Trigonometria. sen α = ordinata del punto B secondo estremo dell arco α (il primo estremo è in A) = BH.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trigonometria. sen α = ordinata del punto B secondo estremo dell arco α (il primo estremo è in A) = BH."

Transcript

1 Trigonometria Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al raggio Si assa dai gradi ai radianti con la seguente roorzione: : 180 rad :π Considerato un sistema di riferimento cartesiano si definisce circonferenza goniometrica la circonferenza avente centro nell origine e raggio unitario (circonferenza di euazione x y 1). Il unto A(1,0) è detto origine degli archi, il verso di ercorrenza ositivo è uello antiorario. Notiamo anche che la misura in radianti dell angolo al centro coincide con la misura dell arco della circonferenza goniometrica sotteso, uindi in trigonometria si arla indifferentemente di archi o di angoli. Detto l angolo al centro AO ˆ B definiamo ora le seguenti funzioni trigonometriche: sen ordinata del unto B secondo estremo dell arco (il rimo estremo è in A) BH. cos ascissa del unto B secondo estremo dell arco OH. tg (ο tan) raorto, uando esiste, tra il seno e il coseno dell'angolo (cioè uando cos 0) cotg (ο cotan) raorto, uando esiste, tra il coseno e il seno dell'angolo (cioè uando sen 0). N.B. Dalle definizioni date segue che seno coseno tangente e cotangente sono funzioni di, cioè sono numeri reali che diendono solamente dal valore dell angolo. 51

2 RELAZIONI FONDAMENTALI FRA LE DIVERSE FUNZIONI TRIGONOMETRICHE DI UNO STESSO ANGOLO ORIENTATO: Tra le funzioni trigonometriche viste intercorrono le seguenti relazioni: sen cos 1 ( teorema di Pitagora) sen tg cos 1 cos cotg tg sen Si uò inoltre dimostrare che tg è l ordinata del unto T di intersezione tra la tangente geometrica alla circonferenza nel unto A e la semiretta OT (che teorema sui triangoli si usa?). Nota la funzione trigonometrica di un angolo è ossibile ricavare le altre, e, dalle relazioni recedenti si ottiene l esressione di tutte le funzioni di un dato angolo orientato mediante una sola di esse N.B. Il segno va scelto a seconda del uadrante in cui si trova l angolo. 5

3 NOTO sen cos tg sen sen ± 1 sen cos tg cctg ± 1 cos cos tg ± 1 tg ± tg ctg ± 1 ctg ± 1 ctg ± ± tg 1 ctg sen 1 sen 1 cos cos VALORI DELLE FUNZIONI GONIOMETRICHE DI ARCHI PARTICOLARI sen cos tg 15 π/ π/ π/6 1/ 3 / 3 /3 45 π/4 / / 1 60 π/3 3 / 1/ 3 90 π/ 1 0 non esiste 180 π /π -1 0 non esiste π

4 Da evidenti simmetrie sulla circonferenza si deducono oi i valori delle funzioni trigonometriche di altri archi articolari. Esemio il coseno di 4/3 π è uguale in modulo a uello di π/3 (infatti 4/3 π π π/3), essendo nel terzo uadrante erò il suo segno è negativo, uindi cos 4/3 π 1/. Esercizi 1. Doo aver disegnato gli archi corrisondenti a cos uadrante le altre funzioni trigonometriche. 3, trovare dell arco nel uarto. Saendo che è acuto e ositivo e che sen 3/5 calcolarne le altre funzioni trigonometriche. 3. Ragionando solo sulla circonferenza goniometrica comletare con i segni > < le seguenti: π π π sen... sen sen π π π cos...cos cos π π sen sen π π cos cos Ragionando solo sulla circonferenza goniometrica rovare che: sen( π ) sen sen (π/ ) cos sen (π ) - sen sen ( π ) - sen 5. Semlificare le seguenti esressioni: tg(π )sen(π-) cos(π ) tg (π-)cos (-) [0] sen 4 sen cos 4 cos [0] 54

5 Esistono utili formule er il calcolo delle funzioni trigonometriche, che sono riortate in fondo. VARIAZIONE DELLE FUNZIONI TRIGONOMETRICHE: Ricordando la definizione data osserviamo che: - 1 sen 1; - 1 cos 1 I grafici delle funzioni trigonometriche sono i seguenti: y sen x definita er ogni x, il codominio è [-1,1], eriodica di eriodo π, interseca l asse x nei unti della forma k π, con k Z. y cos x definita er ogni x, il codominio è [-1,1], eriodica di eriodo π, interseca l asse x nei unti della π forma kπ, con k Z. 55

6 y tg x definita er x π/ kπ, il codominio è R, eriodica di eriodo π, interseca l asse x nei unti della forma k π, con k Z. Esercizi Prova a disegnare i grafici di: 1. sin x. 3 cos x 56

7 RISOLUZIONE DELLE EQUAZIONI PRIMO GRADO, elementari 1. sinx h. cosx h con h [-1, 1] Ricordando la definizione delle funzioni sinx e cosx ueste euazioni si risolvono intersecando la circonferenza (di euazione x y 1) con l euazione 1. y h. x h (che raresenta una retta) Esemio: sen x ½ x y 1 Può essere interretata come : y 1/ disegnando la circonferenza goniometrica e la retta y 1/ si ha: I unti di intersezione sono osizionati nel rimo uadrante: x π/6, e nel secondo, x π π/6 5π/6 In uesto modo abbiamo trovato le due soluzioni, ma ricordando che la funzione seno è eriodica di eriodo π se voglio ottenere tutte le soluzioni dell euazione ho: x π/6 kπ, x 5π/6 kπ, con k Z 57

8 cos x -1/ disegnando la circonferenza goniometrica e la retta x -1/ si ha: In uesto caso i unti di intersezione sono osti nel secondo e terzo uadrante. L arco con cos x ½ è x π/3, uindi uello osto nel secondo uadrante sarà x π π/3 /3 π mentre uello nel terzo uadrante sarà. x π π/3 4/3 π Le soluzioni sono uindi, tenendo conte del eriodo: x /3 π kπ, x 4/3 π kπ, con k Z. PRIMO GRADO, lineari 3. asenx bcosx h Si risolvono intersecando la circonferenza (di euazione x y 1) con l euazione ay bx h(che raresenta una retta) Esemio senx cos x 1 Si one y senx, x cosx e si interseca la retta y -x 1 così ottenuta con la circonferenza di euazione x y 1 Si ottengono i unti (0,1) e (1,0) che corrisondono alle soluzioni x 0, x π/ considerando oi il eriodo si ha:x 0 kπ, x π/ kπ, con k Z. 58

9 SECONDO GRADO 1. Se l euazione data contiene una sola funzione trigonometrica si risolve mediante la formula b ± b 4ac generale delle euazioni di secondo grado, ossia x1,. a. Se contiene iù di una funzione si cerca, mediante le formule viste recedentemente, di trasformarla in una che contenga una sola funzione trigonometrica. Esemio cos x cos x 1 0 Alicando la formula risolutiva si ha: 1± 1 8 cos x, 4 1 1;1/ ora risolvo le euazioni cos x ½, cos x -1 x π/3 kπ, x π kπ, x -π/3 kπ, con k Z. Risolviamo ora: cos x sen x cos x 0 è di secondo grado, ed in essa non comare una sola funzione goniometrica; ricordando che sen x 1 cos x si ha: cos x 1 cos x cos x 0 cos x cos x 1 0 da cui si ottiene l euazione recedente. 59

10 Esercizi 1. Risolvere le seguenti euazioni: sen (x π/) ½ [x π/6 kπ, xπ/6 kπ] cos x cos x 1 0 [ x kπ, x ±π/3 kπ] cos x sen x cos x [x π kπ, x ±π/3 kπ] sen ( π/4 x) sen (π/4 x) 1 [x ±π/4 kπ] sen x sen x [x kπ, x ±π/3 kπ] cos x sen x 3 1 [x π/6 kπ, x π/3 kπ] RISOLUZIONE DI DISEQUAZIONI TRIGONOMETRICHE Diseuazioni elementari Consideriamo ad esemio la diseuazione sen x > ½ Disegnando la circonferenza e la retta y ½ cerco tutti gli archi er cui l ordinata è maggiore di ½, ed ottengo la soluzione π/6 kπ < x < 5π/6 kπ, con k Z. uindi ricordando che - 1 sen 1; - 1 cos 1 Diseuazione: sen x > a a 1: imossibile a < 1: semre vera a 1: 3 vera x π kπ 1 < a < 1: 1 kπ < x < kπ, con k Z 60

11 Diseuazione sen x < a a 1: imossibile a > 1: semre vera a 1: vera π x kπ 1 < a < 1: kπ < x < π kπ, con k Z Diseuazione cos x > a a 1: imossibile a < 1: semre vera a 1: vera x π kπ 1 < a < 1: kπ < x < kπ, con arccos a, k Z Diseuazione cos x < a a 1: semre vera a < 1: imossibile a 1: vera x π kπ 1 < a < 1: kπ < x < π kπ, con k Z 61

12 Diseuazioni lineari Nel caso di una diseuazione lineare del tio asenx bcosx > (<) h si rocede come er l euazione corrisondente, cioè si risolve intersecando la circonferenza di euazione x y 1 con la diseuazione ay bx >h (che raresenta un semiiano) Esemio senx cos x <1 Si one y senx, x cosx e si interseca il semiiano y < -x 1 così ottenuto con la circonferenza di euazione x y 1 Si ottiene così la soluzione: π/ kπ < x <π kπ, con k Z Diseuazioni di grado Si risolvono come le diseuazioni di secondo grado, scegliendo gli intervalli interni o esterni alle soluzioni trovate, si ottengono così delle diseuazioni di rimo grado che si risolvono come recedentemente visto. Esemio sen x sen x 1 >0 risolvendo l euazione sen x sen x 1 0 ottengo, mediante la formula risolutiva delle euazioni di secondo grado: sen x 1 sen x -1/, da cui, rendendo i valori esterni si ha: sen x > 1 sen x < -1/ cioè: sen x >1 non dà soluzioni, mentre sen x < ½ ha come soluzioni 7π/6 kπ < x < 11π/6 kπ, con k Z 6

13 Esercizi 1. Risolvere le seguenti diseuazioni: cos x > ½ [-π/3 kπ < x < π/3 kπ] cos x cos x < 0 [π/3 kπ < x < π/ kπ 3π/ kπ < x < 5π/3 kπ] sen x cos x < 1 [π/6 kπ < x < 5π/6 kπ π kπ < x < π kπ] cos x - 3 sen x > 0 [-5π/6 kπ < x < π/ kπ; 3π/ kπ < x < π kπ; kπ < x < kπ] 3 sen x cos x > 1 [kπ < x < π/3 kπ] cos x senx 3 0 [ kπ /3π < x < π kπ] 63

14 Formule di addizione e sottrazione: sen( β) sencosβ cossenβ sen( - β) sencosβ - cossenβ cos( β) coscosβ - sensenβ cos( - β) coscosβ sensenβ tg tgβ tg( β ) 1 tgtgβ tg tgβ tg( β ) 1 tgtgβ FORMULE DI TRIGONOMETRIA Formule di dulicazione: (si ottengono dalle recedenti onendo β) sen sencos cos cos - sen 1 sen cos -1 tg tg 1 tg Formule di bisezione: (si ottengono dalle recedenti dimezzando l angolo ) sin ± 1 cos 1 cos cos ± 1 cos 1 cos sin tg ± 1 cos sin 1 cos Formule arametriche: (ESPRESSIONI DI sen, cos IN FUNZIONE RAZIONALE DI t t sin 1 t 1 t cos 1 t t tg 1 t tan ) 64

15 65 Formule di rostaferesi: cos sin sin sin sin cos sin sin cos cos cos cos sin sin cos cos Formule di Werner: [ ] [ ] [ ] ) sin( ) sin( 1 cos sin ) cos( ) cos( 1 cos cos ) cos( ) cos( 1 sin sin β β β β β β β β β

16 Aendice 1 Funzioni goniometriche inverse Considerata la funzione ysenx è ossibile invertirla, sotto oortune condizioni, e si ottiene la funzione : yarcsen x definita er -1 x 1, a valori in π/ f(x) π/ nello stesso modo se oeriamo con la y cos x otteniamo la y arccos x definita er -1 x 1, a valori in 0 f(x) π 66

17 e con y tg x si ha: y arctg x definita er ogni x, a valori in π/ f(x) π/ 67

18 Aendice Relazioni tra gli elementi di un triangolo rettangolo b a senβ b a cosγ b c tgβ b c cotgγ c a senγ c a cosβ c b tgγ c b cotgβ Relazioni tra gli elementi di un triangolo ualsiasi I due seguenti teoremi si utilizzano uando di un triangolo ualsiasi devo determinare lati e angoli a b c Teorema dei seni: si utilizza se sono noti due lati e un angolo ad essi sen senβ senγ oosto, oure un lato e due angoli ualunue Esemio 0 0 sin 30 sin 45 30, β 45, a 16 b b 1.6 sin 40 sin β 40 0, b 15, a 5 sin β

19 Teorema del coseno: a b c bc cos si utilizza uando del triangolo sono noti due lati e l angolo tra essi comreso oure tre lati. Esemio 0 γ 60, a 5, b 8 c a b abcos 60 er cui c 7, a 5, b 6 cosγ 0., γ 1.37 (radianti: ) 69

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

HP VP. (rispettivamente seno, coseno e tangente di β)

HP VP. (rispettivamente seno, coseno e tangente di β) Trigonometria Prerequisiti: Nozione di angolo e di arco. Obiettivi convertire le misure degli angoli dai gradi ai radianti e viceversa; sapere le relazioni fra gli elementi (lati, angoli) di un triangolo;

Dettagli

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo

1. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo Quinto modulo: Funzioni Obiettivi. conoscere la terminologia e le proprietà dei logaritmi e saperne utilizzare le regole di calcolo. saper operare con le funzioni esponenziale e logaritmo per risolvere

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

TRIGONOMETRIA. Ripasso veloce

TRIGONOMETRIA. Ripasso veloce TRIGONOMETRIA Ripasso veloce Definizioni principali Sia u un segmento con un estremo nell origine e l altro sulla circonferenza di centro l origine e raggio (circonferenza goniometrica) che formi un angolo

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

ANGOLI ASSOCIATI. Considerando sempre valida l uguaglianza tra i triangoli OPH e ORK si ricava quanto segue: 1) Angoli complementari.

ANGOLI ASSOCIATI. Considerando sempre valida l uguaglianza tra i triangoli OPH e ORK si ricava quanto segue: 1) Angoli complementari. ANGLI ASSCIATI Considerando sempre valida l uguaglianza tra i triangoli H e K si ricava quanto segue: ) Angoli complementari K H K = H sen = (9 ) cos K = H cos(9 ) = sen (9 ) = c ) Angoli che differiscono

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF / PS-MF IV Lezione TRIGONOMETRIA Dr. E. Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

Goniometria e Trigonometria

Goniometria e Trigonometria Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione La goniometria è la parte della matematica

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

RADIANTI E CIRCONFERENZA GONIOMETRICA

RADIANTI E CIRCONFERENZA GONIOMETRICA CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GONIOMETRIA E TRIGONOMETRIA Prof. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

Trigonometria. Funzioni periodiche

Trigonometria. Funzioni periodiche Trigonometria aolo Montanari Appunti di Matematica Trigonometria 1 Funzioni periodiche Una funzione f definita in un sottoinsieme X di R si dice periodica di periodo T se per ogni x X si ha: f(x) = f(x+t)

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

FUNZIONI TRIGONOMETRICHE

FUNZIONI TRIGONOMETRICHE FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angolo è una porzione di piano racchiusa

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angoli Un angolo è una porzione di piano

Dettagli

dove i simboli α gradi ed α radianti indicano rispettivamente la misura dell angolo in gradi ed in radianti. Da qui si ottengono le seguenti formule

dove i simboli α gradi ed α radianti indicano rispettivamente la misura dell angolo in gradi ed in radianti. Da qui si ottengono le seguenti formule 8 Trigonometria 81 Seno, coseno, tangente Un angolo α può essere definito geometricamente come la parte di piano compresa tra due semirette, dette lati dell angolo, aventi origine nello stesso punto O,

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: tg x π 34 = ctg x + π 3

Dettagli

Equazioni goniometriche riconducibili a equazioni elementari

Equazioni goniometriche riconducibili a equazioni elementari Equazioni goniometriche riconducibili a equazioni elementari Le equazioni non elementari, in cui sono presenti più funzioni goniometriche, si riconducono a equazioni elementari nel seguente modo: 1. Si

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI V PARTE: TRIGONOMETRIA MISURE DEGLI ANGOLI IN GRADI E IN RADIANTI Nota; nel seguito per la misura degli angoli in gradi viene utilizzato il sistema "sessadecimale"

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

Goniometria Domande, Risposte & Esercizi

Goniometria Domande, Risposte & Esercizi Goniometria Domande, Risposte & Esercizi Angoli e Archi. Dare la definizione di grado sessagesimale (DMS). Il grado sessagesimale si definisce come la 36ª parte di un angolo giro. Esso viene indicato con

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

Gli angoli e le funzioni goniometriche

Gli angoli e le funzioni goniometriche Gli angoli e le funzioni goniometriche A a. Poiché sin sin cos e cos Ö á Ücos l equazione diventa: cos cos cos b. Il grafico della funzione cos si ottiene dal grafico della funzione cos alicando rima una

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Banca Dati Finale Senza Risposte

Banca Dati Finale Senza Risposte Banca Dati Finale Senza Risposte TRG da 5451 a 6100 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (5/4) π radianti? A) 240 B) 270 C)

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

Matema&ca. GONIOMETRIA Le formule goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. GONIOMETRIA Le formule goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca GONIOMETRIA Le formule goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LE FUNZIONI GONIOMETRICHE DI ANGOLI ASSOCIATI definizione Sono detti angoli associati a un angolo α quegli

Dettagli

01 LE FUNZIONI GONIOMETRICHE

01 LE FUNZIONI GONIOMETRICHE 0 LE FUNZIONI GONIOMETRICHE. LA MISURA DEGLI ANGOLI ESERCIZI Esprimi in forma sessadecimale le seguenti misure di angoli. A 4 9 ; 8 56 6 ; 57 59 B 44 ; 78 56 ; 9 4 0.,57 ; 8,97 ; 57,0. 4,4 ; 7,5 ; 9,569

Dettagli

che ci permette di passare da un sistema di misura all'altro con le:

che ci permette di passare da un sistema di misura all'altro con le: Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.

Dettagli

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi

Esercitazioni di Fisica. venerdì 10:00-11:00 aula T4. Valeria Malvezzi Esercitazioni di Fisica venerdì 10:00-11:00 aula T4 Valeria Malvezzi E-mail: valeria.malvezzi@roma2.infn.it Richiami di trigonometria Definizioni goniometriche )α Relazione goniometrica fondamentale I

Dettagli

INDICE. 4. TRIGONOMETRIA 4.1. Relazioni fondamentali in un triangolo rettangolo Teoremi in un triangolo qualsiasi. 21

INDICE. 4. TRIGONOMETRIA 4.1. Relazioni fondamentali in un triangolo rettangolo Teoremi in un triangolo qualsiasi. 21 ISTITUTO B. PASCAL INDICE 1. FUNZIONI ESPONENZIALI 1.1. Richiami sulle potenze...3 1.. Il grafico della funzione esponenziale.4 1.3. Equazioni esponenziali...6 1.4. Disequazioni esponenziali..7. FUNZIONE

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura

Dettagli

9) Ricava per quali valori di x è positiva e per quali è negativa la funzione di equazione: > 0 [ 0 < x < ] ; y < 0 se. 1 [ x ] 0 [ x 1 ] + >

9) Ricava per quali valori di x è positiva e per quali è negativa la funzione di equazione: > 0 [ 0 < x < ] ; y < 0 se. 1 [ x ] 0 [ x 1 ] + > Verifiche 4 C 4 H Anno scolastico 010/011 ESPONENZIALI LOGARITMI 1) Calcola il dominio della funzione: y = log / (5 x) + 1 [ x < 5 ] ) Calcola il dominio della funzione y = 3 log (x 8) [ - 4 x < < x 4

Dettagli

( 1 ) AB:A B =BC:B C =CA:C A

( 1 ) AB:A B =BC:B C =CA:C A Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati

Dettagli

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con

Dettagli

LICEO delle SCIENZE UMANE B. PASCAL

LICEO delle SCIENZE UMANE B. PASCAL LICEO delle SCIENZE UMANE B. PASCAL Prof. Loredana Mannarino INDICE 1. FUNZIONI ESPONENZIALI 1.1. Richiami sulle potenze...3 1.2. Il grafico della funzione esponenziale.4 1.3. Equazioni esponenziali...6

Dettagli

Matema&ca. TRIGONOMETRIA Le disequazioni goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA Le disequazioni goniometriche. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA Le disequazioni goniometriche DOCENTE: Vincenzo Pappalardo MATERIA: Matematica DISEQUAZIONI GONIOMETRICHE ELEMENTARI definizione Una disequazione di dice goniometrica se contiene

Dettagli

ELEMENTI DI TRIGONOMETRIA

ELEMENTI DI TRIGONOMETRIA ELEMENTI DI TRIGONOMETRIA Sommario ELEMENTI DI TRIGONOMETRIA... 1 Premessa... Gli angoli... Angoli orientati... Le funzioni goniometriche elementari... 4 Proprietà delle funzioni goniometriche... Le relazioni

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

Capitolo 8: introduzione alla trigonometria

Capitolo 8: introduzione alla trigonometria Capitolo 8: introduzione alla trigonometria 8.1 Trasformare da gradi sessagesimali a radianti o viceversa a 0 0 ; b 70 0 ; c 60 0 ; d 1 0 ; e 5 0 ; f 15 0 ; g 5 0 ; h 15 0 ; i 10 0 0 ; j 1 0 9 ; k 1 0

Dettagli

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA DI MATEMATICA Docente: Pappalardo Vincenzo Data: 11/04/019 Classe: 4D 1. Risolvere le seguenti equazioni e disequazioni goniometriche: π sen x = cos x 3 sen x

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

Il coseno di un angolo

Il coseno di un angolo Il coseno di un angolo Per capire cos è il coseno di un angolo dobbiamo fare riferimento alla circonferenza goniometrica. Prendiamo un angolo a sulla nostra circonferenza tracciano una linea dall origine.

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R.

f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R. Le funzioni seno e coseno. Ogni numero reale è la misura in radianti di un angolo goniometrico; pertanto possiamo definire il seno e il coseno di un numero reale ricorrendo al seno e coseno dell angolo

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

MATEMATICA. Definizioni:

MATEMATICA. Definizioni: Definizioni: Funzione: dati due insiemi A e B, dove A è l insieme di partenze e B quello di arrivo, una funzione tra di essi è una relazione che ad ogni elemento dell insieme A associa uno e un solo elemento

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018

Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018 Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni

Dettagli

Esponenziale e logaritmi

Esponenziale e logaritmi CORSO DI PREPARAZIONE AI TEST DI AMMISSIONE ALL UNIVERSITA Maria Teresa Cappagli Esponenziale e logaritmi Esponenziali Si definisce espressione esponenziale una espressione in cui compaiono una o più all

Dettagli

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone

Dettagli

Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA

Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA 1. MODULO 1: RICHIAMI DI CALCOLO LETTERALE La scomposizione di polinomi e le operazioni con le frazioni algebriche 2. MODULO 2: LE EQUAZIONI Istituto di Istruzione Secondaria Superiore Statale Classe 1

Dettagli

Alcune nozioni di trigonometria 1

Alcune nozioni di trigonometria 1 Alcune nozioni di trigonometria. Angoli In un sistema di assi cartesiani ortogonali la misura degli angoli si effettua a partire dal semiasse positivo delle x, assumendo come positivo il verso antiorario.

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

1. Partendo dall angolo della figura definisci il seno e il coseno

1. Partendo dall angolo della figura definisci il seno e il coseno 1. Partendo dall angolo della figura definisci il seno e il coseno 2. Un angolo ha i seguenti valori per il seno e per il coseno, ; osa si può dire al riguardo? 3. In quali angoli, per 0 < < 2, cos < 0?

Dettagli

Trigonometria 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (4/3) π radianti? A) 240 B) 245 C) 230 D) 120 5453 La tangentoide è la

Dettagli

Goniometria per il TOL - Guida e formulario

Goniometria per il TOL - Guida e formulario Goniometria per il TOL - Guida e formulario Luca Talenti Gli argomenti più complessi del TOL sono probabilmente la goniometria e la trigonometria. Se non si arriva dal liceo scientifico, spesso questi

Dettagli

ELEMENTI DI GONIOMETRIA E DI TRIGONOMETRIA

ELEMENTI DI GONIOMETRIA E DI TRIGONOMETRIA Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA ELEMENTI DI GONIOMETRIA E DI TRIGONOMETRIA Goniometria e trigonometria sono due termini che derivano dal greco e significano

Dettagli

Equazioni parametriche goniometriche

Equazioni parametriche goniometriche Equazioni parametriche goniometriche Discutere un equazione parametrica significa stabilire, al variare del parametro, il numero di soluzioni dell equazione soddisfacenti le limitazioni assegnate all incognita.

Dettagli

GONIOMETRIA E TRIGONOMETRIA

GONIOMETRIA E TRIGONOMETRIA Dispensa di Matematica per la classe 4. C Anno scolastico 017-018 GONIOMETRIA E TRIGONOMETRIA Nome e Cognome: CIRCONFERENZA GONIOMETRICA In un triangolo rettangolo con ipotenusa 1 e angolo α i due cateti

Dettagli

Capitolo 2. Funzioni

Capitolo 2. Funzioni Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x.

3. (Da Medicina e Odontoiatria 2012) Determinare quale delle seguenti funzioni soddisfa la relazione f(-x) = -f(x), per ogni numero reale x. QUESITI 1 TRIGONOMETRIA 1. (Da Veterinaria 2014) Calcolare il valore dell espressione: cosπ + cos2π + cos3π + cos4π + + cos10π [gli angoli sono misurati in radianti] a) -10 b) -1 c) 0 d) 1 e) 10 2. (Da

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

funzioni goniometriche ed elementi di trigonometria Matematica di Base - Ingegneria UniUD

funzioni goniometriche ed elementi di trigonometria Matematica di Base - Ingegneria UniUD funzioni goniometriche ed elementi di trigonometria idoro.sciarratta@alice.it Matematica di Base - Ingegneria UniUD y P O α Q x Definizione di Sinα e Cosα O y α Q Sin( α ) = PQ OP Cos( α ) = OQ P x OP

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI I 3 lati ed i 3 lati di un triangolo si dicono ELEMENTI del triangolo (e ricordiamo che un lato ed un angolo si dicono opposti quando il vertice di un angolo non

Dettagli

Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse. 12 ottobre 2007

Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse. 12 ottobre 2007 Funzioni elementari Funzioni trigonometriche Funzioni trigonometriche inverse 1 ottobre 007 Misura degli angoli Un angolo può essere misurato: mediante il confronto rispetto ad un angolo unitario (misura

Dettagli

Corso Zero di Matematica

Corso Zero di Matematica Corso Zero di Matematica Download disponibile al sito web http://www.dmi.unict.it/~bonacini/ Paola Bonacini Università di Catania Teoria degli insiemi Gli insiemi si indicano con le lettere maiuscole.

Dettagli

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15.

2. Determina i valori delle funzioni trigonometriche seno e coseno di un angolo ottuso α sapendo che tan α = 15. Esercizi proposti di goniometria 1. Un settore circolare, in un cerchio di raggio 14 cm, ha area uguale a 42π cm 2. Determina la misura in gradi, primi e secondi dell angolo al centro corrispondente. 2.

Dettagli

I fasci di circonferenze

I fasci di circonferenze A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

COMPENDIO TRIGONOMETRIA

COMPENDIO TRIGONOMETRIA TORINO MAGGIO 2011 COMPENDIO DI TRIGONOMETRIA di Bart VEGLIA 1 FUNZIONI GONIOMETRICHE 1 Premessa La trigonometria ha lo scopo, come dice il nome, (dal greco, trigonon = triangolo e metron = misura) di

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

In altre parole, una circonferenza corrisponde ad un angolo di 2π radianti.

In altre parole, una circonferenza corrisponde ad un angolo di 2π radianti. Lezione di goniometria Intanto, non è male riportare le seguenti definizioni: Goniometria: si occupa della misurazione degli angoli. Trigonometria: si occupa delle relazioni che stanno fra i lati e gli

Dettagli

(parte decimale) : (1 seguito da tanti zeri quanti i numeri della parte decimale) =(gradi secondi) : 3600.

(parte decimale) : (1 seguito da tanti zeri quanti i numeri della parte decimale) =(gradi secondi) : 3600. F1. Goniometria F1.1 Misura degli angoli GRADI Si è abituati a misurare gli angoli in gradi. Il grado si indica con il simbolo. Esistono due modi differenti per indicare i sottomultipli del grado: la notazione

Dettagli

Le funzioni goniometriche

Le funzioni goniometriche Le funzioni goniometriche Iniziamo con definire una circonferenza particolare che sarà fondamentale per studiare tutti i concetti che verranno introdotti di seguito Definizione: si definisce circonferenza

Dettagli

Capitolo 3. Le funzioni elementari

Capitolo 3. Le funzioni elementari Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio

Dettagli

IIS A.Moro Dipartimento di Matematica e Fisica

IIS A.Moro Dipartimento di Matematica e Fisica IIS A.Moro Dipartimento di Matematica e Fisica Obiettivi minimi per le classi quarte - Matematica UNITA DIDATTICA CONOSCENZE COMPETENZE ABILITA Coniche e luoghi geometrici Le coniche Le coniche e i luoghi

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

MATEMATICA - LEZIONE 5 Goniometria Equazioni e disequazioni trigonometriche. Relatore prof. re CATELLO INGENITO

MATEMATICA - LEZIONE 5 Goniometria Equazioni e disequazioni trigonometriche. Relatore prof. re CATELLO INGENITO MATEMATICA - LEZIONE 5 Goniometria Equazioni e disequazioni trigonometriche Relatore prof. re CATELLO INGENITO Sommario della lezione Angoli goniometrici Funzioni goniometriche Equazioni e disequazioni

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Appunti di Matematica Disequazioni goniometriche Disequazioni goniometriche elementari a) Riprendiamo gli esempi che abbiamo fatto per le equazioni trasformandoli in disequazioni: sen Le soluzioni saranno:

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

formule trigonometria

formule trigonometria 1 formule trigonometria circonferenza trigonometrica di raggio 1 Funzioni Trigonometriche Dato un piano cartesiano, costituito da due assi ortogonali, consideriamo una circonferenza di raggio R avente

Dettagli