ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:"

Transcript

1 ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone un campone d n= msurazon. ) Determnare l valore atteso della v.c. X ) Elencare tutt possbl campon d ampezza n= ) Determnare la dstrbuzone camponara della meda camponara x ) Determnare la dstrbuzone camponara della medana Med 5) Determnare la dstrbuzone d probabltà delle varabl casual prma osservazone camponara, seconda osservazone camponara e terza osservazone camponara 6) Calcolare valor attes degl stmator x e Med e confrontarl con quanto ottenuto per la popolazone 7) Calcolare le devazon standard degl stmator x e Med e confrontarl ) ( ) E X SVOLGIMENTO = xp = = 8.75 ) I possbl campon d ampezza n= ottenbl usando uno schema d camponamento senza rpetzone sono elencat nella seguente tabella. Per ognuno de campon è ndcato l valore della meda e della medana. X X X Meda Medana X X X Meda Medana )

2 Consderando la dstrbuzone d frequenze calcolata a partre dalla colonna delle mede camponare s ottene la dstrbuzone d probabltà della v.c. meda camponara: Meda Freq Assoluta Freq Relatva 5 6 / / 7 6 /.67 6 / ) Procedendo n manera analoga per la colonna della medana camponara s ottene: Medana Freq Assoluta Freq Relatva / / 5) Gl stess passagg possono essere effettuat per determnare le dstrbuzon d probabltà delle v.c. -esma osservazone camponara, d seguto rportate: X P(X) / / / / X P(X) / / / / X P(X) / / / / 6) Calcolo del valore atteso della v.c. meda camponara: Meda Freq Relatva 5 / 7.67 / 7 /.67 / E( X) = xp = = 8.75 Calcolo del valore atteso della v.c. medana camponara: Medana Freq Relatva / / E( Med) = xp = + = 7.5 La v.c. meda camponara è uno stmatore non dstorto del parametro meda della popolazone; lo stesso non accade per la v.c. medana camponara (che nvece rsulta non dstorto quando vene usata per stmare l parametro medana della popolazone). 7) Calcolo della varanza della v.c. meda camponara:

3 Meda Freq Relatva Scart 5 / /.7 7 / / 8.5 ( ) ( ) µ Var X = x p = = 6.85 Calcolo della varanza della v.c. medana camponara: Medana Freq Relatva Scart /.5 /.5 ( ) ( ) Var Med = x Med p = =.5 La v.c. meda camponara presenta una varabltà nferore rspetto alla v.c. medana camponara (è uno stmatore pù effcente n senso relatvo)

4 ESERCIZIO. S rpeta l eserczo. consderando un camponamento con rpetzone e s confrontno rsultat ottenut nelle due stuazon. ) ( ) E X SVOLGIMENTO = xp = = 8.75 ) I possbl campon d ampezza n= ottenbl usando uno schema d camponamento con rpetzone sono elencat nella seguente tabella. Per ognuno de campon è ndcato l valore della meda e della medana. X X X Meda Medana X X X Meda Medana ) Consderando la dstrbuzone d frequenze calcolata a partre dalla colonna delle mede camponare s ottene la dstrbuzone d probabltà della v.c. meda camponara:

5 Meda Freq Assoluta Freq Relatva /6 /6 /6 /6 /6 5 6 / 6 /6 6,67 /6 7,67 6 / 8 /6 8,67 /6 9 /6,67 6 /,67 6 / /6, /6, /6,67 /6 7, /6 /6 6 ) Procedendo n manera analoga per la colonna della medana camponara s ottene: Medana Freq Assoluta Freq Relatva 5/ / / 5/ 6 5) Gl stess passagg possono essere effettuat per determnare le dstrbuzon d probabltà delle v.c. -esma osservazone camponara, d seguto rportate: X P(X) / / / / X P(X) / / / / X P(X) / / / / 6) Calcolo del valore atteso della v.c. meda camponara: 5

6 Meda Freq Relatva /6 /6 / /6 /6 5 / 7.67 / 8 /6 7 /. /6 /6 6 / /6 9 /6.67 /. /6 /6.67 /6 7. /6 /6 E( X) = xp = = Calcolo del valore atteso della v.c. medana camponara: Medana Freq Relatva 5/ / / 5/ 5 5 E( Med) = xp = = 8.8 La v.c. meda camponara è uno stmatore non dstorto del parametro meda della popolazone; lo stesso non accade per la v.c. medana camponara (che nvece rsulta non dstorto quando vene usata per stmare l parametro medana della popolazone). 7) Calcolo della varanza della v.c. meda camponara: 6

