Trigonometria. sen α = ordinata del punto B secondo estremo dell arco α (il primo estremo è in A) = BH.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Trigonometria. sen α = ordinata del punto B secondo estremo dell arco α (il primo estremo è in A) = BH."

Transcript

1 Trigonometria Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al raggio Si assa dai gradi ai radianti con la seguente roorzione: : 180 rad :π Considerato un sistema di riferimento cartesiano si definisce circonferenza goniometrica la circonferenza avente centro nell origine e raggio unitario (circonferenza di euazione x y 1). Il unto A(1,0) è detto origine degli archi, il verso di ercorrenza ositivo è uello antiorario. Notiamo anche che la misura in radianti dell angolo al centro coincide con la misura dell arco della circonferenza goniometrica sotteso, uindi in trigonometria si arla indifferentemente di archi o di angoli. Detto l angolo al centro AO ˆ B definiamo ora le seguenti funzioni trigonometriche: sen ordinata del unto B secondo estremo dell arco (il rimo estremo è in A) BH. cos ascissa del unto B secondo estremo dell arco OH. tg (ο tan) raorto, uando esiste, tra il seno e il coseno dell'angolo (cioè uando cos 0) cotg (ο cotan) raorto, uando esiste, tra il coseno e il seno dell'angolo (cioè uando sen 0). N.B. Dalle definizioni date segue che seno coseno tangente e cotangente sono funzioni di, cioè sono numeri reali che diendono solamente dal valore dell angolo. 51

2 RELAZIONI FONDAMENTALI FRA LE DIVERSE FUNZIONI TRIGONOMETRICHE DI UNO STESSO ANGOLO ORIENTATO: Tra le funzioni trigonometriche viste intercorrono le seguenti relazioni: sen cos 1 ( teorema di Pitagora) sen tg cos 1 cos cotg tg sen Si uò inoltre dimostrare che tg è l ordinata del unto T di intersezione tra la tangente geometrica alla circonferenza nel unto A e la semiretta OT (che teorema sui triangoli si usa?). Nota la funzione trigonometrica di un angolo è ossibile ricavare le altre, e, dalle relazioni recedenti si ottiene l esressione di tutte le funzioni di un dato angolo orientato mediante una sola di esse N.B. Il segno va scelto a seconda del uadrante in cui si trova l angolo. 5

3 NOTO sen cos tg sen sen ± 1 sen cos tg cctg ± 1 cos cos tg ± 1 tg ± tg ctg ± 1 ctg ± 1 ctg ± ± tg 1 ctg sen 1 sen 1 cos cos VALORI DELLE FUNZIONI GONIOMETRICHE DI ARCHI PARTICOLARI sen cos tg 15 π/ π/ π/6 1/ 3 / 3 /3 45 π/4 / / 1 60 π/3 3 / 1/ 3 90 π/ 1 0 non esiste 180 π /π -1 0 non esiste π

4 Da evidenti simmetrie sulla circonferenza si deducono oi i valori delle funzioni trigonometriche di altri archi articolari. Esemio il coseno di 4/3 π è uguale in modulo a uello di π/3 (infatti 4/3 π π π/3), essendo nel terzo uadrante erò il suo segno è negativo, uindi cos 4/3 π 1/. Esercizi 1. Doo aver disegnato gli archi corrisondenti a cos uadrante le altre funzioni trigonometriche. 3, trovare dell arco nel uarto. Saendo che è acuto e ositivo e che sen 3/5 calcolarne le altre funzioni trigonometriche. 3. Ragionando solo sulla circonferenza goniometrica comletare con i segni > < le seguenti: π π π sen... sen sen π π π cos...cos cos π π sen sen π π cos cos Ragionando solo sulla circonferenza goniometrica rovare che: sen( π ) sen sen (π/ ) cos sen (π ) - sen sen ( π ) - sen 5. Semlificare le seguenti esressioni: tg(π )sen(π-) cos(π ) tg (π-)cos (-) [0] sen 4 sen cos 4 cos [0] 54

5 Esistono utili formule er il calcolo delle funzioni trigonometriche, che sono riortate in fondo. VARIAZIONE DELLE FUNZIONI TRIGONOMETRICHE: Ricordando la definizione data osserviamo che: - 1 sen 1; - 1 cos 1 I grafici delle funzioni trigonometriche sono i seguenti: y sen x definita er ogni x, il codominio è [-1,1], eriodica di eriodo π, interseca l asse x nei unti della forma k π, con k Z. y cos x definita er ogni x, il codominio è [-1,1], eriodica di eriodo π, interseca l asse x nei unti della π forma kπ, con k Z. 55

6 y tg x definita er x π/ kπ, il codominio è R, eriodica di eriodo π, interseca l asse x nei unti della forma k π, con k Z. Esercizi Prova a disegnare i grafici di: 1. sin x. 3 cos x 56

7 RISOLUZIONE DELLE EQUAZIONI PRIMO GRADO, elementari 1. sinx h. cosx h con h [-1, 1] Ricordando la definizione delle funzioni sinx e cosx ueste euazioni si risolvono intersecando la circonferenza (di euazione x y 1) con l euazione 1. y h. x h (che raresenta una retta) Esemio: sen x ½ x y 1 Può essere interretata come : y 1/ disegnando la circonferenza goniometrica e la retta y 1/ si ha: I unti di intersezione sono osizionati nel rimo uadrante: x π/6, e nel secondo, x π π/6 5π/6 In uesto modo abbiamo trovato le due soluzioni, ma ricordando che la funzione seno è eriodica di eriodo π se voglio ottenere tutte le soluzioni dell euazione ho: x π/6 kπ, x 5π/6 kπ, con k Z 57

8 cos x -1/ disegnando la circonferenza goniometrica e la retta x -1/ si ha: In uesto caso i unti di intersezione sono osti nel secondo e terzo uadrante. L arco con cos x ½ è x π/3, uindi uello osto nel secondo uadrante sarà x π π/3 /3 π mentre uello nel terzo uadrante sarà. x π π/3 4/3 π Le soluzioni sono uindi, tenendo conte del eriodo: x /3 π kπ, x 4/3 π kπ, con k Z. PRIMO GRADO, lineari 3. asenx bcosx h Si risolvono intersecando la circonferenza (di euazione x y 1) con l euazione ay bx h(che raresenta una retta) Esemio senx cos x 1 Si one y senx, x cosx e si interseca la retta y -x 1 così ottenuta con la circonferenza di euazione x y 1 Si ottengono i unti (0,1) e (1,0) che corrisondono alle soluzioni x 0, x π/ considerando oi il eriodo si ha:x 0 kπ, x π/ kπ, con k Z. 58

9 SECONDO GRADO 1. Se l euazione data contiene una sola funzione trigonometrica si risolve mediante la formula b ± b 4ac generale delle euazioni di secondo grado, ossia x1,. a. Se contiene iù di una funzione si cerca, mediante le formule viste recedentemente, di trasformarla in una che contenga una sola funzione trigonometrica. Esemio cos x cos x 1 0 Alicando la formula risolutiva si ha: 1± 1 8 cos x, 4 1 1;1/ ora risolvo le euazioni cos x ½, cos x -1 x π/3 kπ, x π kπ, x -π/3 kπ, con k Z. Risolviamo ora: cos x sen x cos x 0 è di secondo grado, ed in essa non comare una sola funzione goniometrica; ricordando che sen x 1 cos x si ha: cos x 1 cos x cos x 0 cos x cos x 1 0 da cui si ottiene l euazione recedente. 59

10 Esercizi 1. Risolvere le seguenti euazioni: sen (x π/) ½ [x π/6 kπ, xπ/6 kπ] cos x cos x 1 0 [ x kπ, x ±π/3 kπ] cos x sen x cos x [x π kπ, x ±π/3 kπ] sen ( π/4 x) sen (π/4 x) 1 [x ±π/4 kπ] sen x sen x [x kπ, x ±π/3 kπ] cos x sen x 3 1 [x π/6 kπ, x π/3 kπ] RISOLUZIONE DI DISEQUAZIONI TRIGONOMETRICHE Diseuazioni elementari Consideriamo ad esemio la diseuazione sen x > ½ Disegnando la circonferenza e la retta y ½ cerco tutti gli archi er cui l ordinata è maggiore di ½, ed ottengo la soluzione π/6 kπ < x < 5π/6 kπ, con k Z. uindi ricordando che - 1 sen 1; - 1 cos 1 Diseuazione: sen x > a a 1: imossibile a < 1: semre vera a 1: 3 vera x π kπ 1 < a < 1: 1 kπ < x < kπ, con k Z 60

11 Diseuazione sen x < a a 1: imossibile a > 1: semre vera a 1: vera π x kπ 1 < a < 1: kπ < x < π kπ, con k Z Diseuazione cos x > a a 1: imossibile a < 1: semre vera a 1: vera x π kπ 1 < a < 1: kπ < x < kπ, con arccos a, k Z Diseuazione cos x < a a 1: semre vera a < 1: imossibile a 1: vera x π kπ 1 < a < 1: kπ < x < π kπ, con k Z 61

12 Diseuazioni lineari Nel caso di una diseuazione lineare del tio asenx bcosx > (<) h si rocede come er l euazione corrisondente, cioè si risolve intersecando la circonferenza di euazione x y 1 con la diseuazione ay bx >h (che raresenta un semiiano) Esemio senx cos x <1 Si one y senx, x cosx e si interseca il semiiano y < -x 1 così ottenuto con la circonferenza di euazione x y 1 Si ottiene così la soluzione: π/ kπ < x <π kπ, con k Z Diseuazioni di grado Si risolvono come le diseuazioni di secondo grado, scegliendo gli intervalli interni o esterni alle soluzioni trovate, si ottengono così delle diseuazioni di rimo grado che si risolvono come recedentemente visto. Esemio sen x sen x 1 >0 risolvendo l euazione sen x sen x 1 0 ottengo, mediante la formula risolutiva delle euazioni di secondo grado: sen x 1 sen x -1/, da cui, rendendo i valori esterni si ha: sen x > 1 sen x < -1/ cioè: sen x >1 non dà soluzioni, mentre sen x < ½ ha come soluzioni 7π/6 kπ < x < 11π/6 kπ, con k Z 6

13 Esercizi 1. Risolvere le seguenti diseuazioni: cos x > ½ [-π/3 kπ < x < π/3 kπ] cos x cos x < 0 [π/3 kπ < x < π/ kπ 3π/ kπ < x < 5π/3 kπ] sen x cos x < 1 [π/6 kπ < x < 5π/6 kπ π kπ < x < π kπ] cos x - 3 sen x > 0 [-5π/6 kπ < x < π/ kπ; 3π/ kπ < x < π kπ; kπ < x < kπ] 3 sen x cos x > 1 [kπ < x < π/3 kπ] cos x senx 3 0 [ kπ /3π < x < π kπ] 63

14 Formule di addizione e sottrazione: sen( β) sencosβ cossenβ sen( - β) sencosβ - cossenβ cos( β) coscosβ - sensenβ cos( - β) coscosβ sensenβ tg tgβ tg( β ) 1 tgtgβ tg tgβ tg( β ) 1 tgtgβ FORMULE DI TRIGONOMETRIA Formule di dulicazione: (si ottengono dalle recedenti onendo β) sen sencos cos cos - sen 1 sen cos -1 tg tg 1 tg Formule di bisezione: (si ottengono dalle recedenti dimezzando l angolo ) sin ± 1 cos 1 cos cos ± 1 cos 1 cos sin tg ± 1 cos sin 1 cos Formule arametriche: (ESPRESSIONI DI sen, cos IN FUNZIONE RAZIONALE DI t t sin 1 t 1 t cos 1 t t tg 1 t tan ) 64

15 65 Formule di rostaferesi: cos sin sin sin sin cos sin sin cos cos cos cos sin sin cos cos Formule di Werner: [ ] [ ] [ ] ) sin( ) sin( 1 cos sin ) cos( ) cos( 1 cos cos ) cos( ) cos( 1 sin sin β β β β β β β β β

16 Aendice 1 Funzioni goniometriche inverse Considerata la funzione ysenx è ossibile invertirla, sotto oortune condizioni, e si ottiene la funzione : yarcsen x definita er -1 x 1, a valori in π/ f(x) π/ nello stesso modo se oeriamo con la y cos x otteniamo la y arccos x definita er -1 x 1, a valori in 0 f(x) π 66

17 e con y tg x si ha: y arctg x definita er ogni x, a valori in π/ f(x) π/ 67

18 Aendice Relazioni tra gli elementi di un triangolo rettangolo b a senβ b a cosγ b c tgβ b c cotgγ c a senγ c a cosβ c b tgγ c b cotgβ Relazioni tra gli elementi di un triangolo ualsiasi I due seguenti teoremi si utilizzano uando di un triangolo ualsiasi devo determinare lati e angoli a b c Teorema dei seni: si utilizza se sono noti due lati e un angolo ad essi sen senβ senγ oosto, oure un lato e due angoli ualunue Esemio 0 0 sin 30 sin 45 30, β 45, a 16 b b 1.6 sin 40 sin β 40 0, b 15, a 5 sin β

19 Teorema del coseno: a b c bc cos si utilizza uando del triangolo sono noti due lati e l angolo tra essi comreso oure tre lati. Esemio 0 γ 60, a 5, b 8 c a b abcos 60 er cui c 7, a 5, b 6 cosγ 0., γ 1.37 (radianti: ) 69

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao)

Trigonometria (tratto dal sito Compito in classe di Matematica di Gilberto Mao) Trigonometria (tratto dal sito Comito in classe di Matematica di Gilberto Mao) Teoria in sintesi Radiante: angolo al centro di una circonferenza che sottende un arco di lunghezza rettificata uguale al

Dettagli

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x) GONIOMETRIA sin (x = PH OP cos (x = OH OP tg (x = sin(x = TA cos(x ctg (x = cos (x = CB sin (x sec (x = 1 = OM cos(x cosec (x = 1 = ON sin (x La tangente si calcola sempre sulla retta verticale passante

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

FUNZIONI TRIGONOMETRICHE

FUNZIONI TRIGONOMETRICHE FUNZIONI TRIGONOMETRICHE RICHIAMI DI TEORIA Definizione: si dice angolo positivo individuato dalla coppia di semirette r e r' uscenti dal punto O, l'insieme dei punti del piano descritti dai punti di r

Dettagli

APPUNTI DI GONIOMETRIA

APPUNTI DI GONIOMETRIA APPUNTI DI GONIOMETRIA RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice angolo ciascuna delle due parti in cui un piano è diviso da due semirette aventi la stessa origine. Definizione: Dicesi

Dettagli

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica

Dettagli

Funzioni elementari: funzioni trigonometriche 1 / 17

Funzioni elementari: funzioni trigonometriche 1 / 17 Funzioni elementari: funzioni trigonometriche 1 / 17 La circonferenza di equazione x 2 + y 2 = 1 é detta circonferenza goniometrica. La circonferenza goniometrica 1 P 1 α 0 A 1 2 / 17 La circonferenza

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE Misura degli angoli Seno, coseno e tangente di un angolo Relazioni fondamentali tra le funzioni goniometriche Angoli notevoli Grafici delle funzioni goniometriche GONIOMETRIA : scienza

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GONIOMETRIA E TRIGONOMETRIA Dr. Erasmo Modica erasmo@galois.it RADIANTI E CIRCONFERENZA GONIOMETRICA Definizione: Si dice

Dettagli

Prerequisiti di Matematica Trigonometria

Prerequisiti di Matematica Trigonometria Prerequisiti di Matematica Trigonometria Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Angoli Un angolo è una porzione di piano

Dettagli

Funzioni goniometriche

Funzioni goniometriche Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione

Dettagli

Disequazioni goniometriche

Disequazioni goniometriche Disequazioni goniometriche Si definiscono disequazioni goniometriche le disequazioni nelle quali l angolo incognito è espresso mediante funzioni goniometriche (seno, coseno, tangente etc.). Per le disequazioni

Dettagli

Banca Dati Finale Senza Risposte

Banca Dati Finale Senza Risposte Banca Dati Finale Senza Risposte TRG da 5451 a 6100 5451 La tangente di un angolo di 90 : A) è 1 B) è 0 C) non è definita D) è 1 5452 Quanto vale in gradi un angolo di (5/4) π radianti? A) 240 B) 270 C)

Dettagli

che ci permette di passare da un sistema di misura all'altro con le:

che ci permette di passare da un sistema di misura all'altro con le: Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali (1 = 1/360 dell'angolo giro), anche se una Legge dello Stato italiano del 1960 impone di esprimerli in radianti.

Dettagli

trasformazione grafico Cosa si deve fare Esempio goniometrico

trasformazione grafico Cosa si deve fare Esempio goniometrico trasformazione grafico Cosa si deve fare Esempio goniometrico = cos + b>0 Traslazione verticale b 0 si sposta il grafico verso l alto, oppure l asse orizzontale verso il

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a TRIGONOMETRIA a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1 1) Un angolo misura 315 o. La sua misura

Dettagli

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola Equazioni goniometriche elementari 1 Questa presentazione è dedicata a risolvere equazioni trigonometriche elementari Sono dette elementari le equazioni del tipo sin(x)=m, cos(x) = m e tan(x) = m, con

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

01 LE FUNZIONI GONIOMETRICHE

01 LE FUNZIONI GONIOMETRICHE 0 LE FUNZIONI GONIOMETRICHE. LA MISURA DEGLI ANGOLI ESERCIZI Esprimi in forma sessadecimale le seguenti misure di angoli. A 4 9 ; 8 56 6 ; 57 59 B 44 ; 78 56 ; 9 4 0.,57 ; 8,97 ; 57,0. 4,4 ; 7,5 ; 9,569

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Equazioni parametriche goniometriche

Equazioni parametriche goniometriche Equazioni parametriche goniometriche Discutere un equazione parametrica significa stabilire, al variare del parametro, il numero di soluzioni dell equazione soddisfacenti le limitazioni assegnate all incognita.

Dettagli

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA

SCHEDA OBIETTIVI MINIMI. Materia:MATEMATICA Pag. 1 di 5 SCHEDA OBIETTIVI MINIMI Materia:MATEMATICA Classi QUARTA A e QUARTA B Spec.: LICEO DELLE SCIENZE APPLICATE a.s: 2016 / 2017 4 3 2 1 Presidente di dipartimento 0 DOC DS Maria Grazia Gillone

Dettagli

Alcune nozioni di trigonometria 1

Alcune nozioni di trigonometria 1 Alcune nozioni di trigonometria. Angoli In un sistema di assi cartesiani ortogonali la misura degli angoli si effettua a partire dal semiasse positivo delle x, assumendo come positivo il verso antiorario.

Dettagli

ELEMENTI DI TRIGONOMETRIA

ELEMENTI DI TRIGONOMETRIA ELEMENTI DI TRIGONOMETRIA Sommario ELEMENTI DI TRIGONOMETRIA... 1 Premessa... Gli angoli... Angoli orientati... Le funzioni goniometriche elementari... 4 Proprietà delle funzioni goniometriche... Le relazioni

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico.

Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. Programma svolto nell'a.s. 2016/2017 Disciplina: Matematica. Classe: 4D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Funzione esponenziale e logaritmica. a) Riepilogo delle proprietà delle potenze.

Dettagli

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI

TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI TRIGONOMETRIA E RISOLUZIONE DI TRIANGOLI I 3 lati ed i 3 lati di un triangolo si dicono ELEMENTI del triangolo (e ricordiamo che un lato ed un angolo si dicono opposti quando il vertice di un angolo non

Dettagli

I fasci di circonferenze

I fasci di circonferenze A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA

Nome.Cognome. 12 Febbraio 2009 Classe 4D. VERIFICA di MATEMATICA Nome.Cognome. Febbraio 009 Classe D VERIFIC di MTEMTIC Problemi ) Nel triangolo C si sa che ˆ 7 cos C =, tan C ˆ = e CM = a, essendo CM l altezza relativa ad. Determinare le misure dei lati del triangolo.

Dettagli

Capitolo 2. Funzioni

Capitolo 2. Funzioni Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

ELEMENTI DI GONIOMETRIA E DI TRIGONOMETRIA

ELEMENTI DI GONIOMETRIA E DI TRIGONOMETRIA Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA ELEMENTI DI GONIOMETRIA E DI TRIGONOMETRIA Goniometria e trigonometria sono due termini che derivano dal greco e significano

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R.

f: x R sen x [0, 1] g: x R cos x [0, 1] 1.Il dominio della funzione sen x è R. 1. Il dominio della funzione cos x è R. Le funzioni seno e coseno. Ogni numero reale è la misura in radianti di un angolo goniometrico; pertanto possiamo definire il seno e il coseno di un numero reale ricorrendo al seno e coseno dell angolo

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

ANGOLI. ANGOLO OTTUSO ( β > 90 ) ANGOLO ACUTO ( β < 90 )

ANGOLI. ANGOLO OTTUSO ( β > 90 ) ANGOLO ACUTO ( β < 90 ) ANGOLI Angolo è ciascuna delle due parti nelle quali un piano viene diviso da due semirette aventi la stessa origine. Le due semirette sono dette lati dei due angoli e l'origine comune il loro vertice.

Dettagli

COMPENDIO TRIGONOMETRIA

COMPENDIO TRIGONOMETRIA TORINO MAGGIO 2011 COMPENDIO DI TRIGONOMETRIA di Bart VEGLIA 1 FUNZIONI GONIOMETRICHE 1 Premessa La trigonometria ha lo scopo, come dice il nome, (dal greco, trigonon = triangolo e metron = misura) di

Dettagli

Corso Zero di Matematica

Corso Zero di Matematica Corso Zero di Matematica Download disponibile al sito web http://www.dmi.unict.it/~bonacini/ Paola Bonacini Università di Catania Teoria degli insiemi Gli insiemi si indicano con le lettere maiuscole.

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

CENNI DI TRIGONOMETRIA

CENNI DI TRIGONOMETRIA CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

Formule Utili Analisi Matematica per Informatici a.a

Formule Utili Analisi Matematica per Informatici a.a Formule Utili Analisi Matematica per Informatici a.a. 006-007 Dott. Simone Zuccher dicembre 006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

(parte decimale) : (1 seguito da tanti zeri quanti i numeri della parte decimale) =(gradi secondi) : 3600.

(parte decimale) : (1 seguito da tanti zeri quanti i numeri della parte decimale) =(gradi secondi) : 3600. F1. Goniometria F1.1 Misura degli angoli GRADI Si è abituati a misurare gli angoli in gradi. Il grado si indica con il simbolo. Esistono due modi differenti per indicare i sottomultipli del grado: la notazione

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

LE TRASFORMAZIONI NON ISOMETRICHE

LE TRASFORMAZIONI NON ISOMETRICHE GEOMETRIA 2 LE TRASFORMAZIONI NON ISOMETRICHE L'OMOTETIA richiami della teoria n Le trasformazioni non isometriche sono quelle trasformazioni in seguito alle quali le figure non restano congruenti; n l'omotetia

Dettagli

PALESTRA PER IL RECUPERO

PALESTRA PER IL RECUPERO PARABOLA. PALESTRA PER IL RECUPERO ESERCIZI SVOLTI ESERCIZI Raresentare graficamente la arabola di equazione assegnata. 1 y x þ x Determiniamo la coordinate del vertice b " x V b a 1 ð 1Þ 1 # a y V c b

Dettagli

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO

Dettagli

1 EQUAZIONI GONIOMETRICHE

1 EQUAZIONI GONIOMETRICHE 1 EQUAZIONI GONIOMETRICHE Esempio 1 Risolvere senx = Soluzione. La misura dei due angoli positivi, minori di un angolo giro, che soddisfano l equazione data sono: 4 Tutte le soluzioni sono quindi date

Dettagli

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria

Dettagli

Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1

Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1 www.matefilia.it Scuole italiane all estero (Calendario australe) 2008 Suppletiva QUESITO 1 Le misure dei lati di un triangolo sono 30, 70 e 90 cm. Si calcolino, con l aiuto di una calcolatrice, le ampiezze

Dettagli

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura.

Le grandezze fisiche scalari sono completamente definite da un numero e da una unità di misura. UNITÀ 3 LE GRANDEZZE FISICHE VETTORIALI E I VETTORI 1. Grandezze fisiche scalari e vettoriali. 2. I vettori. 3. Le operazioni con i vettori. 4. Addizione e sottrazione di vettori. 5. Prodotto di un numero

Dettagli

LA MISURA DELLA CIRCONFERENZA

LA MISURA DELLA CIRCONFERENZA LA MISURA DELLA CIRCONFERENZA E DEL CERCHIO Q ISTITUTO ITALIANO EDIZIONI ATLAS 1 GEOMETRIA 3 LA MISURA DELLA CIRCONFERENZA EDELCERCHIO LA LUNGHEZZA DELLA CIRCONFERENZA E DELLE SUE PARTI richiami della

Dettagli

EQUAZIONI CON PARAMETRO

EQUAZIONI CON PARAMETRO Trigonometria parte 4 easy matematica Eliana pagina 8 EQUAZIONI CON PARAMETRO Le equazioni parametriche goniometriche possono essere risolte mediante il metodo grafico. Tali equazioni richiedono che nell

Dettagli

Università di Milano Bicocca - Facoltà di Economia Esame di Matematica Generale I 7 luglio 2010

Università di Milano Bicocca - Facoltà di Economia Esame di Matematica Generale I 7 luglio 2010 Università di Milano Bicocca - Facoltà di Economia Esame di Matematica Generale I 7 luglio 1 Esercizio 1 Doo avere raresentato gra camente la seguente funzione, trovare gli intervalli del dominio in cui

Dettagli

ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

ARCHI ASSOCIATI EQUAZIONI E DISEQUAZIONI GONIOMETRICHE ARCHI ASSOCIATI Si tratta di angoli in cui le funzioni goniometriche mantengono lo stesso valore assoluto, cambiando al più il segno. Per questo motivo, le tavole goniometriche riportano soltanto i valori

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

Le funzioni trigonometriche fondamentali 1 / 28

Le funzioni trigonometriche fondamentali 1 / 28 Le funzioni trigonometriche fondamentali 1 / 28 Introduzione 2 / 28 La trigonometria rappresenta uno degli strumenti più utili all interno del cosiddetto calculus, termine di origine latina impiegato nella

Dettagli

ESERCITAZIONE: FUNZIONI GONIOMETRICHE

ESERCITAZIONE: FUNZIONI GONIOMETRICHE ESERCITAZIONE: FUNZIONI GONIOMETRICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Circonferenza goniometrica La circonferenza goniometrica è una circonferenza di raggio unitario centrata nell

Dettagli

Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x

Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x Esercizi per le vacanze - Classe C Prof. Forieri Claudio Disequazioni Risolvi le seguenti disequazioni: 1. ( 5)( + )( ) > 0. ( + 1) > 0. ( + 5) >. 1 1 1 + + < 0 ( 5)( + ) 5. > 0 1 6. + = 7. 1 > 1 ( + 1)(

Dettagli

Trigonometria: breve riepilogo.

Trigonometria: breve riepilogo. Corso di laurea in Matematica Corso di Analisi Matematica - Dott.ssa Sandra Lucente Trigonometria: breve riepilogo. Definizioni iniziali Saper misurare un angolo in gradi sessagesimali, saper svolgere

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di

Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di Analisi Matematica I a.a. -4. Prove scritte e risoluzioni. Pro. Paola Loreti e Daniela Sforza - Determinare il dominio di denizione e calcolare la derivata della funzione f() = e ; + log(log ) Per determinare

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

Il Piano Cartesiano Goniometrico

Il Piano Cartesiano Goniometrico Valori di seno e coseno per angoli multipli di / Il Piano Cartesiano Goniometrico Seno e coseno: valori per angoli particolari September 1, 010 Valori di seno e coseno per angoli multipli di / Sommario

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

Corso di Analisi: Algebra di Base. 7^ Lezione

Corso di Analisi: Algebra di Base. 7^ Lezione Corso di Analisi: Algebra di Base 7^ Lezione Goniometria.Elementi di trigonometria piana. Unità di misura degli angoli. Misura di angoli orientati. Circonferenza goniometrica. Angoli e archi noti. Le funzioni,

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. .2. Risoluzione di triangoli qualsiasi In questo paragrafo estenderemo le funzioni goniometriche anche ad angoli retti ed ottusi, per potere risolvere triangoli qualsiasi. er fare ciò ovviamente vogliamo

Dettagli

Note di trigonometria

Note di trigonometria Note di trigonometria Daniel Gessuti indice Elementi di Trigonometria Seno, coseno e tangente Relazione fondamentale Secante, cosecante e cotangente 3 Le funzioni seno, coseno e tangente e le loro inverse

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Ministero dell Istruzione, dell Università e della Ricerca Istituto d Istruzione Secondaria Superiore di II^ Grado LICEO ARTISTICO A. FRATTINI Via Valverde, 2-21100 Varese tel: 0332820670 fax: 0332820470

Dettagli

NOTE DI TRIGONOMETRIA

NOTE DI TRIGONOMETRIA NOTE DI TRIGONOMETRIA 18 settembre 007 1 Introduzione In queste note, essenzialmente basate su [1], vengono richiamate le definizioni e le proprietà delle funzioni trigonometriche. Un buon libro di liceo

Dettagli

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e Generalità sulle affinità TRASFORMAZIONI GEOMETRICHE Chiamasi affinità o trasformazione lineare una corrisondenza biunivoca tra due iani o tra unti dello stesso iano che trasforma rette in rette conservando

Dettagli

Classe 3 Sezione Indirizzo Liceo delle Scienze Applicate

Classe 3 Sezione Indirizzo Liceo delle Scienze Applicate Alessandria, Settembre 2016 Anno scolastico 2016/2017 A Classe 3 Sezione C Indirizzo Liceo delle Scienze Applicate Materia Matematica Docente/i Nome e cognome PierCarlo Barbierato Nome e cognome Firma

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE

EQUAZIONI E DISEQUAZIONI GONIOMETRICHE EQUAZIONI E DISEQUAZIONI GONIOMETRICHE Prerequisiti Saper risolvere le equazioni algebriche. Conoscere le definizioni delle funzioni goniometriche. Conoscere i valori delle funzioni goniometriche per gli

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti

LE FUNZIONI GONIOMETRICHE Di Pietro Aceti LE FUNZIONI GONIOMETRICHE Di Pietro Aceti INDICE 1GRADI E RADIANTI CIRCONFERENZA GONIOMETRICA FUNZIONI GOGNOMERICHE 4PRIMO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA 5SECONDO TEOREMA FONDAMENTALE DELLA GOGNOMETRIA

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

Anno 4 Funzioni goniometriche: definizioni e grafici

Anno 4 Funzioni goniometriche: definizioni e grafici Anno 4 Funzioni goniometriche: definizioni e grafici 1 Introduzione In questa lezione descriveremo le funzioni goniometriche. Forniremo le definizioni delle principali funzioni goniometriche e ne disegneremo

Dettagli

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali:

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali: ESERCIZI SUGLI INSIEMI NUMERICI 1) Mettere in ordine crescente i seguenti numeri reali: 3,14; 1/7; 5/8; 0,1 3; 5/8; π; 1/7; 0,13; 10 1 ; 0,0031 10 3. Inserire poi nel precedente ordinamento i seguenti

Dettagli

CIRCONFERENZA E CERCHIO:

CIRCONFERENZA E CERCHIO: GEOMETRIA CIRCONFERENZA E CERCHIO: MISURE PREREQUISITI l conoscere le rorietaá delle quattro oerazioni fondamentali ed oerare con esse l conoscere gli enti fondamentali della geometria iana e le loro rorietaá

Dettagli

U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE

U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE U. D. 3 LE EQUAZIONI E LE DISEQUAZIONI GONIOMETRICHE 1. Destinatari questa unità didattica è destinata a studenti del IV^ anno del liceo scientifico tradizionale. Le ore settimanali di matematica previste

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE

TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE TRIGONOMETRIA PIANA: I TRIANGOLI QUALUNQUE IL TEOREMA DEI SENI TEOREMA In un triangolo le misure dei lati sono proporzionali ai seni degli angoli opposti. IL TEOREMA DEI SENI DIMOSTRAZIONE Consideriamo

Dettagli

FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE

FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE FENOMENI PERIODICI E FUNZIONI TRIGONOMETRICHE f: R R è detta funzione periodica di periodo T>0 se per ogni x R f(x+t) = f(x) Gli angoli hanno natura periodica: un angolo di 30 o un angolo di 30 +360 =

Dettagli