Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI"

Transcript

1 Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene nettato un pulso lunoso d lunhezza d'onda λ=.55 µ dall'ara (n 0 =) n odo che all'nterfacca d nresso la drezone d propaazone del rao fora un anolo α=0. rad con l'asse della fbra. Verfcare che un solo odo LP vene ecctato e calcolarne paraetr β, γ e δ ed l tepo d transto τ attraverso la fbra. : La frequenza noralzzata V è par a V = ka n n =.09 <.4 e qund la fbra s coporta coe onoodo. Applcando la lee d Snell-Carteso all'nterfacca d nresso s ha: n snα = n snα' = n cosθ 0 Allora s ha Inoltre l tepo d transto τ è snθ 0 n snα = n β = kn snθ = 6.µ = γ = kn cosθ = 0.49µ δ = β kn = 0.5µ Ln τ = = 5. 05µ s csnθ. Una fbra ottca a salto d'ndce ha un nucleo d rao a=5µ ed un'apertura nuerca NA= Deternare la pù pccola lunhezza d'onda λc, per la quale la fbra s coporta coe onoodo. Se la lunhezza d'onda è portata a λ'= λc/, dentfcare l ndc d tutt od LPq che possono essere udat dalla fbra. : La frequenza noralzzata V è par a π V = ka n n = λc Affnché la fbra s coport coe onoodo deve essere V <.40 e qund λc = 0. 68µ ana

2 Fotonca per telecouncazon Ottca udata Pana d 7 Alla lunhezza d'onda λ'= λc/ la frequenza noralzzata è π V = ana = 4.8 λ' e qund dalla tabella del 9.5 s vede che s possono propaare od LP 0, LP 0, LP e LP. 3. In una uda planare setrca d spessore h = 6 µ e lunhezza L = 0 c, n cu lo strato udante ha ndce d rfrazone n=.53, vene nettato un pulso con lunhezza d onda centrale λ = 0.5 µ. Sapendo che la uda supporta 4 od (che venono tutt ecctat dall pulso) s da una sta della dfferenza fra tep d propaazone no e asso assocat a var od. Sapendo che la uda supporta 4 od s può porre V ~= 4π da cu s rcava l ndce d rfrazone n dello strato esterno V = hk n n ovvero n =.4 dunque l tepo d transto asso e no sono: L τ n = n =.0 c τ ax = L c n n =.06 ns ns τ = τ ax τ n = 86 ps 4. Una fbra ottca ultodo presenta dspersone nterodale d 0 ns/k. Deternare l'apertura nuerca NA della fbra. S assua l'ndce d rfrazone del antello n =.5. La dspersone nterodale è par a τ n n n δn = L c n c Sosttuendo dat del problea, rsulta 3 δ n = 3 0 E qund NA = n δ n =

3 Fotonca per telecouncazon Ottca udata Pana 3 d 7 5. Lo strato udante d una uda d'onda planare setrca ha ndce d rfrazone n=.505 entre l aterale esterno ha ndce d rfrazone n =.5. Sapendo che lo spessore della uda è h=0 µ e che la radazone nettata ha lunhezza d'onda λ=0.8 µ, s calcol l nuero d od TE che s possono propaare nella uda. : La frequenza noralzzata V è par a e qund s propaano 4 od. V = hk n n = Una uda planare setrca ha ndc d rfrazone n= 3.5 e n =3.45, e spessore h=0 µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.9 µ. Deternare noltre lo spessore asso h della uda, affnché solo l odo fondaentale sa udato. La frequenza noralzzata è e qund l nuero de od è N Iponendo la condzone s ottene h <0.76 µ. V = hk n n = 4.5 = + Int( V/ π ) = 4 Int=parte ntera V < π 7. Una uda planare setrca ha ndc d rfrazone n=.53 e n =.5, e spessore h= µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.5 µ. Verfcare che l odo TE 0 s propaa nella uda con un ndce d rfrazone equvalente noralzzato b=0.893, e calcolare corrspondent paraetr β, γ e δ. La frequenza noralzzata è V = hk n n = 7.57 e qund s possono propaare3 od. Sosttuendo b=0.893 nell equazone d dspersone b V b = arct b s verfca che l odo n esae s propaa all nterno della uda. Dalla defnzone del paraetro b s ha

4 Fotonca per telecouncazon Ottca udata Pana 4 d 7 e qund n n β b= neff = =.57 n n k eff β = kn = 9.µ eff γ = kn β =.µ δ = β kn = 3.6µ neff snθ = = θ = 86.4 n 8. Calcolare la costante d propaazone e lo spot sze d un odo a setra clndrca d lunhezza d onda λ=0.5 µ che s propaa n una fbra ottca a proflo d ndce parabolco con ndc d rfrazone n =.53 e n =.5 e rao a=00 µ. Sccoe è la costante d propaazone è e lo spot-sze rsulta n n 3 α = = µ - a β = nk αk = 9. µ - v 0 = 7.7µ αk = 9. In una fbra ottca a salto d'ndce con ndc d rfrazone n=.5 e n =.50 e rao a=.3 µ s propaa l odo LP 0 con una costante d propaazone β=9.5µ - e lunhezza d onda λ=µ. a) Deternare l asso anolo α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato. b) Deternare l ndce d rfrazone equvalente noralzzato corrspondente al odo e verfcare se altr od s possono propaare all nterno della fbra. L apertura nuerca è e l anolo asso è NA no n n.. = snαm = = 0.46 α = 0.48rad =4. de. M

5 Fotonca per telecouncazon Ottca udata Pana 5 d 7 L ndce d rfrazone equvalente noralzzato corrspondente al odo è β n b = k = n n Sccoe rsulta solo questo odo s può propaare. V = ka n n = <.4 0. Calcolare l nuero d od d lunhezza d onda λ=.7 µ che s possono propaare all nterno d una uda planare asetrca d spessore h=0 µ con ndc d rfrazone n =.5 e n =.5 e ndce d asetra a=. L apertura nuerca è e la frequenza noralzzata è V= NA n n.. = = 0.73 V = hk n n = 6.4. Sccoe le frequenze d talo de od n una uda asetrca sono date dall espressone π V = π + arct a = π + 4 s possono propaare solo due od.. All nterno d una uda planare setrca, d ndc d rfrazone n =.5 e n =.5 e spessore h= 0 µ, s propaa l odo TE con ndce d rfrazone equvalente noralzzato b=0.5. Deternare la lunhezza d onda del odo. Sosttuendo b=0.5 nell equazone d dspersone (per l secondo odo =) b V b = π + arct b s ottene 5π V = e qund λ=0.98 µ.. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ= µ all nterno d una uda planare asetrca d spessore h=0., apertura nuerca NA=0. con n - n =0.0, e ndcare anche la relatva struttura d capo.

6 Fotonca per telecouncazon Ottca udata Pana 6 d 7 L ndce d asetra è n n n n a = = = n n NA e la frequenza d talo è π V = π + arct a = π +. 4 Sccoe è V = hkna = 0π l nuero d od che s possono propaare è Deternare l no valore dello spessore h d una uda planare asetrca con ndce d asetra a= e apertura nuerca NA=0.0 affnché n essa s propah l odo TE alla lunhezza d onda λ=0.8 µ. La frequenza d talo del odo TE n una uda asetrca è 9π Vc = π + arcta = 4 Dunque deve essere 4 V = hk n n π = hna> V λ e sosttuendo valor nuerc s ha h>90 µ. c 4. In una uda planare setrca con ndc d rfrazone n=.53 e n =.50 e lunhezza L=K, s propaa l odo TE 0 con una costante d propaazone β=9.0µ - e lunhezza d onda λ=0.5µ. Deternare l tepo d propaazone d un pulso lunoso assocato al odo e lo spessore asso dello strato udante h per l quale la uda s coporta coe onoodo. Poché β = kn snθ = 9µ s ha snθ = e qund l tepo d transto τ è Ln τ = = 5.6µ s csnθ La uda s coporta coe onoodo se V < π e qund h< 0.89µ

7 Fotonca per telecouncazon Ottca udata Pana 7 d 7 5. Deternare l anolo asso α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato n una fbra ottca con ndc d rfrazone n=.53 e n =.50. Deternare l rao asso del nucleo per una fbra che s coport coe onoodo alla lunhezza d onda λ= µ. Sccoe è N.A.= n n = = n0snαm s ha a M = rad. Affnché la fbra sa onoodo deve essere V <.4 e qund a <.7µ 6. In una uda planare asetrca d spessore h=40µ e ndc d rfrazone n=.53, n =.5 e n =.3 vene nettato un senale lunoso d lunhezza d onda λ=.5µ. Deternare l nuero d od che s possono propaare all nterno della uda. n n L ndce d asetra è a = = e la frequenza noralzzata è n n Confrontando questo valore con l espressone V = hk n n = 4.3 π + arct a S vede che l ulto odo che s può propaare è quello d ndce =. Dunque nella fbra s possono propaare 3 od (=0,, ).

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale.

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale. . ll metodo del fattore d scala globale Il progetto d un sstema d controllo dgtale può avvalers del cosddetto metodo del fattore d scala globale (FSG), attraverso l quale è possble stablre una corrspondenza

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007 Elettronca dello Stato Soldo Prova scrtta del 4 settebre 7 Cognoe e Noe Matrcola Fla Posto Es.) In un esperento d dffrazone d ragg n un crstallo cubco, la cella untara del retcolo recproco s trova ad essere

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

0$*1(7267$7,&$ i m D E F )LJXUD6FKHPDWL]]D]LRQLGLGLSROLDGLSRORHOHWWULFREGLSRORPDJQHWLFR³DPSHULD QR FGLSRORPDJQHWLFR³FRXORPELDQR

0$*1(7267$7,&$ i m D E F )LJXUD6FKHPDWL]]D]LRQLGLGLSROLDGLSRORHOHWWULFREGLSRORPDJQHWLFR³DPSHULD QR FGLSRORPDJQHWLFR³FRXORPELDQR $*(767$7,&$,'(//,'(//$$*(767$7,&$ Coe necessara preessa alla agnetostatca s rpropongono alcune evdenze sperental: a), PDJQHWLQDWXUDOL, che per l uso d laboratoro sono perlopù nella fora d barre sottl (agh

Dettagli

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Radiazioni ionizzanti

DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplice Radiazioni ionizzanti DIPARTIMENTO TEMATICO RADIAZIONI Struttura Semplce 21.01 Radazon onzzant TITOLO Interconfronto Consorzo Eraclto Msure d rateo d dose gamma n campo - Cuncolo esploratvo de la Maddalena Allneamento msure

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

CALCOLI MACROSCOPICI: TRASPORTO DI MATERIA

CALCOLI MACROSCOPICI: TRASPORTO DI MATERIA CCOI MCROSCOPICI: TRSPORTO DI MTERI a veloctà d trasferento d assa attraverso l nterfacca ha, per process d separaone, un ruolo altrettanto portante delle condon d equlbro terodnaco tra le fas perchè deterna

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

Flusso di un vettore v attraverso una superficie S. ( 1 ) v n n

Flusso di un vettore v attraverso una superficie S. ( 1 ) v n n Teorea d Gauss ( I Parte).I INTRODUZIONE. Prelnarente, s ntrodurrà la seguente defnzone: Flusso d un vettore v attraverso una superfce S. ( ) Sa dato un capo vettorale, ovvero una funzone v che ad ogn

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Capitolo 6 - Aria umida

Capitolo 6 - Aria umida unt d FISIC TECIC Catolo 6 - ra uda ca sulle scele gassose... Proretà terodnace dell ara uda...5 elazon er l calcolo d alcune roretà nterne...7 Ttolo...7 Eseo nuerco...8 Entala...9 Eseo nuerco...0 olue

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven Modellazone e calbrazone del traffco autostradale per la rete d Endhoen Freeway traffc odelng and calbraton for the Endhoen networ Relatore: Prof. Alessandro Gua Supersor: Prof. Bart De Schutter DCSC TUDelft

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

ORIGINE DELL ATTIVITÀ OTTICA

ORIGINE DELL ATTIVITÀ OTTICA ORIGINE DELL ATTIVITÀ OTTICA Rccardo Zanas Dpartmento d Chmca, Unverstà dsalerno 1 a Scuola Estva Nazonale d Spettroscope Chroottche Potenza, 28 Gugno - 1 Luglo 2004 24 gugno 2004 1 1 Potere rotatoro Per

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Esercizi sui gas perfetti

Esercizi sui gas perfetti Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao

Dettagli

D.G.R. VIII/8745. Punto 5.4 a) Nota interpretativa sulla valutazione quantitativa dell efficacia dei sistemi schermanti

D.G.R. VIII/8745. Punto 5.4 a) Nota interpretativa sulla valutazione quantitativa dell efficacia dei sistemi schermanti D.G.R. VIII/8745 Punto 5.4 a) Nota nterpretatva sulla valutazone quanttatva dell effcaca de tem schermant Cestec SpA Va Restell, 5/A 04 Mlano Italy - +39 0 66737400 Fax +39 0 66737499 nfo@cened.t - www.cened.t

Dettagli

Statica delle sezioni in cap (travi isostatiche)

Statica delle sezioni in cap (travi isostatiche) Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2016-17 Statca delle sezon n cap (trav sostatche) . Tra le verfche

Dettagli

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA A COVERSIOE STATICA EETTRICA/EETTRICA a conversone statca elettrca/elettrca può avvenre n due mod: converttor statc a semconduttor dspostv elettromagnetc (trasformator) I a conversone statca elettrca/elettrca

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Il diagramma PSICROMETRICO

Il diagramma PSICROMETRICO Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio Calcolo della potenza e dell energa necessara per la clmatzzazone d un edfco Rcambo d ara Ø dsperson Rcambo d ara φ φ dsperson + φ rcambo d'ara φ dsperson ΣUS (t nt t est ) φ rcambo d'ara Σn V ρ ara c

Dettagli

ESEMPIO DI AMPLIFICATORE A BJT AD EMETTITORE COMUNE CON RESISTENZA DI EMETTITORE

ESEMPIO DI AMPLIFICATORE A BJT AD EMETTITORE COMUNE CON RESISTENZA DI EMETTITORE SMPIO DI AMPIFIATO A JT AD MTTITO OMUN ON SISTNZA DI MTTITO (Dat uual all sepo d par.8.2, F.8. del testo..spener & M.M.Ghaus: Introduton to letron rut Desn) alolare l punto d laoro del JT Q d F., le aplfazon

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

STRATIGRAFIE PARTIZIONI VERTICALI

STRATIGRAFIE PARTIZIONI VERTICALI STRATIGRAFI PARTIZIONI VRTICALI 6. L solamento acustco: tecnche, calcol 2 Trasmssone rumor In edlza s possono dstnguere dfferent tp d rumor: rumor aere (vocare de vcn da altre untà abtatve, rumor provenent

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. Le poligonali. 13 Giugno 2004

Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento. Le poligonali. 13 Giugno 2004 Unverstà del stud d Bresca Facoltà d Inenera orso d Toporafa A Nuovo Ordnamento Le polonal 3 Guno 2004 Anno Accademco 2006-2007 Polonale aperta vncolata al estrem DATI I vncol: A, B, A, B, P, Q, P, Q Le

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε T A Q ε T A Trasmssone del calore per rraggamento Indce. Lo spettro elettromagnetco e la radazone termca. Interazone della radazone termca con la matera 3. La

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 10 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 10 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TERMODINAMICA E TERMOFLUIDODINAMICA Cap. 0 TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO ε 2 T 2 A 2 Q 2 ε T A G. Cesn Termodnamca e termofludodnamca - Cap. 0_Irraggamento Cap. 0 Trasmssone del calore per

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato lqudo Lo stato lqudo Lqud: energa de mot termc confrontable con quella delle forze coesve. Lmtata lbertà d movmento delle molecole, che determna una struttura

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models Alessandro Pluchno Metastablty, Nonextensvty and Glassy Dynamcs n a Class of Long Range Hamltonan Models Dscussone Tes per l consegumento del ttolo Febbrao 2005 Tutor: Prof.A.Rapsarda E-mal: alessandro.pluchno@ct.nfn.t

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

PERICOLOSITA SISMICA DI BASE INTRODUZIONE PROCEDURA DI CALCOLO La procedura di calcolo adoperata da RSL per la valutazione della funzione di trasferiento presuppone coe base di partenza uno o più accelerograi,

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ineneria Corso di rasissioni Nueriche docente: Prof. Vito Pascazio 6 a Lezione: 8// Soario Pulse plitude Modulation in banda base Pulse plitude Modulation passa-banda

Dettagli

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose?

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose? Captolo 8 Ottca geometrca 1. Come s rflette la luce? Cosa è la luce? Spacente: per l momento non rsponderemo a questa domanda. Invece d dre cosa la luce sa, ne analzzeremo dapprma l comportamento, utlzzando

Dettagli

F est. I int. I est. ,L int. costante. Kcm

F est. I int. I est. ,L int. costante. Kcm Urt Sere, anztutto, rleare alcune caratterstche coun agl urt. Gl urt sono olto bre ed e dunque dcle tener conto esplctaente delle orze che nterengono nell urto. Se ne rcaa norazone a partre dalle propreta

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

PROVIAMO A VERIFICARE SE...

PROVIAMO A VERIFICARE SE... PROVAMO A VERFCARE SE... CHECK llst PER la VERFCA DEL RSPETTO DE PRNCPAL OBBLGH N MATERA D SCUREZZA E SALUTE SUL lavoro (RF. PCCOL UFFC) Pago 1 d 7 S PRECSA CHE LA CHECK-L1ST D SEGUTO RPORTATA NON PUÒ

Dettagli