7 Meda Freq Relatva Scart / /6 6.6 / /6. / / /.7 8 / /.67. /6. /6.6 6 / /6. 9 / / 8.5. /6.7 / / / / ( ) ( ) µ Var X = x p = = Calcolo della varanza della v.c. medana camponara: Medana Freq Relatva Scart 5/ / 7.89 /.8 5/ Var ( Med ) = ( x Med ) p = = 6.5 La v.c. meda camponara presenta una varabltà nferore rspetto alla v.c. medana camponara (è uno stmatore pù effcente n senso relatvo) 7

8 ESERCIZIO. La battera d un telefono cellulare ha una durata meda d 6 ore con uno scarto quadratco medo d 5 ore. Assumendo che s dstrbusca secondo una legge normale calcolare: P X < ) ( ) ) P( X > 9) ) P( < X < 5) ) P( 7 < X < ) 5) P( 7 < X < 5) 6) P( X < ) 7) P( < X < ) 8) P( X < 6) 9) P( 6 < X < 6) ) P( X < 5) ) P( < X < 5) ) P( X < o X > 6) ) l prmo, l secondo e l terzo quartle ) l numero d ore che la battera resce ad asscurare solo nel 5% de cas 5) l numero d ore che la battera resce ad asscurare almeno nel 7% de cas X = durata della battera X N 6 km,5 km ( ) SVOLGIMENTO P(X) ) 9 6 X = 9 Z = = = 8

9 P(Z) Usando le tavole della normale s ha: Area tra la meda e l valore z Le tavole usate danno l area compresa tra la meda e l ascssa: X µ P( µ < X < 9) = P < Z < = P( < Z < ) =.57 σ Da cu s può ottenere la probabltà d nteresse: X µ P( X > 9) = P Z > = P( Z > ) =.5.57 =.7 σ ) 9 6 X = Z = = = Sfruttando la smmetra della dstrbuzone possamo usare l rsultato ottenuto al punto : X µ P( X < ) = P Z < = P( Z < ) = P( Z > ) =.7 σ ) 6 X = Z = = = 5 6 X = 5 Z = = =.8 9

10 P(Z) I due valor sono entramb a destra della meda: posso calcolare la probabltà d nteresse nel seguente modo: X µ X µ P( < X < 5) = P < Z < = P( < Z <.8) = P( < Z <.8) P( < Z < ) σ σ Ottengo le due probabltà da sottrare dalle tavole: Area tra la meda e l valore z Da cu posso calcolare la probabltà rchesta: P < X < 5 = P < Z <.8 = P < Z <.8 P < Z < = 8 =.759 ( ) ( ) ( ) ( ) ) 7 6 X = 7 Z = = =.8 6 X = Z = = = Area tra la meda e l valore z

11 P(Z) I due valor sono entramb a snstra della meda: posso calcolare la probabltà d nteresse nel seguente modo: X µ X µ P( 7 < X < ) = P < Z < = P(.8 < Z < ) σ σ Sfruttando la smmetra della dstrbuzone possamo usare l rsultato ottenuto al punto precedente: P 7 < X < = P.8 < Z < = P < Z <.8 =.759 ( ) ( ) ( ) 5) 7 6 X = 7 Z = = = X = 5 Z = = = P(Z) In questo caso la meda è compresa tra due valor: è possble calcolare la probabltà rchesta facendo rfermento alle due aree tratteggate n colore dfferente: P 7 < X < 5 = P.8 < Z < = P.8 < Z < + P < Z < = P < Z <.8 + P < Z < ( ) ( ) ( ) ( ) ( ) ( ) Dalle tavole s ha:

12 Da cu: P 7 < X < 5 = P.8 < Z < = + 9 =.9 ( ) ( ) 6) 6 X = Z = = = P(Z) Area tra la meda e l valore z Area tra la meda e l valore z Dalle tavole ottenamo l valore tra la meda e l valore Z specfco: ( ) ( ) ( ) ( ) P X < = P < Z < = P < Z < + P < Z < =.5 +. = 7) 6 X = Z = = = 6 X = Z = = = Area tra la meda e l valore z

13 P(Z) Possamo sfruttare l rsultato al punto precedente e la smmetra della dstrbuzone per ottenere la probabltà d nteresse nel seguente modo: P < X < = P < Z < = P < Z < + P < Z < = P < Z < =. = 86 ( ) ( ) ( ) ( ) ( ) 8) 6 6 X = 6 Z = = = P(Z) Dalle tavole ottenamo l valore tra la meda e l valore Z specfco: ( ) ( ) ( ) ( ) P X < 6 = P < Z < = P < Z < + P < Z < = =.977 9) Area tra la meda e l valore z

14 X X 6 6 = 6 Z = = = 6 6 = 6 Z = = = P(Z) Possamo sfruttare l rsultato al punto precedente e la smmetra della dstrbuzone per ottenere la probabltà d nteresse nel seguente modo: P 6 < X < 6 = P < Z < = P < Z < + P < Z < = P < Z < =.77 =.95 ( ) ( ) ( ) ( ) ( ) ) 5 6 X = 5 Z = = = P(Z) Dalle tavole ottenamo l valore tra la meda e l valore Z specfco: Area tra la meda e l valore z

15 ( ) ( ) ( ) ( ) P X < 5 = P < Z < = P < Z < + P < Z < = =.9987 ) 6 X = Z = = = 5 6 X = 5 Z = = = Possamo sfruttare l rsultato al punto precedente e la smmetra della dstrbuzone per ottenere la probabltà d nteresse nel seguente modo: P < X < 5 = P < Z < = P < Z < + P < Z < = P < Z < =.987 =.997 ( ) ( ) ( ) ( ) ( ) ) 6 X = Z = = = 6 6 X = 6 Z = = = P(Z) ( < o > 6) = ( < ) + ( > 6) = ( < ) + ( > ) P X X P X P X P Z P Z Dalle tavole ottenamo l valore tra la meda e l valore Z specfco: ( ) ( ) ( ) P X < = P Z < = P Z > = = Area tra la meda e l valore z Area tra la meda e l valore z 5

16 ( ) P( Z ) P X > = > =.5.77 =.8 Combnando due rsultat ottenut s ha: P X < o X > 6 = P Z < + P Z > 6 = P Z < + P Z > = +.8 =. ( ) ( ) ( ) ( ) ( ) ) Data la smmetra della dstrbuzone normale la medana (secondo quartle) è par alla meda (e ad ogn altro ndce d tendenza centrale). Per l calcolo del prmo e terzo quartle s può cercare l valore dell ascssa corrspondente ad un area d.5: Z Q µ Q µ σ σ = = Q = µ Zσ = =.65 Q = µ + Zσ = = 9.5 L area pù vcna a.5 corrsponde ad un ascssa d 7 ) In questo caso dobbamo cercare l valore dell ascssa che lasca a destra l 5% de cas, ovvero a snstra l 85% de cas. Per utlzzare le tavole bsogna scomporre quest area nel 5% (area a snstra della meda) a cu va aggunto l restante 5% (area a partre dalla meda). Bsogna qund cercare l valore dell ascssa corrspondente ad un area d.5: L area pù vcna a.5 corrsponde ad un ascssa d X µ P( < Z <.5) = P < <.5 =.5 σ Da questa possamo rcavare l valore corrspondente della X: X µ Z = X = µ + Zσ = =.5 σ 5) In questo caso dobbamo cercare l valore dell ascssa che lasca a snstra l 7% de cas. Per utlzzare le tavole bsogna scomporre quest area nel 5% (area a snstra della meda) a cu va aggunto l restante % (area a partre dalla meda). Bsogna qund cercare l valore dell ascssa corrspondente ad un area d.: 6

17 X µ P( < Z <.5) = P < <.5 =.985 σ Da questa possamo rcavare l valore corrspondente della X: X µ Z = X = µ + Zσ = = 8.6 σ L area pù vcna a. corrsponde ad un ascssa d.5 7

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Esercizio statistica applicata all ingegneria stradale pag. 1

Esercizio statistica applicata all ingegneria stradale pag. 1 ESERCIZIO STATISTICA APPLICATA ALLA PROGETTAZIONE STRADALE SINTESI S supponga d avere eseguto 70 sure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal sure

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S Esercz del corso d Statstca A.A 00-0 a cura d : Gulana Satta Eserczo E stato estratto un campone d 5 student tra frequentant l secondo semestre e s sono osservate le seguent caratterstche: esam sostenut

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA Notazone: x = -esma modaltà della varable X Nel caso d dstrbuzon n class: x = Lmte superore della classe -esma x -1 = Lmte nferore della classe

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

2. La distribuzione normale

2. La distribuzione normale . La dstrbuzone normale.. Il concetto d dstrbuzone... Frequenze, class, stogramm Comncamo con un esempo. Supponamo d dover elaborare dat relatv ad una prova standardzzata sommnstrata nel corso d una ndagne

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000

x = 2480.82 sezione 45 0,038 48 0,077 49 0,115 50 0,192 52 0,231 54 0,308 55 0,346 58 0,385 60 0,615 63 0,654 65 0,885 66 0,923 83 0,962 84 1,000 Gennao 006 classe A VERIFICA DI STATISTICA fla A )Nel Lceo scentfco G.Bruno c sono 5 class seconde, cu alunn sono dstrbut per sezone e per sesso n base alla seconda tabella: Sesso\ A B D E F sezone Calcola

Dettagli

Regressione lineare con un singolo regressore

Regressione lineare con un singolo regressore Regressone lneare con un sngolo regressore Eduardo Ross 2 2 Unverstà d Pava (Italy) Marzo 2013 Ross Regressone lneare semplce Econometra - 2013 1 / 45 Outlne 1 Introduzone 2 Lo stmatore OLS 3 Esempo 4

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Quattro passi nella statistica per chimici

Quattro passi nella statistica per chimici Quattro pass nella statstca per chmc Lo scopo dell anals statstca applcata a sere d dat spermental è quella d ottenere nformazon per valutare la valdtà d una procedura o la accettabltà d un dato analtco.

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2:

CORSO DI FISICA TECNICA 2 AA 2013/14 ACUSTICA. Lezione n 2: CORSO DI FISICA TECNICA AA 013/14 ACUSTICA Lezone n : Lvell sonor: operazon su decbel e lvello sonoro equvalente. Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Meridiana Verticale. c 2002 A.Palmas. 9 agosto 2002

Meridiana Verticale. c 2002 A.Palmas. 9 agosto 2002 Merdana Vertcale c 2002.Palmas 9 aosto 2002 Stato: prma bozza ppunt sul calcolo d una merdana vertcale a parete 1 Gnomone e punto radale Lo nomone delle merdane vertcal è orentato n modo da essere parallelo

Dettagli

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA TEORIA DELLA STIMA E DELLA DESCISIOE STATISTICA STIMA A MASSIMA VEROSIMIGLIAZA Per determnare la stma a massma verosmglanza d un parametro θ, partendo da un campone d dat X, bsogna scrvere la denstà d

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Statistica Descrittiva ed Inferenziale

Statistica Descrittiva ed Inferenziale Statstca Descrttva ed Inferenzale 1 Why Statstcs? A? A B Descrpton and Predcton Samples Analyss A1 A A B C Pared Samples Analyss MultSamples Analyss 1 Why Statstcs? Formal defnton of Probablty σ-feld 3

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO PACCHETTI STRADALI

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO PACCHETTI STRADALI ELABORATO N C.6 SETTORE LAVORI PUBBLICI SERVIZIO PROGETTAZIONE E COSTRUZIONI STRADALI S.P. n 569 DI VIGNOLA COMPLETAMENTO DELLA VARIANTE GENERALE ALLA S.P. N 569 E REALIZZAZIONE DELLE VARIANTI ALLA S.P.

Dettagli

CAPITOLO X ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU MEDIE

CAPITOLO X ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU MEDIE CAPITOLO X ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU MEDIE 10.1. Anals della varanza ad un crtero d classfcazone o a camponamento completamente randomzzato 4

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Tabella 1 concentrazione di alcol in 150 bottiglie di Vital. L'esattezza di misura: 0.001

Tabella 1 concentrazione di alcol in 150 bottiglie di Vital. L'esattezza di misura: 0.001 1A Mede analtche: artmetca, geometrca, armonca, quadratca e la meda d potenze. Formule n modaltà array Vtal è un preparato vtamnco-mnerale per le persone pù anzane, che gl permette d stare n buona salute.

Dettagli

UNIVERSITA DEGLI STUDI DI CATANIA. Dipartimento di Scienze MM FF NN. Corso di Laurea di primo livello in Fisica QUINCONCE DI GALTON

UNIVERSITA DEGLI STUDI DI CATANIA. Dipartimento di Scienze MM FF NN. Corso di Laurea di primo livello in Fisica QUINCONCE DI GALTON UNIVERSITA DEGLI STUDI DI CATANIA Dpartmento d Scenze MM FF NN Corso d Laurea d prmo lvello n Fsca QUINCONCE DI GALTON Dstrbuzon spermental a confronto con dstrbuzon teorche Laboratoro d Fsca I Anno Accademco

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

I balconi appoggiati su mensole

I balconi appoggiati su mensole 1 I balcon appoggat su mensole Con un sstema costruttvo ogg n dsuso, per l mpego d nuov metod che garantscono una maggore scurezza, nelle costruzon realzzate sno a crca un secolo fa balcon venvano ottenut

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Sessione live #1 Settimana #2 dal 10 al 16 marzo. Statistica descrittiva: Indici di posizione, dispersione e forma Istogramma frequenze, box plot

Sessione live #1 Settimana #2 dal 10 al 16 marzo. Statistica descrittiva: Indici di posizione, dispersione e forma Istogramma frequenze, box plot Sessone lve #1 Settmana # dal 10 al 16 mazo Statstca descttva: Indc d poszone, dspesone e foma Istogamma fequenze, box plot Lezon CD: 1 - - 3 Eseczo 1 S consde la seguente dstbuzone delle nduste tessl

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli