Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI"

Transcript

1 Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene nettato un pulso lunoso d lunhezza d'onda λ=.55 µ dall'ara (n 0 =) n odo che all'nterfacca d nresso la drezone d propaazone del rao fora un anolo α=0. rad con l'asse della fbra. Verfcare che un solo odo LP vene ecctato e calcolarne paraetr β, γ e δ ed l tepo d transto τ attraverso la fbra. : La frequenza noralzzata V è par a V = ka n n =.09 <.4 e qund la fbra s coporta coe onoodo. Applcando la lee d Snell-Carteso all'nterfacca d nresso s ha: n snα = n snα' = n cosθ 0 Allora s ha Inoltre l tepo d transto τ è snθ 0 n snα = n β = kn snθ = 6.µ = γ = kn cosθ = 0.49µ δ = β kn = 0.5µ Ln τ = = 5. 05µ s csnθ. Una fbra ottca a salto d'ndce ha un nucleo d rao a=5µ ed un'apertura nuerca NA= Deternare la pù pccola lunhezza d'onda λc, per la quale la fbra s coporta coe onoodo. Se la lunhezza d'onda è portata a λ'= λc/, dentfcare l ndc d tutt od LPq che possono essere udat dalla fbra. : La frequenza noralzzata V è par a π V = ka n n = λc Affnché la fbra s coport coe onoodo deve essere V <.40 e qund λc = 0. 68µ ana

2 Fotonca per telecouncazon Ottca udata Pana d 7 Alla lunhezza d'onda λ'= λc/ la frequenza noralzzata è π V = ana = 4.8 λ' e qund dalla tabella del 9.5 s vede che s possono propaare od LP 0, LP 0, LP e LP. 3. In una uda planare setrca d spessore h = 6 µ e lunhezza L = 0 c, n cu lo strato udante ha ndce d rfrazone n=.53, vene nettato un pulso con lunhezza d onda centrale λ = 0.5 µ. Sapendo che la uda supporta 4 od (che venono tutt ecctat dall pulso) s da una sta della dfferenza fra tep d propaazone no e asso assocat a var od. Sapendo che la uda supporta 4 od s può porre V ~= 4π da cu s rcava l ndce d rfrazone n dello strato esterno V = hk n n ovvero n =.4 dunque l tepo d transto asso e no sono: L τ n = n =.0 c τ ax = L c n n =.06 ns ns τ = τ ax τ n = 86 ps 4. Una fbra ottca ultodo presenta dspersone nterodale d 0 ns/k. Deternare l'apertura nuerca NA della fbra. S assua l'ndce d rfrazone del antello n =.5. La dspersone nterodale è par a τ n n n δn = L c n c Sosttuendo dat del problea, rsulta 3 δ n = 3 0 E qund NA = n δ n =

3 Fotonca per telecouncazon Ottca udata Pana 3 d 7 5. Lo strato udante d una uda d'onda planare setrca ha ndce d rfrazone n=.505 entre l aterale esterno ha ndce d rfrazone n =.5. Sapendo che lo spessore della uda è h=0 µ e che la radazone nettata ha lunhezza d'onda λ=0.8 µ, s calcol l nuero d od TE che s possono propaare nella uda. : La frequenza noralzzata V è par a e qund s propaano 4 od. V = hk n n = Una uda planare setrca ha ndc d rfrazone n= 3.5 e n =3.45, e spessore h=0 µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.9 µ. Deternare noltre lo spessore asso h della uda, affnché solo l odo fondaentale sa udato. La frequenza noralzzata è e qund l nuero de od è N Iponendo la condzone s ottene h <0.76 µ. V = hk n n = 4.5 = + Int( V/ π ) = 4 Int=parte ntera V < π 7. Una uda planare setrca ha ndc d rfrazone n=.53 e n =.5, e spessore h= µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.5 µ. Verfcare che l odo TE 0 s propaa nella uda con un ndce d rfrazone equvalente noralzzato b=0.893, e calcolare corrspondent paraetr β, γ e δ. La frequenza noralzzata è V = hk n n = 7.57 e qund s possono propaare3 od. Sosttuendo b=0.893 nell equazone d dspersone b V b = arct b s verfca che l odo n esae s propaa all nterno della uda. Dalla defnzone del paraetro b s ha

4 Fotonca per telecouncazon Ottca udata Pana 4 d 7 e qund n n β b= neff = =.57 n n k eff β = kn = 9.µ eff γ = kn β =.µ δ = β kn = 3.6µ neff snθ = = θ = 86.4 n 8. Calcolare la costante d propaazone e lo spot sze d un odo a setra clndrca d lunhezza d onda λ=0.5 µ che s propaa n una fbra ottca a proflo d ndce parabolco con ndc d rfrazone n =.53 e n =.5 e rao a=00 µ. Sccoe è la costante d propaazone è e lo spot-sze rsulta n n 3 α = = µ - a β = nk αk = 9. µ - v 0 = 7.7µ αk = 9. In una fbra ottca a salto d'ndce con ndc d rfrazone n=.5 e n =.50 e rao a=.3 µ s propaa l odo LP 0 con una costante d propaazone β=9.5µ - e lunhezza d onda λ=µ. a) Deternare l asso anolo α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato. b) Deternare l ndce d rfrazone equvalente noralzzato corrspondente al odo e verfcare se altr od s possono propaare all nterno della fbra. L apertura nuerca è e l anolo asso è NA no n n.. = snαm = = 0.46 α = 0.48rad =4. de. M

5 Fotonca per telecouncazon Ottca udata Pana 5 d 7 L ndce d rfrazone equvalente noralzzato corrspondente al odo è β n b = k = n n Sccoe rsulta solo questo odo s può propaare. V = ka n n = <.4 0. Calcolare l nuero d od d lunhezza d onda λ=.7 µ che s possono propaare all nterno d una uda planare asetrca d spessore h=0 µ con ndc d rfrazone n =.5 e n =.5 e ndce d asetra a=. L apertura nuerca è e la frequenza noralzzata è V= NA n n.. = = 0.73 V = hk n n = 6.4. Sccoe le frequenze d talo de od n una uda asetrca sono date dall espressone π V = π + arct a = π + 4 s possono propaare solo due od.. All nterno d una uda planare setrca, d ndc d rfrazone n =.5 e n =.5 e spessore h= 0 µ, s propaa l odo TE con ndce d rfrazone equvalente noralzzato b=0.5. Deternare la lunhezza d onda del odo. Sosttuendo b=0.5 nell equazone d dspersone (per l secondo odo =) b V b = π + arct b s ottene 5π V = e qund λ=0.98 µ.. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ= µ all nterno d una uda planare asetrca d spessore h=0., apertura nuerca NA=0. con n - n =0.0, e ndcare anche la relatva struttura d capo.

6 Fotonca per telecouncazon Ottca udata Pana 6 d 7 L ndce d asetra è n n n n a = = = n n NA e la frequenza d talo è π V = π + arct a = π +. 4 Sccoe è V = hkna = 0π l nuero d od che s possono propaare è Deternare l no valore dello spessore h d una uda planare asetrca con ndce d asetra a= e apertura nuerca NA=0.0 affnché n essa s propah l odo TE alla lunhezza d onda λ=0.8 µ. La frequenza d talo del odo TE n una uda asetrca è 9π Vc = π + arcta = 4 Dunque deve essere 4 V = hk n n π = hna> V λ e sosttuendo valor nuerc s ha h>90 µ. c 4. In una uda planare setrca con ndc d rfrazone n=.53 e n =.50 e lunhezza L=K, s propaa l odo TE 0 con una costante d propaazone β=9.0µ - e lunhezza d onda λ=0.5µ. Deternare l tepo d propaazone d un pulso lunoso assocato al odo e lo spessore asso dello strato udante h per l quale la uda s coporta coe onoodo. Poché β = kn snθ = 9µ s ha snθ = e qund l tepo d transto τ è Ln τ = = 5.6µ s csnθ La uda s coporta coe onoodo se V < π e qund h< 0.89µ

7 Fotonca per telecouncazon Ottca udata Pana 7 d 7 5. Deternare l anolo asso α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato n una fbra ottca con ndc d rfrazone n=.53 e n =.50. Deternare l rao asso del nucleo per una fbra che s coport coe onoodo alla lunhezza d onda λ= µ. Sccoe è N.A.= n n = = n0snαm s ha a M = rad. Affnché la fbra sa onoodo deve essere V <.4 e qund a <.7µ 6. In una uda planare asetrca d spessore h=40µ e ndc d rfrazone n=.53, n =.5 e n =.3 vene nettato un senale lunoso d lunhezza d onda λ=.5µ. Deternare l nuero d od che s possono propaare all nterno della uda. n n L ndce d asetra è a = = e la frequenza noralzzata è n n Confrontando questo valore con l espressone V = hk n n = 4.3 π + arct a S vede che l ulto odo che s può propaare è quello d ndce =. Dunque nella fbra s possono propaare 3 od (=0,, ).

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven Modellazone e calbrazone del traffco autostradale per la rete d Endhoen Freeway traffc odelng and calbraton for the Endhoen networ Relatore: Prof. Alessandro Gua Supersor: Prof. Bart De Schutter DCSC TUDelft

Dettagli

PERICOLOSITA SISMICA DI BASE INTRODUZIONE PROCEDURA DI CALCOLO La procedura di calcolo adoperata da RSL per la valutazione della funzione di trasferiento presuppone coe base di partenza uno o più accelerograi,

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

Capitolo 6 - Aria umida

Capitolo 6 - Aria umida unt d FISIC TECIC Catolo 6 - ra uda ca sulle scele gassose... Proretà terodnace dell ara uda...5 elazon er l calcolo d alcune roretà nterne...7 Ttolo...7 Eseo nuerco...8 Entala...9 Eseo nuerco...0 olue

Dettagli

D.G.R. VIII/8745. Punto 5.4 a) Nota interpretativa sulla valutazione quantitativa dell efficacia dei sistemi schermanti

D.G.R. VIII/8745. Punto 5.4 a) Nota interpretativa sulla valutazione quantitativa dell efficacia dei sistemi schermanti D.G.R. VIII/8745 Punto 5.4 a) Nota nterpretatva sulla valutazone quanttatva dell effcaca de tem schermant Cestec SpA Va Restell, 5/A 04 Mlano Italy - +39 0 66737400 Fax +39 0 66737499 nfo@cened.t - www.cened.t

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

Esercizi sui gas perfetti

Esercizi sui gas perfetti Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio Calcolo della potenza e dell energa necessara per la clmatzzazone d un edfco Rcambo d ara Ø dsperson Rcambo d ara φ φ dsperson + φ rcambo d'ara φ dsperson ΣUS (t nt t est ) φ rcambo d'ara Σn V ρ ara c

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

PROVIAMO A VERIFICARE SE...

PROVIAMO A VERIFICARE SE... PROVAMO A VERFCARE SE... CHECK llst PER la VERFCA DEL RSPETTO DE PRNCPAL OBBLGH N MATERA D SCUREZZA E SALUTE SUL lavoro (RF. PCCOL UFFC) Pago 1 d 7 S PRECSA CHE LA CHECK-L1ST D SEGUTO RPORTATA NON PUÒ

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1 Rud Mathematc Numero 07-000-06. Edtorale.... Problem.... Ancora sulle blance.... Estrazon del lotto... 3. Soluzon e Note... 3. [06]... 3.. Problema dell'oste... 3.. Blance...3 4. Paraphernala Mathematca...3

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata Grafca opterzzata URVE & UPERFII copo: fornre na rappresentazone ateatca per rappresentare 2D e 3D del oett Unversty of Ferrara opter slaton rop http://www.d.nfe.t/~cs Grafca opterzzata Bsona scelere na

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ineneria Corso di rasissioni Nueriche docente: Prof. Vito Pascazio 6 a Lezione: 8// Soario Pulse plitude Modulation in banda base Pulse plitude Modulation passa-banda

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1)

La probabilità di avere non più di un maschio, significa la probabilità di averne 0 o 1: ( 0) P( 1) Esercizi sulle distribuzioni binoiale e poissoniana Esercizio n. Una coppia ha tre figli. Calcolare la probabilità che abbia non più di un aschio se la probabilità di avere un aschio od una feina è sepre

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Allocazione Statica. n i

Allocazione Statica. n i Esercazon d Sse Inegra d Produzone Allocazone Saca I eod asa sull'allocazone saca scheazzano l processo d assegnazone delle rsorse alle par consderandolo da un lao ndpendene dal epo e rascurando dall'alro

Dettagli

2. Le soluzioni elettrolitiche

2. Le soluzioni elettrolitiche . Le soluzon elettroltche Classfcazone degl elettrolt: 1) soluzon elettroltche ) solvent onc: a) sal fus b) lqud onc 3) elettrolt sold Struttura del solvente Interazone one/solvente Interazone one/one

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

Trasformazioni termodinamiche - I parte

Trasformazioni termodinamiche - I parte Le trasormazon recproche tra le energe d tpo meccanco e l calore, classcato da tempo come una delle orme nelle qual avvene lo scambo d energa, sono l oggetto d studo su cu s onda la Termodnamca, una mportante

Dettagli

Appunti delle lezioni di Laboratorio di Strumentazione e Misura

Appunti delle lezioni di Laboratorio di Strumentazione e Misura Sergo Frasca Appunt delle lezon d Laboratoro d Strumentazone e Msura Dpartmento d Fsca Unverstà d Roma La Sapenza Museo del Dpartmento d Fsca dell'unverstà La Sapenza Versone 5 ottobre 004 Versone aggornata

Dettagli

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione 1 E S E R C I Z I S U L L E P O M P E C E N T R I F U G E ESERCIZIO 1 In un panto ollevaento per acqua ono not Il lvello geoetco tra ue erbato g 0 La preone aoluta ul erbatoo a valle p A p at La preone

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Proprietà spettrali dei Laser

Proprietà spettrali dei Laser Propretà spettral de Laser Larghezza d rga e funzonamento n multmodo Smone Cald Outlne Anals delle cavtà e delle msure Msura del FSR Msura della focale termca Introduzone (prop. Spettral de Laser) Larghezza

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

16. BILANCIO ENERGETICO DELL EDIFICIO

16. BILANCIO ENERGETICO DELL EDIFICIO Corso d Tecnca del Controllo Ambentale A.A. 20122013 16. BILANCIO ENERGETICO DELL EDIFICIO 16.1 INTRODUZIONE La legslazone talana prevede la certfcazone energetca degl edfc [1,2,3,4]. Gl edfc, o meglo

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

6. MACCHINE VOLUMETRICHE

6. MACCHINE VOLUMETRICHE 6. MHINE OLUMETRIHE 6. OMPRESSORI DI GS OLUMETRII 6.. INTRODUZIONE I coressor d gas voluetrc sono acchne oeratrc che trasferscono energa eccanca ad un fludo corble edante aret obl; la ressone del gas vene

Dettagli

Un Teorema di Radon-Nikodym in spazi localmente convessi

Un Teorema di Radon-Nikodym in spazi localmente convessi Rv. Mat. Unv. Parma, (5) 4 (1995) 49-60 Un Teorema d Radon-Nkodym n spaz localmente convess rspetto alla ntegrazone per semnorme Anna Rta Sambucn (matears1@unpg.t) Department of Mathematcs, Unversty of

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1 ENERGIA CINETICA Teorema de energa cnetca Defnzone Per un punto P dotato d massa m e veoctà v, s defnsce energa cnetca a seguente quanttà scaare non negatva T := mv. () Defnzone Per un sstema dscreto d

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

SCIENZE: Compiti delle vacanze Estate 2015

SCIENZE: Compiti delle vacanze Estate 2015 SCIEZE: Copiti delle vacanze Estate 2015 Classe I a Per agevolare lo svolgiento degli esercizi ho realizzato questa breve dispensa che, se ben utilizzata, ti peretterà di ripassare tutti gli argoenti svolti

Dettagli

Valutazione delle opzioni col modello di Black e Scholes

Valutazione delle opzioni col modello di Black e Scholes Valutazone delle opzon col modello d Black e Scholes Rosa Mara Mnnn a.a. 2014-2015 1 Introduzone L applcazone del moto Brownano all economa é stata nnescata prncpalmente da due cause. Attorno agl ann 70,

Dettagli

Centro di formazione professionale Don Bosco

Centro di formazione professionale Don Bosco Centro di forazione professionale Don Bosco Settore elettrico ELETTROTECNICA Eserciziario A.S. 204 205 CIRCUITI ELETTRICI, CAMPI ELETTRICI E MAGNETICI e MACCHINE ELETTRICHE Fabio PANOZZO Indice Elettrostatica

Dettagli

PARTE I EDIFICI IN MURATURA. Analisi dei Meccanismi Locali di Collasso in Edifici Esistenti in Muratura

PARTE I EDIFICI IN MURATURA. Analisi dei Meccanismi Locali di Collasso in Edifici Esistenti in Muratura REGIONE MOLISE IL RESIDENTE DELL REGIONE MOLISE COMMISSRIO DELEGTO (Legge del 7 Dcembre 00 n.86) Decreto n. 76 del 3 agosto 005 rotocollo d rogettazone per la Realzzazone degl Intervent d Rcostruzone ost-ssma

Dettagli

Verifica di efficacia di un Sistema di Gestione di Sicurezza e Salute sul lavoro: l OHSAS 18001

Verifica di efficacia di un Sistema di Gestione di Sicurezza e Salute sul lavoro: l OHSAS 18001 Relazone Verfca d effcaca d un Sstema d Gestone d Scurezza e Salute sul lavoro: l OHSAS 18001 Gl nfortun sul lavoro e le malatte professonal sono ad ogg uno de prncpal problem che afflggono l Itala e

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas:

Calcolo della densità dell aria alle due temperature utilizzando l equazione dei gas: Lezione XXIII - 0/04/00 ora 8:0-0:0 - Esercizi tiraggio e sorbona - Originale di Marco Sisto. Esercizio Si consideri un ipianto di riscaldaento a caino caratterizzato dai seguenti dati: T T Sezione ati

Dettagli

Errori nel Posizionamento Satellitare

Errori nel Posizionamento Satellitare Error nel Poszonamento Satelltare Tpologe Casual Sstematc o d Modello D Osservazone L accuratezza è stmata come l 1% della lunghezza d onda (Regola Emprca). Codce C/A: ±3 m; Codce P: ±0,3 m; Portant L1,

Dettagli

Riflessione, diffusione e rifrazione

Riflessione, diffusione e rifrazione LUCE E VISIONE I COLOI APPUNTI DI FISICA lessone, dusone e rrazone Per meglo capre prncìp della vsone è necessaro conoscere come s propaga la luce e come s comporta quando ncontra un ostacolo Una prma

Dettagli

FIBRE TESSILI: PROVE E CONTROLLI

FIBRE TESSILI: PROVE E CONTROLLI CAPITOLO 4 FIBRE TESSILI: PROVE E CONTROLLI 1. INTRODUZIONE 2. CONTENUTO DI UMIDITÀ E CONDIZIONATURA DELLE FIBRE TESSILI 2.1 METODI DIRETTI: ESSICCAZIONE IN STUFA 2.2 METODI INDIRETTI DI CONDIZIONATURA

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli