Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fotonica per telecomunicazioni Ottica guidata Pagina 1 di 7 ESERCIZI"

Transcript

1 Fotonca per telecouncazon Ottca udata Pana d 7 ESERCIZI. Una fbra ottca a salto d'ndce ha un nucleo d rao a= 3µ ed ndce d rfrazone n=.5, un antello d ndce d rfrazone n =.5 e lunhezza L= K. In essa vene nettato un pulso lunoso d lunhezza d'onda λ=.55 µ dall'ara (n 0 =) n odo che all'nterfacca d nresso la drezone d propaazone del rao fora un anolo α=0. rad con l'asse della fbra. Verfcare che un solo odo LP vene ecctato e calcolarne paraetr β, γ e δ ed l tepo d transto τ attraverso la fbra. : La frequenza noralzzata V è par a V = ka n n =.09 <.4 e qund la fbra s coporta coe onoodo. Applcando la lee d Snell-Carteso all'nterfacca d nresso s ha: n snα = n snα' = n cosθ 0 Allora s ha Inoltre l tepo d transto τ è snθ 0 n snα = n β = kn snθ = 6.µ = γ = kn cosθ = 0.49µ δ = β kn = 0.5µ Ln τ = = 5. 05µ s csnθ. Una fbra ottca a salto d'ndce ha un nucleo d rao a=5µ ed un'apertura nuerca NA= Deternare la pù pccola lunhezza d'onda λc, per la quale la fbra s coporta coe onoodo. Se la lunhezza d'onda è portata a λ'= λc/, dentfcare l ndc d tutt od LPq che possono essere udat dalla fbra. : La frequenza noralzzata V è par a π V = ka n n = λc Affnché la fbra s coport coe onoodo deve essere V <.40 e qund λc = 0. 68µ ana

2 Fotonca per telecouncazon Ottca udata Pana d 7 Alla lunhezza d'onda λ'= λc/ la frequenza noralzzata è π V = ana = 4.8 λ' e qund dalla tabella del 9.5 s vede che s possono propaare od LP 0, LP 0, LP e LP. 3. In una uda planare setrca d spessore h = 6 µ e lunhezza L = 0 c, n cu lo strato udante ha ndce d rfrazone n=.53, vene nettato un pulso con lunhezza d onda centrale λ = 0.5 µ. Sapendo che la uda supporta 4 od (che venono tutt ecctat dall pulso) s da una sta della dfferenza fra tep d propaazone no e asso assocat a var od. Sapendo che la uda supporta 4 od s può porre V ~= 4π da cu s rcava l ndce d rfrazone n dello strato esterno V = hk n n ovvero n =.4 dunque l tepo d transto asso e no sono: L τ n = n =.0 c τ ax = L c n n =.06 ns ns τ = τ ax τ n = 86 ps 4. Una fbra ottca ultodo presenta dspersone nterodale d 0 ns/k. Deternare l'apertura nuerca NA della fbra. S assua l'ndce d rfrazone del antello n =.5. La dspersone nterodale è par a τ n n n δn = L c n c Sosttuendo dat del problea, rsulta 3 δ n = 3 0 E qund NA = n δ n =

3 Fotonca per telecouncazon Ottca udata Pana 3 d 7 5. Lo strato udante d una uda d'onda planare setrca ha ndce d rfrazone n=.505 entre l aterale esterno ha ndce d rfrazone n =.5. Sapendo che lo spessore della uda è h=0 µ e che la radazone nettata ha lunhezza d'onda λ=0.8 µ, s calcol l nuero d od TE che s possono propaare nella uda. : La frequenza noralzzata V è par a e qund s propaano 4 od. V = hk n n = Una uda planare setrca ha ndc d rfrazone n= 3.5 e n =3.45, e spessore h=0 µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.9 µ. Deternare noltre lo spessore asso h della uda, affnché solo l odo fondaentale sa udato. La frequenza noralzzata è e qund l nuero de od è N Iponendo la condzone s ottene h <0.76 µ. V = hk n n = 4.5 = + Int( V/ π ) = 4 Int=parte ntera V < π 7. Una uda planare setrca ha ndc d rfrazone n=.53 e n =.5, e spessore h= µ. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ=0.5 µ. Verfcare che l odo TE 0 s propaa nella uda con un ndce d rfrazone equvalente noralzzato b=0.893, e calcolare corrspondent paraetr β, γ e δ. La frequenza noralzzata è V = hk n n = 7.57 e qund s possono propaare3 od. Sosttuendo b=0.893 nell equazone d dspersone b V b = arct b s verfca che l odo n esae s propaa all nterno della uda. Dalla defnzone del paraetro b s ha

4 Fotonca per telecouncazon Ottca udata Pana 4 d 7 e qund n n β b= neff = =.57 n n k eff β = kn = 9.µ eff γ = kn β =.µ δ = β kn = 3.6µ neff snθ = = θ = 86.4 n 8. Calcolare la costante d propaazone e lo spot sze d un odo a setra clndrca d lunhezza d onda λ=0.5 µ che s propaa n una fbra ottca a proflo d ndce parabolco con ndc d rfrazone n =.53 e n =.5 e rao a=00 µ. Sccoe è la costante d propaazone è e lo spot-sze rsulta n n 3 α = = µ - a β = nk αk = 9. µ - v 0 = 7.7µ αk = 9. In una fbra ottca a salto d'ndce con ndc d rfrazone n=.5 e n =.50 e rao a=.3 µ s propaa l odo LP 0 con una costante d propaazone β=9.5µ - e lunhezza d onda λ=µ. a) Deternare l asso anolo α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato. b) Deternare l ndce d rfrazone equvalente noralzzato corrspondente al odo e verfcare se altr od s possono propaare all nterno della fbra. L apertura nuerca è e l anolo asso è NA no n n.. = snαm = = 0.46 α = 0.48rad =4. de. M

5 Fotonca per telecouncazon Ottca udata Pana 5 d 7 L ndce d rfrazone equvalente noralzzato corrspondente al odo è β n b = k = n n Sccoe rsulta solo questo odo s può propaare. V = ka n n = <.4 0. Calcolare l nuero d od d lunhezza d onda λ=.7 µ che s possono propaare all nterno d una uda planare asetrca d spessore h=0 µ con ndc d rfrazone n =.5 e n =.5 e ndce d asetra a=. L apertura nuerca è e la frequenza noralzzata è V= NA n n.. = = 0.73 V = hk n n = 6.4. Sccoe le frequenze d talo de od n una uda asetrca sono date dall espressone π V = π + arct a = π + 4 s possono propaare solo due od.. All nterno d una uda planare setrca, d ndc d rfrazone n =.5 e n =.5 e spessore h= 0 µ, s propaa l odo TE con ndce d rfrazone equvalente noralzzato b=0.5. Deternare la lunhezza d onda del odo. Sosttuendo b=0.5 nell equazone d dspersone (per l secondo odo =) b V b = π + arct b s ottene 5π V = e qund λ=0.98 µ.. Calcolare l nuero d od che s possono propaare alla lunhezza d onda λ= µ all nterno d una uda planare asetrca d spessore h=0., apertura nuerca NA=0. con n - n =0.0, e ndcare anche la relatva struttura d capo.

6 Fotonca per telecouncazon Ottca udata Pana 6 d 7 L ndce d asetra è n n n n a = = = n n NA e la frequenza d talo è π V = π + arct a = π +. 4 Sccoe è V = hkna = 0π l nuero d od che s possono propaare è Deternare l no valore dello spessore h d una uda planare asetrca con ndce d asetra a= e apertura nuerca NA=0.0 affnché n essa s propah l odo TE alla lunhezza d onda λ=0.8 µ. La frequenza d talo del odo TE n una uda asetrca è 9π Vc = π + arcta = 4 Dunque deve essere 4 V = hk n n π = hna> V λ e sosttuendo valor nuerc s ha h>90 µ. c 4. In una uda planare setrca con ndc d rfrazone n=.53 e n =.50 e lunhezza L=K, s propaa l odo TE 0 con una costante d propaazone β=9.0µ - e lunhezza d onda λ=0.5µ. Deternare l tepo d propaazone d un pulso lunoso assocato al odo e lo spessore asso dello strato udante h per l quale la uda s coporta coe onoodo. Poché β = kn snθ = 9µ s ha snθ = e qund l tepo d transto τ è Ln τ = = 5.6µ s csnθ La uda s coporta coe onoodo se V < π e qund h< 0.89µ

7 Fotonca per telecouncazon Ottca udata Pana 7 d 7 5. Deternare l anolo asso α M con cu un rao lunoso provenente dall ara (n 0 =) può ncdere sull nterfacca d nresso e venre udato n una fbra ottca con ndc d rfrazone n=.53 e n =.50. Deternare l rao asso del nucleo per una fbra che s coport coe onoodo alla lunhezza d onda λ= µ. Sccoe è N.A.= n n = = n0snαm s ha a M = rad. Affnché la fbra sa onoodo deve essere V <.4 e qund a <.7µ 6. In una uda planare asetrca d spessore h=40µ e ndc d rfrazone n=.53, n =.5 e n =.3 vene nettato un senale lunoso d lunhezza d onda λ=.5µ. Deternare l nuero d od che s possono propaare all nterno della uda. n n L ndce d asetra è a = = e la frequenza noralzzata è n n Confrontando questo valore con l espressone V = hk n n = 4.3 π + arct a S vede che l ulto odo che s può propaare è quello d ndce =. Dunque nella fbra s possono propaare 3 od (=0,, ).

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione

Motore ad induzione: modelli matematici e modelli per la simulazione. 1.1 Modelli matematici del motore ad induzione OTOE AD INDUZIONE ODEI ATEATICI E ODEI PE A IUAZIONE otore ad nduzone: odell ateatc e odell per la sulazone. odell ateatc del otore ad nduzone Nello studo degl azonaent ndustral è necessaro rappresentare

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale.

Fig.1.2.1 Schema a blocchi di un PMSM isotropo con ingressi ed uscite del controllo digitale. . ll metodo del fattore d scala globale Il progetto d un sstema d controllo dgtale può avvalers del cosddetto metodo del fattore d scala globale (FSG), attraverso l quale è possble stablre una corrspondenza

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

0$*1(7267$7,&$ i m D E F )LJXUD6FKHPDWL]]D]LRQLGLGLSROLDGLSRORHOHWWULFREGLSRORPDJQHWLFR³DPSHULD QR FGLSRORPDJQHWLFR³FRXORPELDQR

0$*1(7267$7,&$ i m D E F )LJXUD6FKHPDWL]]D]LRQLGLGLSROLDGLSRORHOHWWULFREGLSRORPDJQHWLFR³DPSHULD QR FGLSRORPDJQHWLFR³FRXORPELDQR $*(767$7,&$,'(//,'(//$$*(767$7,&$ Coe necessara preessa alla agnetostatca s rpropongono alcune evdenze sperental: a), PDJQHWLQDWXUDOL, che per l uso d laboratoro sono perlopù nella fora d barre sottl (agh

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

ORIGINE DELL ATTIVITÀ OTTICA

ORIGINE DELL ATTIVITÀ OTTICA ORIGINE DELL ATTIVITÀ OTTICA Rccardo Zanas Dpartmento d Chmca, Unverstà dsalerno 1 a Scuola Estva Nazonale d Spettroscope Chroottche Potenza, 28 Gugno - 1 Luglo 2004 24 gugno 2004 1 1 Potere rotatoro Per

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven

Modellazione e calibrazione del traffico autostradale per la rete di Eindhoven Modellazone e calbrazone del traffco autostradale per la rete d Endhoen Freeway traffc odelng and calbraton for the Endhoen networ Relatore: Prof. Alessandro Gua Supersor: Prof. Bart De Schutter DCSC TUDelft

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

D.G.R. VIII/8745. Punto 5.4 a) Nota interpretativa sulla valutazione quantitativa dell efficacia dei sistemi schermanti

D.G.R. VIII/8745. Punto 5.4 a) Nota interpretativa sulla valutazione quantitativa dell efficacia dei sistemi schermanti D.G.R. VIII/8745 Punto 5.4 a) Nota nterpretatva sulla valutazone quanttatva dell effcaca de tem schermant Cestec SpA Va Restell, 5/A 04 Mlano Italy - +39 0 66737400 Fax +39 0 66737499 nfo@cened.t - www.cened.t

Dettagli

Capitolo 6 - Aria umida

Capitolo 6 - Aria umida unt d FISIC TECIC Catolo 6 - ra uda ca sulle scele gassose... Proretà terodnace dell ara uda...5 elazon er l calcolo d alcune roretà nterne...7 Ttolo...7 Eseo nuerco...8 Entala...9 Eseo nuerco...0 olue

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

CIRCUITI DI IMPIEGO DEI DIODI

CIRCUITI DI IMPIEGO DEI DIODI UT D MPEGO DE DOD addrzzare ad na seonda. l crcto pù seplce, che pega l dodo coe raddrzzatore d na tensone alternata, è rappresentato n Fg.. n esso n generatore deale d tensone alternata l c valore stantaneo

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

PERICOLOSITA SISMICA DI BASE INTRODUZIONE PROCEDURA DI CALCOLO La procedura di calcolo adoperata da RSL per la valutazione della funzione di trasferiento presuppone coe base di partenza uno o più accelerograi,

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Il diagramma PSICROMETRICO

Il diagramma PSICROMETRICO Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

STRATIGRAFIE PARTIZIONI VERTICALI

STRATIGRAFIE PARTIZIONI VERTICALI STRATIGRAFI PARTIZIONI VRTICALI 6. L solamento acustco: tecnche, calcol 2 Trasmssone rumor In edlza s possono dstnguere dfferent tp d rumor: rumor aere (vocare de vcn da altre untà abtatve, rumor provenent

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models

Metastability, Nonextensivity and Glassy Dynamics in a Class of Long Range Hamiltonian Models Alessandro Pluchno Metastablty, Nonextensvty and Glassy Dynamcs n a Class of Long Range Hamltonan Models Dscussone Tes per l consegumento del ttolo Febbrao 2005 Tutor: Prof.A.Rapsarda E-mal: alessandro.pluchno@ct.nfn.t

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Analisi del moto pre e post urto del veicolo

Analisi del moto pre e post urto del veicolo Captolo Anals del moto pre e post urto del vecolo 3.1 Moto rettlneo p. xx 3.1.1 Accelerazone unforme p. xx 3.1. Dstanza per l arresto del vecolo ed evtabltà p. xx 3.1.3 Dagramm veloctà-tempo e dstanza

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

ESEMPIO DI AMPLIFICATORE A BJT AD EMETTITORE COMUNE CON RESISTENZA DI EMETTITORE

ESEMPIO DI AMPLIFICATORE A BJT AD EMETTITORE COMUNE CON RESISTENZA DI EMETTITORE SMPIO DI AMPIFIATO A JT AD MTTITO OMUN ON SISTNZA DI MTTITO (Dat uual all sepo d par.8.2, F.8. del testo..spener & M.M.Ghaus: Introduton to letron rut Desn) alolare l punto d laoro del JT Q d F., le aplfazon

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Esercizi sui gas perfetti

Esercizi sui gas perfetti Eserz su gas perett Eserzo In un repente d esertata dal gas è d delle oleole d elo. 0 d sono ontenute ol d He. La pressone 5.5 Trasorao l volue n untà SI: 0d 0 Pa. Deternare la velotà quadrata eda Ravao

Dettagli

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS

L AUTORITÀ PER L ENERGIA ELETTRICA E IL GAS Delberazone 20 ottobre 2004 Approvazone delle condzon general d accesso e d erogazone del servzo d rgassfcazone d gnl predsposte dalla socetà Gnl Itala Spa (delberazone n. 184/04) L AUTORITÀ PER L ENERGIA

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

Fare scienza con il computer OTTICA - RIFRAZIONE IN MEZZI NON OMOGENEI. Giorgio Pastore (pastore@ts.infn.it) Maria Peressi (peressi@ts.infn.

Fare scienza con il computer OTTICA - RIFRAZIONE IN MEZZI NON OMOGENEI. Giorgio Pastore (pastore@ts.infn.it) Maria Peressi (peressi@ts.infn. Fare scienza con il computer OTTCA - RFRAZONE N MEZZ NON OMOGENE Giorgio Pastore (pastore@ts.infn.it) Maria Peressi (peressi@ts.infn.it) Universita degli Studi di Trieste Laboratorio nformatico Poropat

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio

Calcolo della potenza e dell energia necessaria per la climatizzazione di un edificio Calcolo della potenza e dell energa necessara per la clmatzzazone d un edfco Rcambo d ara Ø dsperson Rcambo d ara φ φ dsperson + φ rcambo d'ara φ dsperson ΣUS (t nt t est ) φ rcambo d'ara Σn V ρ ara c

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

PROVIAMO A VERIFICARE SE...

PROVIAMO A VERIFICARE SE... PROVAMO A VERFCARE SE... CHECK llst PER la VERFCA DEL RSPETTO DE PRNCPAL OBBLGH N MATERA D SCUREZZA E SALUTE SUL lavoro (RF. PCCOL UFFC) Pago 1 d 7 S PRECSA CHE LA CHECK-L1ST D SEGUTO RPORTATA NON PUÒ

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

2. Le soluzioni elettrolitiche

2. Le soluzioni elettrolitiche . Le soluzon elettroltche Classfcazone degl elettrolt: 1) soluzon elettroltche ) solvent onc: a) sal fus b) lqud onc 3) elettrolt sold Struttura del solvente Interazone one/solvente Interazone one/one

Dettagli

GLI INVESTIMENTI RISK FREE: UNA

GLI INVESTIMENTI RISK FREE: UNA 16 Maggio 2012 GLI INVESTIMENTI RISK FREE: UNA SPECIE ESTINTA. QUALI IMPLICAZIONI PER GLI INVESTITORI? PREMESSA Lo scorso 19 Aprile abbiao avuto l opportunità di partecipare a Milano, all incontro istituzionale,

Dettagli

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216

Manuale di istruzioni Manual de Instruções Millimar C1208 /C 1216 Manuale d struzon Manual de Instruções Mllmar C1208 /C 1216 Mahr GmbH Carl-Mahr-Str. 1 D-37073 Göttngen Telefon +49 551 7073-0 Fax +49 551 Cod. ord. Ultmo aggornamento Versone 3757474 15.02.2007 Valda

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose?

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose? Captolo 8 Ottca geometrca 1. Come s rflette la luce? Cosa è la luce? Spacente: per l momento non rsponderemo a questa domanda. Invece d dre cosa la luce sa, ne analzzeremo dapprma l comportamento, utlzzando

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l PORTO TURSTCO NELLA FRAZONE SAN GORGO DEL COMUNE D GOOSA MAREA (ME) PROGETTO PRELMNARE PANO ECOVOb'TCO E FNANZAF0 NDCE 1. PREMESSA...,.l 2. COSTO DELL'NTERVENTO...,...,...,..,,.,...,,.,,~...,.,.,.,,...l

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

5.4 I TURBOCOMPRESSORI (di gas)

5.4 I TURBOCOMPRESSORI (di gas) 5.4 I TURBOCOMPRESSORI (d gas) 5.4.. INTRODUZIONE I turboopressor sono ahne terhe operatr, per le qual l lavoro nterno è dato dalla seguente espressone: u u, u u dove ped e, al solto, ndano le ondzon d

Dettagli

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1

Rudi Mathematici. 1. Editoriale. Rudy d'alembert Alice Riddle Piotr R. Silverbrahms. Numero 017-2000-06. 1. Editoriale...1 Rud Mathematc Numero 07-000-06. Edtorale.... Problem.... Ancora sulle blance.... Estrazon del lotto... 3. Soluzon e Note... 3. [06]... 3.. Problema dell'oste... 3.. Blance...3 4. Paraphernala Mathematca...3

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

CONFORMITA DEL PROGETTO

CONFORMITA DEL PROGETTO AMGA - Azenda Multservz S.p.A. - Udne pag. 1 d 6 INDICE 1. PREMESSA...2 2. CALCOLI IDRAULICI...3 3. CONFORMITA DEL PROGETTO...6 R_Idr_Industre_1 Str.doc AMGA - Azenda Multservz S.p.A. - Udne pag. 2 d 6

Dettagli

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata

CURVE & SUPERFICI. C g. Scopo: fornire una rappresentazione matematica per rappresentare 2D e 3D degli oggetti. Grafica Computerizzata Grafca opterzzata URVE & UPERFII copo: fornre na rappresentazone ateatca per rappresentare 2D e 3D del oett Unversty of Ferrara opter slaton rop http://www.d.nfe.t/~cs Grafca opterzzata Bsona scelere na

Dettagli

Capitolo 33 TRASPORTO IN PRESSIONE

Capitolo 33 TRASPORTO IN PRESSIONE Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ineneria Corso di rasissioni Nueriche docente: Prof. Vito Pascazio 6 a Lezione: 8// Soario Pulse plitude Modulation in banda base Pulse plitude Modulation passa-banda

Dettagli