Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI"

Transcript

1 Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene nettato un pulso lunoso d lunhezza d'onda λ=.55 µ dall'ara (n 0 =) n odo che all'nterfacca d nresso la drezone d propaazone del rao fora un anolo α=0. rad con l'asse della fbra. Verfcare che un solo odo LP vene ecctato e calcolarne paraetr β, γ e δ ed l tepo d transto τ attraverso la fbra. : La frequenza noralzzata V è par a V = ka n n =.09 <.4 e qund la fbra s coporta coe onoodo. Applcando la lee d Snell-Carteso all'nterfacca d nresso s ha: n snα = n snα' = n cosθ 0 Allora s ha Inoltre l tepo d transto τ è snθ 0 n snα = n β = kn snθ = 6.µ = γ = kn cosθ = 0.49µ δ = β kn = 0.5µ Ln τ = = 5. 05µ s csnθ. Una fbra ottca a salto d'ndce ha un nucleo d rao a=5µ ed un'apertura nuerca NA= Deternare la pù pccola lunhezza d'onda λc, per la quale la fbra s coporta coe onoodo. Se la lunhezza d'onda è portata a λ'= λc/, dentfcare l ndc d tutt od LPq che possono essere udat dalla fbra. : La frequenza noralzzata V è par a π V = ka n n = λc Affnché la fbra s coport coe onoodo deve essere V <.40 e qund λc = 0. 68µ ana

2 Fotonca per telecouncazon Ottca udata Pana d 7 Alla lunhezza d'onda λ'= λc/ la frequenza noralzzata è π V = ana = 4.8 λ' e qund dalla tabella del 9.5 s vede che s possono propaare od LP 0, LP 0, LP e LP. 3. In una uda planare setrca d spessore h = 6 µ e lunhezza L = 0 c, n cu lo strato udante ha ndce d rfrazone n=.53, vene nettato un pulso con lunhezza d onda centrale λ = 0.5 µ. Sapendo che la uda supporta 4 od (che venono tutt ecctat dall pulso) s da una sta della dfferenza fra tep d propaazone no e asso assocat a var od. Sapendo che la uda supporta 4 od s può porre V ~= 4π da cu s rcava l ndce d rfrazone n dello strato esterno V = hk n n ovvero n =.4 dunque l tepo d transto asso e no sono: L τ n = n =.0 c τ ax = L c n n =.06 ns ns τ = τ ax τ n = 86 ps 4. Una fbra ottca ultodo presenta dspersone nterodale d 0 ns/k. Deternare l'apertura nuerca NA della fbra. S assua l'ndce d rfrazone del antello n =.5. La dspersone nterodale è par a τ n n n δn = L c n c Sosttuendo dat del problea, rsulta 3 δ n = 3 0 E qund NA = n δ n =

3 Fotonca per telecouncazon Ottca udata Pana 3 d 7 5. Lo strato udante d una uda d'onda planare setrca ha ndce d rfrazone n=.505 entre l aterale esterno ha ndce d rfrazone n =.5. Sapendo che lo spessore della uda è h=0 µ e che la radazone nettata ha lunhezza d'onda λ=0.8 µ, s calcol l nuero d od TE che s possono propaare nella uda. : La frequenza noralzzata V è par a e qund s propaano 4 od. V = hk n n = Una uda planare setrca ha ndc d rfrazone n= 3.5 e n =3.45, e spessore h=0 µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.9 µ. Deternare noltre lo spessore asso h della uda, affnché solo l odo fondaentale sa udato. La frequenza noralzzata è e qund l nuero de od è N Iponendo la condzone s ottene h <0.76 µ. V = hk n n = 4.5 = + Int( V/ π ) = 4 Int=parte ntera V < π 7. Una uda planare setrca ha ndc d rfrazone n=.53 e n =.5, e spessore h= µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.5 µ. Verfcare che l odo TE 0 s propaa nella uda con un ndce d rfrazone equvalente noralzzato b=0.893, e calcolare corrspondent paraetr β, γ e δ. La frequenza noralzzata è V = hk n n = 7.57 e qund s possono propaare3 od. Sosttuendo b=0.893 nell equazone d dspersone b V b = arct b s verfca che l odo n esae s propaa all nterno della uda. Dalla defnzone del paraetro b s ha

4 Fotonca per telecouncazon Ottca udata Pana 4 d 7 e qund n n β b= neff = =.57 n n k eff β = kn = 9.µ eff γ = kn β =.µ δ = β kn = 3.6µ neff snθ = = θ = 86.4 n 8. Calcolare la costante d propaazone e lo spot sze d un odo a setra clndrca d lunhezza d onda λ=0.5 µ che s propaa n una fbra ottca a proflo d ndce parabolco con ndc d rfrazone n =.53 e n =.5 e rao a=00 µ. Sccoe è la costante d propaazone è e lo spot-sze rsulta n n 3 α = = µ - a β = nk αk = 9. µ - v 0 = 7.7µ αk = 9. In una fbra ottca a salto d'ndce con ndc d rfrazone n=.5 e n =.50 e rao a=.3 µ s propaa l odo LP 0 con una costante d propaazone β=9.5µ - e lunhezza d onda λ=µ. a) Deternare l asso anolo α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato. b) Deternare l ndce d rfrazone equvalente noralzzato corrspondente al odo e verfcare se altr od s possono propaare all nterno della fbra. L apertura nuerca è e l anolo asso è NA no n n.. = snαm = = 0.46 α = 0.48rad =4. de. M

5 Fotonca per telecouncazon Ottca udata Pana 5 d 7 L ndce d rfrazone equvalente noralzzato corrspondente al odo è β n b = k = n n Sccoe rsulta solo questo odo s può propaare. V = ka n n = <.4 0. Calcolare l nuero d od d lunhezza d onda λ=.7 µ che s possono propaare all nterno d una uda planare asetrca d spessore h=0 µ con ndc d rfrazone n =.5 e n =.5 e ndce d asetra a=. L apertura nuerca è e la frequenza noralzzata è V= NA n n.. = = 0.73 V = hk n n = 6.4. Sccoe le frequenze d talo de od n una uda asetrca sono date dall espressone π V = π + arct a = π + 4 s possono propaare solo due od.. All nterno d una uda planare setrca, d ndc d rfrazone n =.5 e n =.5 e spessore h= 0 µ, s propaa l odo TE con ndce d rfrazone equvalente noralzzato b=0.5. Deternare la lunhezza d onda del odo. Sosttuendo b=0.5 nell equazone d dspersone (per l secondo odo =) b V b = π + arct b s ottene 5π V = e qund λ=0.98 µ.. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ= µ all nterno d una uda planare asetrca d spessore h=0., apertura nuerca NA=0. con n - n =0.0, e ndcare anche la relatva struttura d capo.

6 Fotonca per telecouncazon Ottca udata Pana 6 d 7 L ndce d asetra è n n n n a = = = n n NA e la frequenza d talo è π V = π + arct a = π +. 4 Sccoe è V = hkna = 0π l nuero d od che s possono propaare è Deternare l no valore dello spessore h d una uda planare asetrca con ndce d asetra a= e apertura nuerca NA=0.0 affnché n essa s propah l odo TE alla lunhezza d onda λ=0.8 µ. La frequenza d talo del odo TE n una uda asetrca è 9π Vc = π + arcta = 4 Dunque deve essere 4 V = hk n n π = hna> V λ e sosttuendo valor nuerc s ha h>90 µ. c 4. In una uda planare setrca con ndc d rfrazone n=.53 e n =.50 e lunhezza L=K, s propaa l odo TE 0 con una costante d propaazone β=9.0µ - e lunhezza d onda λ=0.5µ. Deternare l tepo d propaazone d un pulso lunoso assocato al odo e lo spessore asso dello strato udante h per l quale la uda s coporta coe onoodo. Poché β = kn snθ = 9µ s ha snθ = e qund l tepo d transto τ è Ln τ = = 5.6µ s csnθ La uda s coporta coe onoodo se V < π e qund h< 0.89µ

7 Fotonca per telecouncazon Ottca udata Pana 7 d 7 5. Deternare l anolo asso α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato n una fbra ottca con ndc d rfrazone n=.53 e n =.50. Deternare l rao asso del nucleo per una fbra che s coport coe onoodo alla lunhezza d onda λ= µ. Sccoe è N.A.= n n = = n0snαm s ha a M = rad. Affnché la fbra sa onoodo deve essere V <.4 e qund a <.7µ 6. In una uda planare asetrca d spessore h=40µ e ndc d rfrazone n=.53, n =.5 e n =.3 vene nettato un senale lunoso d lunhezza d onda λ=.5µ. Deternare l nuero d od che s possono propaare all nterno della uda. n n L ndce d asetra è a = = e la frequenza noralzzata è n n Confrontando questo valore con l espressone V = hk n n = 4.3 π + arct a S vede che l ulto odo che s può propaare è quello d ndce =. Dunque nella fbra s possono propaare 3 od (=0,, ).

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Dai numeri naturali ai numeri reali

Dai numeri naturali ai numeri reali .1 Introduzione Dai nueri naturali ai nueri reali In questa unità didattica vogliao riprendere rapidaente le nostre conoscenze sugli insiei nuerici (N, Z e Q), e successivaente apliarle a coprendere i

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

Nota metodologica Strategia di campionamento e livello di precisione dei risultati

Nota metodologica Strategia di campionamento e livello di precisione dei risultati Nota etodologica Strategia di capionaento e livello di precisione dei risultati 1. Obiettivi conoscitivi La popolaione di interesse dell indagine in oggetto, ossia l insiee delle unità statistiche intorno

Dettagli

Misure elettriche circuiti a corrente continua

Misure elettriche circuiti a corrente continua Misure elettriche circuiti a corrente continua Legge di oh Dato un conduttore che connette i terinali di una sorgente di forza elettrootrice si osserva nel conduttore stesso un passaggio di corrente elettrica

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

CompitoTotale_21Feb_tutti_2011.nb 1

CompitoTotale_21Feb_tutti_2011.nb 1 CopitoTotale_2Feb_tutti_20.nb L Sia data una distribuzione di carica positiva, disposta su una seicirconferenza di raggio R con densità lineare di carica costante l. Deterinare : al l espressione del capo

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

r~~f~~. --r-~r-r ---- _[::=_~- r-l

r~~f~~. --r-~r-r ---- _[::=_~- r-l In tutti i problei si userà coe velocità del suono in aria il valore 340 /s (valido per una teperatura dell'aria di circa 18 C), salvo diversa indicazione. La propagazione ondosa La figura seguente ostra

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Impianti di Condizionamento: Impianti a tutt'aria e misti

Impianti di Condizionamento: Impianti a tutt'aria e misti Facoltà di Ingegneria - Polo di Rieti Corso di " Ipianti Tecnici per l'edilizia" Ipianti di Condizionaento: Ipianti a tutt'aria e isti Prof. Ing. Marco Roagna INTRODUZIONE Una volta noti i carichi sensibili

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI 1. Tipi di Onde Exercie 1. Un onda viaggia lungo una corda tea. La ditanza verticale dalla creta al ventre è di 13 c e la ditanza orizzontale dalla creta

Dettagli

CINEMATICA DEL CORPO RIGIDO

CINEMATICA DEL CORPO RIGIDO INEMTI DE ORPO RIGIDO o tudo della geometra degl potament de punt d un tema materale potzzato come rgdo rentra n quella parte della Meccanca laca che è la nematca. a cnematca tuda pobl movment d un corpo

Dettagli

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice

Metodologia di controllo. AUTORIMESSE (III edizione) Codice attività: 63.21.0. Indice Metodologa d controllo AUTORIMESSE (III edzone) Codce attvtà: 63.21.0 Indce 1. PREMESSA... 2 2. ATTIVITÀ PREPARATORIA AL CONTROLLO... 3 2.1 Interrogazon dell Anagrafe Trbutara... 3 2.2 Altre nterrogazon

Dettagli

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico

TIP Aerotermi TIP. Aerotermi come apparecchi a parete e soffitto Catalogo tecnico TIP Aeroteri TIP Aeroteri coe apparecchi a parete e soffitto Catalogo tecnico Indice 01 Inforazioni sul prodotto 6 Panoraica 7 Dati sul prodotto 8 Guida alla scelta: Panoraica delle versioni 9 TIP in un

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO

CONTO CONSUNTIVO PER L'ESERCIZIO FINANZIARIO 2012 RELAZIONE ILLUSTRATIVA DEL DIRIGENTE SCOLASTICO DIREZIONE DIDATTICA DEL 4 CIRCOLO DI FORLI' Va Gorgna Saff, n.12 Tel 0543/33345 fax 0543/458861 C.F. 80004560407 CM FOEE00400B e-mal foee00400b@struzone.t - posta cert.: foee00400b@pec.struzone.t sto web:

Dettagli

BOZZA. a min [mm] A min =P/σ adm [mm 2 ]

BOZZA. a min [mm] A min =P/σ adm [mm 2 ] ezione n. 6 e strutture in acciaio Verifica di elementi strutturali in acciaio Il problema della stabilità dell equilibrio Uno degli aspetti principali da tenere ben presente nella progettazione delle

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

Confronto fra valore del misurando e valore di riferimento (1 di 2)

Confronto fra valore del misurando e valore di riferimento (1 di 2) Confronto fra valore del isurando e valore di riferiento (1 di 2) Talvolta si deve espriere un parere sulla accettabilità o eno di una caratteristica fisica del isurando ediante il confronto fra il valore

Dettagli

La dinamica delle collisioni

La dinamica delle collisioni La dinamica delle collisioni Un video: clic Un altro video: clic Analisi di un crash test (I) I filmati delle prove d impatto distruttive degli autoveicoli, dato l elevato numero dei fotogrammi al secondo,

Dettagli

Nadia Garbellini. L A TEX facile. Guida all uso

Nadia Garbellini. L A TEX facile. Guida all uso Nada Garbelln L A TEX facle Guda all uso 2010 Nada Garbelln L A TEX facle Guda all uso seconda edzone rveduta e corretta 2010 PRESENTAZIONE L amca e brava Nada Garbelln, autrce d questa bella e semplce

Dettagli

COMPORTAMENTO SISMICO DELLE STRUTTURE

COMPORTAMENTO SISMICO DELLE STRUTTURE COMPORTAMENTO SISMICO DELLE STRUTTURE Durane un erreoo, le oscillazioni del erreno di fondazione provocano nelle sovrasani sruure delle oscillazioni forzae. Quando il erreoo si arresa, i ovieni della sruura

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12

Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Esercizio 1 Il 24 10 Ne (T 1/2 =3.38 min) decade β - in 24 11 Na (T 1/2 =15 h), che a sua volta decade β - in 24 12 Mg. Dire quali livelli sono raggiungibili dal decadimento beta e indicare lo schema di

Dettagli

PREFAZIONE. di Giuseppe Berto

PREFAZIONE. di Giuseppe Berto , PREFAZIONE d Guseppe Berto RICORDO DEL TERRAGLIO Quand'ero govane, e la vogla d grare l mondo m spngeva n terre lontane, a ch m chedeva notze del mo paese, rspondevo: l mo paese è una strada. In effett,

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

I BOLLETTINI VALANGHE AINEVA e LA SCALA DI PERICOLO

I BOLLETTINI VALANGHE AINEVA e LA SCALA DI PERICOLO CENTRO NIVO METEOROLOGICO ARPA BORMIO I BOLLETTINI VALANGHE AINEVA e LA SCALA DI PERICOLO Corso 2 A- AINEVA Guide Alpine della Lombardia Bormio 25-29 gennaio 2010 A cura di Flavio Berbenni MARCATO FORTE

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

ECO HOT WATER Pompa di calore per acqua calda sanitaria con gestione remota tramite APP IT 01. Ecoenergia. Idee da installare

ECO HOT WATER Pompa di calore per acqua calda sanitaria con gestione remota tramite APP IT 01. Ecoenergia. Idee da installare ECO HOT WATER Pompa di calore per acqua calda sanitaria con gestione remota tramite APP IT 01 Ecoenergia Idee da installare La pompa di calore Eco Hot Water TEMP La pompa di calore a basamento Eco Hot

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

Guida Rapida. Guida Rapida. Telefoni. Progetto. Collegati ai sistemi Progetto. PROMELIT Meglio comunicare meglio.

Guida Rapida. Guida Rapida. Telefoni. Progetto. Collegati ai sistemi Progetto. PROMELIT Meglio comunicare meglio. Guida Rapida Guida Rapida Progetto Telefoni N e x t Collegati ai sistemi Progetto 35 PROMELT Meglio comunicare meglio. Telefoni PROGETTO NEXT Telefono ntercomunicante PROGETTO NEXT l Vs. apparecchio ha

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua

MACCHINE ELETTRICHE. Stefano Pastore. Macchine in Corrente Continua MACCHINE ELETTRICHE Mahine in Corrente Continua Stefano Pastore Dipartiento di Ingegneria e Arhitettura Corso di Elettrotenia (IN 043) a.a. 2012-13 Statore Sistea induttore (Statore): anello in ghisa o

Dettagli

Leica Lino L360, L2P5, L2+, L2, P5, P3

Leica Lino L360, L2P5, L2+, L2, P5, P3 Leica Lino L360, L25, L2+, L2, 5, 3 Manuale d'uso Versione 757665g Italiano Congratulazioni per aver acquistato Leica Lino. Le ore di sicurezza sono allegate al Manuale d'uso. Leggere attentaente le ore

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI

RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI RELAZIONE TECNICA 1. 1 - DESCRIZIONE GENERALE DELLE LAVORAZIONI Le lavorazioni oggetto della presente relazione sono rappresentate dalla demolizione di n 14 edifici costruiti tra gli anni 1978 ed il 1980

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI

ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI ALLEGATO XXXVI VALORI LIMITE DI ESPOSIZIONE E VALORI DI AZIONE PER I CAMPI ELETTROMAGNETICI CAMPI ELETTROMAGNETICI Le seguenti grandezze fisiche sono utilizzate per descrivere l'esposizione ai campi elettromagnetici:

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile

Lorenzo Pistocchini RICERCA DI SISTEMA ELETTRICO. Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile Agenza Nazonale per le Nuove Tecnologe, l Energa e lo Svluppo Economco Sostenble RICERCA DI SISTEMA ELETTRICO Ottmzzazone termofludodnamca e dmensonamento d uno scambatore d calore n controcorrente con

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

Una voce poco fa / Barbiere di Siviglia

Una voce poco fa / Barbiere di Siviglia Una voce oco a / Barbiere di Siviglia Andante 4 3 RÔ tr tr tr 4 3 RÔ & K r # Gioachino Rossini # n 6 # R R n # n R R R R # n 8 # R R n # R R n R R & & 12 r r r # # # R Una voce oco a qui nel cor mi ri

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Il MINISTRO DELLA GIUSTIZIA di concerto con IL MINISTRO DEI LAVORI PUBBLICI

Il MINISTRO DELLA GIUSTIZIA di concerto con IL MINISTRO DEI LAVORI PUBBLICI Corrispettivi delle attività di progettazione e delle altre attività ai sensi dell articolo 17, comma 14 bis, della legge 11 febbraio 1994 n.109 e successive modifiche. l MNSTRO DELLA GUSTZA di concerto

Dettagli

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle

Com è fatto l atomo ATOMO. UNA VOLTA si pensava che l atomo fosse indivisibile. OGGI si pensa che l atomo è costituito da tre particelle STRUTTURA ATOMO Com è fatto l atomo ATOMO UNA VOLTA si pensava che l atomo fosse indivisibile OGGI si pensa che l atomo è costituito da tre particelle PROTONI particelle con carica elettrica positiva e

Dettagli

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I

Università degli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica. Corso di Esperimentazioni I Università deli Studi di Firenze Facoltà di Scienze Mat., Fis. e Nat. Corso di Laurea in Fisica Corso di Esperimentazioni I Prof. R. Falciani Prof. A. Stefanini Appunti su: PROPAGAZIONE DEGLI ERRORI NELLE

Dettagli

DIODO E RADDRIZZATORI DI PRECISIONE

DIODO E RADDRIZZATORI DI PRECISIONE OO E AZZATO PECSONE raddrzzar ( refcar) sn crcu mpega per la rasfrmazne d segnal bdreznal n segnal undreznal. Usand, però, dd per raddrzzare segnal, s avrà l svanagg d nn per raddrzzare segnal la cu ampezza

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

/ * " 6 7 -" 1< " *,Ê ½, /, "6, /, Ê, 9Ê -" 1/ " - ÜÜÜ Ìi «V Ì

/ *  6 7 - 1<  *,Ê ½, /, 6, /, Ê, 9Ê - 1/  - ÜÜÜ Ìi «V Ì LA TRASMISSIONE DEL CALORE GENERALITÀ 16a Allorché si abbiano due corpi a differenti temperature, la temperatura del corpo più caldo diminuisce, mentre la temperatura di quello più freddo aumenta. La progressiva

Dettagli

Era M & Era MH. I nuovi motori per tende e tapparelle, anche con manovra di soccorso manuale. Compatti e robusti, semplici e pratici da installare.

Era M & Era MH. I nuovi motori per tende e tapparelle, anche con manovra di soccorso manuale. Compatti e robusti, semplici e pratici da installare. Era M & Era MH I nuovi motori per tende e tapparelle, anche con manovra di soccorso manuale. Compatti e robusti, semplici e pratici da installare. Era M Motore tubolare ideale per tende e tapparelle con

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Appunti di Teoria dei Segnali a.a. 010/011 L.Verdoliva In questa sezione studieremo i sistemi tempo continuo e tempo discreto nel dominio del tempo. Li classificheremo in base alle loro proprietà e focalizzeremo

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

Canzoni popolari. Melissa Jacobacci. 3 scuola elementare. Chiara Caverzasio e Renata Verzaroli. 4 a scuola elementare

Canzoni popolari. Melissa Jacobacci. 3 scuola elementare. Chiara Caverzasio e Renata Verzaroli. 4 a scuola elementare Canzoni popolari Melissa Jacobacci Chiara Caverzasio e Renata Verzaroli 3 scuola elementare 4 a scuola elementare ALLA MATTINA C È IL CAFFE Alla mattina c è il caffè, ma senza zucchero, ma senza zucchero;

Dettagli

Interpretazione delle immagini SAR: interazione delle onde em con la superficie

Interpretazione delle immagini SAR: interazione delle onde em con la superficie Interpretazione delle immagini SAR: interazione delle onde em con la superficie Il segnale radar viene riflesso, diffuso, assorbito e trasmesso (rifratto). La riflessione è originata da materiali con alta

Dettagli

LA PRATICA DEL GIOCO DELLE CARTE NEL BRIDGE

LA PRATICA DEL GIOCO DELLE CARTE NEL BRIDGE Luciano Cosimi Istruttore Federale F.I.G.B. LA PRATICA DEL GIOCO DELLE CARTE NEL BRIDGE POTERE E LOGICA DELLE CARTE REGOLE GENERALI GIOCO DEL DICHIARANTE COL MORTO CONTROGIOCO DEI DIFENSORI dalle manovre

Dettagli

Cuscinetti a strisciamento e a rotolamento

Cuscinetti a strisciamento e a rotolamento Cuscinetti a strisciamento e a rotolamento La funzione dei cuscinetti a strisciamento e a rotolamento è quella di interporsi tra organi di macchina in rotazione reciproca. Questi elementi possono essere

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Risposta sismica dei terreni e spettro di risposta normativo

Risposta sismica dei terreni e spettro di risposta normativo Dipartimento di Ingegneria Strutturale, Aerospaziale e Geotecnica Risposta sismica dei terreni e spettro di risposta normativo Prof. Ing. L.Cavaleri L amplificazione locale: gli aspetti matematici u=spostamentoin

Dettagli

Fig. 2 - Spiegazione della rifrazione. Fig. 1 - La rifrazione

Fig. 2 - Spiegazione della rifrazione. Fig. 1 - La rifrazione O1 - LA RIFRAZIONE La luce, si sa, viaggia in linea retta. Detto così, sembra ovvio. Ma Prima di tutto, cos è la luce? In secondo luogo, come viaggia? In terzo luogo, proprio sempre in linea retta? Vediamo.

Dettagli

APPUNTI DI TRASMISSIONE DEL CALORE

APPUNTI DI TRASMISSIONE DEL CALORE Università degli Studi di Trieste APPUNTI DI TRASMISSIONE DEL CALORE Corso di Fisica Tecnica per Ingegneria Industriale Ezio Zandegiacomo Anno Accademico 009-0 ii Indice INTRODUZIONE ALLA TRASMISSIONE

Dettagli

Ottica in policarbonato opalino bianco

Ottica in policarbonato opalino bianco Modulo a sospensione e a soffitto per lampade fluorescenti lineari T5. Schermo di chiusura frontale in policarbonato opalino bianco, a filo apparecchio. Ottica in policarbonato opalino bianco 7086 Modulo

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

Bilance da pavimento / Bilance per pallet / Bilance per carrelli

Bilance da pavimento / Bilance per pallet / Bilance per carrelli Modelli A Z Paina è una società completamente indipendente, estita dai suoi proprietari da ormai sesta enerazioni, al servizio del Cliente con la qualità e l affidabilità dei suoi prodotti. veloce Servizio

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

CATALOGO LINEA PRODOTTI 2013/2014 ED. SETTEMBRE 2013

CATALOGO LINEA PRODOTTI 2013/2014 ED. SETTEMBRE 2013 CATALOGO LINEA PRODOTTI 2013/2014 ED. SETTEMBRE 2013 2 ELETTRIFICATORI PORTATILI 0615200 *0615200* FENCELINE B200 STD CON PICCHETTO MASSA, CONNESSIONE LINEA E TERRA 9V: 0,16J (12V: 0,21J) 0615202 *0615202*

Dettagli

LEZIONE 5 Interazione Particelle Cariche-Materia

LEZIONE 5 Interazione Particelle Cariche-Materia LEZIONE 5 Interazione Particelle Cariche-Materia Particelle alfa Le particelle alfa interagiscono intensamente con la materia attraverso collisioni/interazioni che producono lungo la traccia una elevata

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì FONDAZIONI - II Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì FONDAZIONI - II AGGIORNAMENTO 12/12/2014 Fondazioni dirette e indirette Le strutture di fondazione trasmettono

Dettagli

Il corretto approccio per l isolamento dall interno e dall esterno

Il corretto approccio per l isolamento dall interno e dall esterno Seminario 8 novembre 2012 Die Naturkraft aus Schweizer Stein Il corretto approccio per l isolamento dall interno e dall esterno Mirko Galli Arch. Dipl. ETH physarch sagl, Viaganello FLUMROC AG Postfach

Dettagli

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE

FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE DISPENSE DI: FONDAMENTI DI MECCANICA APPLICATA ALLE MACCHINE Testo di riferieto E. Fuaioli ed altri Meccaica applicata alle acchie vol. e - Ed. Patro BOZZA Idice. INTRODUZIONE ALLA MECCANICA APPLICATA

Dettagli