizzado il pricipio di iduzioe, che a) b) c) d) k= log + ) = log + ) per ogi N k k

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Successioni di variabili aleatorie

Successioni di variabili aleatorie 0 Caitolo 5 Successioi i variabili aleatorie 5. Covergeza i istribuzioe e teorema cetrale i covergeza Sia {X } = (X,..., X,... ua successioe ifiita i variabili aleatorie e X u ulteriore variabile aleatoria.

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

2 Criteri di convergenza per serie a termini positivi

2 Criteri di convergenza per serie a termini positivi Uiversità Roma Tre L. Chierchia 65 (29//7) 2 Criteri di covergeza per serie a termii positivi I questo paragrafo cosideriamo serie a termii positivi ossia serie a co a > 0. Si ricordi che ua serie a termii

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ

NUOVI CRITERI DI DIVISIBILITÀ NUOVI CRITERI DI DIVISIBILITÀ BRUNO BIZZARRI, FRANCO EUGENI, DANIELA TONDINI 1 1. Su tutti i testi scolastici di Scuola Media, oostate siao riportati i criteri di divisibilità per i umeri, 3, 4, 5, 6,

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

LEZIONE 8. PROGETTO DI STRUTTURE IN CEMENTO ARMATO Parte II. Il calcolo non lineare a stato limite ultimo - Flessione

LEZIONE 8. PROGETTO DI STRUTTURE IN CEMENTO ARMATO Parte II. Il calcolo non lineare a stato limite ultimo - Flessione Corso di TECICA DELLE COSTRUZIOI Chiara CALDERII A.A. 27-28 Facoltà di Architettura Università degli Studi di Genova LEZIOE 8 PROGETTO DI STRUTTURE I CEETO ARATO Parte II. Il calcolo non lineare a stato

Dettagli

10 - Carichi sui tre livelli associati all azione sismica

10 - Carichi sui tre livelli associati all azione sismica Dott. Ig Paolo Serafii Cilc per tutti gli apputi (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mail per suggerimeti 0 - Carichi sui tre livelli associati all azioe sismica Il calcolo

Dettagli

Caratteristiche I-V Qualitativamente, la caratteristica di uscita di un MOSFET è la seguente:

Caratteristiche I-V Qualitativamente, la caratteristica di uscita di un MOSFET è la seguente: l sistema MOFE l MOFE è u FE che utilizza come caale la regioe di iversioe che si crea i ua struttura MO opportuamete polarizzata. l cotatto di gate del trasistor coicide co il Metallo della struttura

Dettagli

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x.

APPENDICE. A.1 Derivate notevoli. dy m df. sin x. 1 dx. dx 1 f x. f x. y f x. y x. dx dx. df x. dx n x. dy m. cos f x. cos x. sin f x. APPENDICE A. Derivate otevoli k d d d d d m m m d si cos cos si ta d cos cot d si arcsi arccos m d d d d d d si cos d m d m d d d si d d d cos d d cos d d ta cot arcta d arccot d log a l d d arcsi arccos

Dettagli

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale: Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Lezione 4. Indice di un sottogruppo. Teorema di Lagrange per i gruppi finiti.

Lezione 4. Indice di un sottogruppo. Teorema di Lagrange per i gruppi finiti. Lezioe 4 Prerequisiti: Lezioi 23. Riferieto al testo: [H] Sezioe 2.4; [PC] Sezioe 5.5 Idice di u sottogruppo. Teorea di Lagrage per i gruppi fiiti. I questa lezioe deoterà sepre u gruppo fiito ed H u suo

Dettagli

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1)

Il candidato risolva uno dei due problemi e 4 quesiti del questionario. la sua primitiva tale che ( 1) f ( 1) Sessioe ordiaria all estero caledario australe 005 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 005 Caledario

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

In linguaggio analitico parlare di tre tagli equivale ad individuare le equazioni di tre rette che intersecano il triangolo in questione.

In linguaggio analitico parlare di tre tagli equivale ad individuare le equazioni di tre rette che intersecano il triangolo in questione. Tre tagli... sette parti Dividere u triagolo dato o tre tagli rettiliei i sette parti di ui quattro siao triagoli (e le rimaeti tre, petagoi). Ua delle parti triagolari è limitata dai tre tagli, iasua

Dettagli

1. Suddivisione di triangoli

1. Suddivisione di triangoli 1. Suddivisioe di triagoli 1.1 Il problema proposto da Silvao Rossetto La costruzioe descritta dalla figura seguete divide il triagolo C, rettagolo i, i due parti equiestese: r t s C g P g 1 K M 1 1) Precisare

Dettagli

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni.

Esercizi di Analisi Matematica 1 utili per la preparazione all esame scritto. File con soluzioni. Esercizi di Aalisi Matematica. Paola Gervasio Es. Esercizi di Aalisi Matematica utili per la preparazioe all esame scritto. File co soluzioi. a.5.5.5.5 b 4 3.5 3.5.5.5 5 5 Figura 5 5.5 a 3 b 4 5.5 6 5

Dettagli

Q k G k2. G k1. Per la struttura in figura, determinare le sollecitazioni N,V,M. 1. Progettare allo SLU le armature di flessione della trave.

Q k G k2. G k1. Per la struttura in figura, determinare le sollecitazioni N,V,M. 1. Progettare allo SLU le armature di flessione della trave. Cemeto armato: flessioe 19 1 011 Q k G k A B G k1 C a l Per la struttura i figura, determiare le sollecitazioi N,V,M. 1. Progettare allo SLU le armature di flessioe della trave.. Eseguire le verifche agli

Dettagli

LEZIONE 3. PROGETTO DI COSTRUZIONI IN ACCIAIO Parte II. Progetto degli elementi strutturali

LEZIONE 3. PROGETTO DI COSTRUZIONI IN ACCIAIO Parte II. Progetto degli elementi strutturali Corso di TECICA DELLE COSTRUZIOI Chiara CALDERII A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIOE 3 PROGETTO DI COSTRUZIOI I ACCIAIO Parte II. Progetto degli elementi strutturali

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Esercizi sui limiti di successioni

Esercizi sui limiti di successioni AM0 - AA 03/4 ALFONSO SORRENTINO Esercizi sui iti di successioi Esercizio svolto a) Usado la defiizioe di ite, dimostare che: + 3 si π cos e ) e b) 0 Soluzioe Comiciamo da a) Vogliamo dimostrare che: ε

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli