9. La distribuzione 2 e i test per dati su scala nominale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "9. La distribuzione 2 e i test per dati su scala nominale"

Transcript

1 9. La distribuzione e i test per dati su scala nominale 9.1. La distribuzione La statistica e la sua distribuzione In una popolazione distribuita normalmente con parametri e estraiamo un campione di n elementi. Di questo campione calcoliamo la statistica (leggi chi quadrato) definita dalla seguente relazione: y Ripetendo il campionamento indefinitamente, mantenendo sempre il numero n di elementi otteniamo una distribuzione continua di valori della statistica. Anche per la nuova statistica non esiste una curva di distribuzione, ma infinite curve, in dipendenza del numero di elementi n scelto per il campione. Anche in questo caso si parla di gradi di libertà della statistica, e più precisamente i gradi di libertà sono n 1 (9.) I matematici hanno calcolato l equazione di una curva di distribuzione del con gradi di libertà; ancora una volta è riportata in forma semplificata per evidenziarne la dipendenza da : / 1 f Y 0 e (9.3) dove ancora una volta Y 0 è una costante che dipende da. Anche la curva di distribuzione del è asimmetrica come quella della statistica F. In Fig. 9.1 sono riportate diverse curve di distribuzione corrispondenti a diversi gradi di libertà (da 1 a 6). (9.1) Fig. 9.1 Come per ogni curva di distribuzione l area totale sotto una curva di distribuzione del vale 1; l area sotto la curva per gradi di libertà, fra due valori a e b, corrisponde alla probabilità di ottenere in uno dei campionamenti casuali descritti in apertura, con + 1 elementi, valori della statistica compresi fra a e b Le tavole dei valori critici del Anche per il come per F interessano le code destre della distribuzione; i valori critici riportati in Tavola 6 a livello sono i valori di a partire dai quali l area sotto la coda destra della distribuzione vale. Si tratta dunque di una tavola ad una coda, per le stesse ragioni per cui lo è la tavola dei valori critici di F. Anche per i valori critici della distribuzione valgono le convenzioni simboliche già utilizzate per le altre statistiche: a pedice viene indicato dapprima il livello di significatività, quindi i gradi di libertà fra parentesi quadre: [ ]. Per esemplificare cerchiamo il valore critico che delimita la coda raffigurata in Fig. 9.: per i gradi di libertà della distribuzione in figura abbiamo = 6, mentre l area sotto la coda vale 0.05; per il corrispondente valore critico abbiamo 0.05 [6] Infine, Fig. 9.3 mostra che anche per la statistica (qui con = 6) valgono le convenzioni già note per specificare i livelli di significatività della statistica.

2 Fig. 9. Fig Test di indipendenza per dati su scala nominale Tavole di contingenza Si confrontano gli esiti dello scrutinio di fine anno nel primo biennio di un istituto professionale e di un istituto tecnico. In particolare sono sotto osservazione le modalità selettive nel primo anno. I dati sono raccolti in Tab. 9.1, in cui P sta per promosso, PD sta per promosso con debito e NP sta per non promosso. P PD NP Professionale Tecnico Tab. 9.1 Ogni numero corrisponde ad una frequenza; ad esempio 53 è il numero dei promossi nel professionale. In questo caso abbiamo sotto osservazione due variabili: tipo di scuola e selettività (in termini di esito dello scrutinio finale); entrambe le variabili sono di tipo qualitativo, cioè sono misurate su scala nominale, e quindi attraverso frequenze. La prima variabile (tipo di scuola) ha due modalità: professionale e tecnico; la seconda variabile (selettività) ha tre modalità: promosso, promosso con debito e non promosso. La tabella in cui sono riassunti i dati è detta tavola di contingenza, con dimensioni 3. In generale le tavole di contingenza relative a due variabili, con un numero di modalità rispettivamente m ed n hanno dimensione m n. E utile completare la matrice dei dati della tavola di contingenza in Tab. 9.1 attraverso i totali di riga e di colonna, come in Tab. 9., che rappresenta un esempio dell assetto definitivo dalle tavole di contingenza. Si osservi che il totale dei totali di colonna è uguale al totale dei totali di riga, ed equivale alla somma di tutte le frequenze della tavola: =44=6+16. Il totale generale delle frequenze sarà nel seguito indicato con n; dunque, nell esempio, n=44. P PD NP Totali Professionale Tecnico Totali Tab Il concetto di associazione Riprendiamo e per certi versi specifichiamo ulteriormente la nozione di variazione concomitante o associazione presentata in della Parte metodologica. Osservando i dati della tavola di contingenza in Tab. 9. si ha l impressione che gli scrutini nelle due scuole non abbiano dato esiti omogenei: pare vi sia una maggior selettività nell istituto professionale. Esprimendo lo stesso concetto con altre parole, la variabile selettività pare in qualche modo legata alla variabile tipo di istituto, nel senso che tipi diversi di istituto mostrano una differente selettività. Questa circostanza si esprime dicendo che fra i due fattori vi è associazione, o che le due variabili non sono indipendenti. Se viceversa a differenti tipi di istituto corrispondessero livelli simili di selettività diremmo che fra i due fattori non vi è associazione, ovvero che i due fattori sono indipendenti. In generale, e parlando in modo un po informale: quando siamo in presenza di due variabili, misurate su scala nominale, che agiscono simultaneamente influenzandosi reciprocamente, si dice che fra queste variabili vi è associazione, ovvero che le due variabili non sono indipendenti. Si osservi che di fatto il concetto di associazione qui discusso non è altro che l estensione del concetto di correlazione (discusso nei per i dati su scala almeno ordinale) ai dati su scala nominale.

3 Frequenze osservate e frequenze attese L impressione soggettiva di associazione fra le variabili tipo di scuola e selettività, espressa nel paragrafo precedente, è naturalmente da verificare su un piano oggettivo, il che significa sottoporre a test la significatività dell associazione. Il primo passo, come in qualunque test di ipotesi, è l esplicitazione di H 0 e H 1. H 0 : fra le variabili tipo di scuola e selettività non vi è associazione, ovvero i due fattori sono indipendenti; H 1 : fra le variabili tipo di scuola e selettività vi è associazione, ovvero i due fattori non sono indipendenti. Come in tutti i test di ipotesi lavoriamo per rigettare l ipotesi nulla. Allora, cominciamo a metterla bene a fuoco. Cosa significa che i fattori sono indipendenti? In sostanza questo avviene se le frequenze delle diverse celle di una tavola di contingenza variano solo in dipendenza dei totali di riga e di colonna, e più precisamente se il contenuto di ogni cella è proporzionale ai suoi totali di riga e colonna. Questa osservazione permette di calcolare con semplici proporzioni il contenuto che ogni cella dovrebbe avere se i fattori fossero indipendenti. Lo schema di calcolo è illustrato con riferimento alla Tab. 9.3 Tot x R Tot C n Tab. 9.3 x rappresenta il valore che avrebbe la frequenza della relativa cella se i fattori fossero indipendenti; R rappresenta il totale di riga e C il totale di colonna; n è il totale delle frequenze. Sotto ipotesi di indipendenza (non associazione) il valore x sta al totale R come C sta al totale generale n. In simboli: x R C n (9.4) x : R C : n. Risolvendo la proporzione otteniamo che è la formula generale per il calcolo delle frequenze che avremmo in caso di indipendenza. Dunque abbiamo delle frequenze raccolte nell indagine da confrontare con delle frequenze calcolate sotto l ipotesi di indipendenza. Le prime si chiamano frequenze osservate e si indicano col simbolo f, mentre le frequenze calcolate prendono il nome di frequenze attese e si indicano col simbolo fˆ La statistica e il test di indipendenza Torniamo al test a cui siamo interessati. Abbiamo enunciato le ipotesi in opposizione ed abbiamo trovato un metodo per calcolare le frequenze attese in caso di indipendenza. Ora si tratta di misurare in modo oggettivo la differenza fra le frequenze osservate e quelle attese in caso di indipendenza attraverso una apposita statistica, e di valutarne la significatività. Se la differenza risulterà significativa rifiuteremo l ipotesi nulla di indipendenza fra i fattori ed avremo provato la differente selettività nei due tipi di scuola. Per valutare la differenza fra f e fˆ è ovvio che si debba ricorrere alla quantità f fˆ. L idea sarebbe di sommare il risultato di questa differenza, cella per cella, fra le due tavole di contingenza dei valori osservati e attesi, in modo da avere una misura complessiva della diversità fra frequenze osservate e attese. Come al solito il condizionale indica una difficoltà; è il solito problema: queste differenze hanno segni sia positivi che negativi, e si annullano vicendevolmente; la soluzione è ancora una volta l elevamento a quadrato: f ˆf (per garantire la positività). Ancora un difetto. Per spiegarlo facciamo due esempi: se la frequenza osservata è 1 e quella attesa è, il quadrato della differenza è 1; se la frequenza osservata è 999 e quella attesa è 1000, il quadrato della differenza è ancora 1. Ma è intuitivo che 1 su sia cosa ben diversa da 1 su Le differenze vanno in qualche modo pesate; il metodo più semplice è quello di rapportarle al valore atteso; questo ci conduce al perfezionamento: f f fˆ ˆ. Finalmente abbiamo una quantità che misura la differenza fra frequenza osservata e frequenza attesa per ciascuna cella. Infine, occorre sommare queste quantità relative a ciascuna delle m n celle, ottenendo una nuova statistica: m n f f fˆ dove il simbolo m n posto sopra il simbolo di somma indica che essa è estesa appunto a tutte le m n celle delle tavole di contingenza. La statistica è nulla quando le frequenze attese e osservate sono identiche, ed è tanto maggiore quanto maggiore è la differenza fra frequenze attese e osservate. ˆ (9.5)

4 Si noti ancora una volta (come già notammo per la statistica F) che i valori di sono sempre positivi (salvo il caso di perfetta uguaglianza fra i valori di f e fˆ ). Dunque, se c è differenza, si sposta sempre verso la coda di destra della distribuzione. Il simbolo per la nuova statistica è scelto perché assomiglia al simbolo senza tuttavia esserlo. Ciò non è casuale: si può infatti dimostrare che la distribuzione di approssima molto bene la distribuzione del con m 1 n 1 gradi di libertà. Le due distribuzioni sono praticamente uguali quando nelle celle delle frequenze attese tutti i valori sono almeno pari a 5. Questo basta per concludere il test: confrontiamo il valore di col corrispondente valore critico del al livello di significatività scelto: se supera il valore critico del possiamo rifiutare l ipotesi nulla. I calcoli necessari sono mostrati nel Box 9.1 Parte a La correzione di Yates per la continuità La distribuzione è una distribuzione continua (cioè che copre la gamma continua di tutti i valori da 0 in avanti), mentre la statistica è calcolata a partire da valori discreti (le frequenze osservate). Questa discrepanza crea qualche problema nell adattamento dei valori assunti da alla distribuzione del. Per ovviare a questo inconveniente si usa una correzione alla formula (9.5) nota come correzione di Yates: m n f fˆ fˆ 0.5 dove il pedice indica appunto l aggiustamento del valore di (dall inglese usted). La correzione di Yates abbassa leggermente il valore della statistica e rende il test più affidabile. Il Box 9.1 Parte b illustra i dettagli del calcolo Necessità di accorpare le frequenze di due o più righe o colonne In si è detto che la distribuzione di approssima molto bene la distribuzione del con m 1 n 1 gradi di libertà a patto che le frequenze attese siano almeno pari a 5. Nei casi in cui almeno una delle frequenze attese sia inferiore a 5 il test non è troppo affidabile. Per avere risultati sicuri occorre fare in modo di ottenere frequenze attese tutte superiori o almeno uguali a 5. A tale scopo si può procedere ad un accorpamento di due o più colonne o righe, in modo da arrivare ad ottenere per ciascuna cella frequenze osservate maggiori, e quindi maggiori frequenze attese. La tecnica è illustrata nel Box 9. Parte a Partizione dei gradi di libertà Una volta che abbiamo rifiutato l ipotesi nulla in un test di indipendenza abbiamo provato che almeno in una cella le frequenze osservate sono differenti in modo significativo da quelle attese, ma quale sia la cella (o quali siano le celle) non è ancora dato sapere. Per ottenere questa informazione occorre un supplemento di indagine analogo a quello necessario per l ANOVA e suggerito in e La tecnica è nota come partizione dei gradi di libertà del ed è basata su una successione di accorpamenti di righe e/o colonne del tipo illustrato in , con determinate precauzioni circa i gradi di libertà. In questo contesto ci limitiamo alla sua segnalazione; la tecnica è descritta in S. Siegel, Coefficienti di associazione per dati nominali Il coefficiente di contingenza C Come per i dati quantitativi esistono opportuni coefficienti di correlazione, anche per i dati qualitativi su scala nominale esistono opportuni coefficienti che quantificano il grado di associazione fra due fattori. Il più diffuso è il cosiddetto coefficiente di contingenza C. La sua formulazione matematica è: C n dove ovviamente è calcolato secondo la (9.5) mentre n è la somma di tutte le frequenze osservate. Nella frazione sotto radice il numeratore è minore del denominatore, e questo comporta che il suo valore è compreso fra 0 e 1. Tuttavia il valore 1 non viene mai raggiunto. Il massimo valore ottenibile dipende dal numero di righe e di colonne della tavola di contingenza. In generale non è immediato calcolare questo valore massimo. Nel caso in cui le righe e le colonne siano uguali a k (quindi nel caso di una tavola di contingenza quadrata k k) i valore massimo raggiungibile è (9.7) (9.6)

5 C max k 1 k (9.8) Per questo motivo il coefficiente di contingenza C è usato prevalentemente con tavole quadrate, in quanto in questo caso è possibile avere il riferimento al massimo valore possibile. Il calcolo banale è esemplificato nel Box 9.1 Parte c e nel Box 9. Parte b Correlazione degli attributi Il coefficiente di correlazione degli attributi è un coefficiente analogo al precedente, ma valido solo quando la tavola di contingenza è quadrata. In tal caso abbiamo: r (9.9) n k 1 dove k è il numero delle righe e delle colonne della tavola di contingenza. Nel caso speciale in cui k = il coefficiente di correlazione degli attributi è chiamato talvolta coefficiente di correlazione tetracorico. Esiste un opportuno abaco in forma grafica riportato in Tavola 7 che aiuta a valutare se il valore ottenuto debba essere considerato alto o basso. Un esempio di calcolo si trova nel Box 9. Parte b Test di buon adattamento Con ipotesi estrinseca: confronto di frequenze osservate con percentuali attese Cominciamo illustrando un esempio. Un collegio dei docenti vuole fare il punto sulla situazione del recupero dei debiti formativi. Le statistiche informano che all interno di un istituto le percentuali di debiti formativi recuperati R, parzialmente recuperati PR e non recuperati NR sono: R=13%, PR=46% e NR=41%. Visti gli esiti deludenti viene progettata e messa in sperimentazione una nuova strategia per le attività di recupero, al termine della quale si ottengono per gli 850 studenti dell istituto le seguenti frequenze assolute per le tre categorie: R=11, PR=41 e NR=317. Il problema è: questi nuovi dati si adattano alle percentuali precedentemente registrate oppure mostrano qualche cambiamento? Una stima soggettiva a occhio potrebbe essere fatta calcolando le percentuali dei nuovi risultati e confrontandole con le vecchie. Vediamo invece come si organizza un test oggettivo. Per prima cosa formalizziamo le due ipotesi in opposizione: H 0 : i nuovi dati osservati si adattano alle percentuali attese, ovvero, non c è differenza fra le frequenze osservate e quelle attese secondo le percentuali note; H 1 : i nuovi dati osservati non si adattano alle percentuali attese, ovvero, c è differenza fra le frequenze osservate e quelle attese secondo le percentuali note. Il punto di partenza è dunque quello di calcolare, a partire dal totale 850, quali sarebbero le frequenze attese per le tre categorie dalle percentuali note; si tratta cioè di calcolare semplicemente il 13%, il 46% e il 41% di 850, ottenendo così le frequenze attese. A questo punto calcoliamo ancora la statistica definita come in (9.5) o secondo la correzione di Yates come in (9.6). Si dimostra che la statistica è distribuita come un, ma questa volta con un numero di gradi di libertà pari al numero delle classi di frequenza diminuito di 1; nel nostro caso le classi sono 3, quindi i gradi di libertà sono. In generale, se le classi sono c per i gradi di libertà abbiamo c 1 (9.10) Un test cosiffatto prende il nome di test di buon adattamento. I test di buon adattamento si distinguono in base all ipotesi di partenza, che può essere sia estrinseca che intrinseca. L ipotesi di partenza si dice estrinseca se il calcolo delle frequenze attese non comporta una stima di parametri ( o, ad esempio) della popolazione. In questo caso per i valori attesi dobbiamo solo eseguire delle percentuali; si tratta dunque di ipotesi estrinseca. Il caso dell ipotesi intrinseca è trattato in I dettagli computazionali del test descritto ora sono mostrati nel Box Con ipotesi intrinseca: test di adattamento alla distribuzione normale Quando in un test di buon adattamento il calcolo delle frequenze attese richiede la stima di qualche parametro della popolazione indagata si parla di ipotesi intrinseca. Lo schema di calcolo generale di un simile test è identico a quello esposto in (calcolo di attraverso le differenze fra frequenze osservate e attese e sua significatività in base alla distribuzione ) salvo che i gradi di libertà sono condizionati dalla stima del parametro o dei parametri eventualmente necessari per il calcolo delle frequenze attese; in generale, se si è resa necessaria la stima di m parametri e le classi di frequenza sono c per i gradi di libertà abbiamo: c 1 m (9.11) Un esempio. In un istituto è stato somministrato ai nuovi iscritti in prima un test oggettivo di ingresso per verificare le abilità di base possedute.

6 Interessa sapere se la distribuzione dei risultati è normale, perché questa condizione permetterebbe (congiuntamente ad altre, da provare) di effettuare successive indagini attraverso test parametrici. I risultati sono raccolti in classi pentesimali (vedi. 4.. e Box.1): B=34, MB=131, M=50, MA=19 e A=7. Attraverso Tavola è semplice calcolare le percentuali attese, sotto ipotesi di normalità, in ciascuna delle 5 classi (vedi Box.): B MB M MA A 6.68% 4.17% 38.30% 4.17% 6.8% Tab. 9.4 Ora, si ricordi che per effettuare una classificazione pentesimale delle prove (che poi serve per il calcolo delle frequenze attese) occorre stimare i parametri e attraverso Y e s ; dunque, nel test di buon adattamento i gradi di libertà andranno calcolati secondo la (9.11). Salvo questo dettaglio i calcoli per questo test, descritti nel Box 9.4, seguono la falsariga del Box Proprietà additiva del. Cenno alla meta analisi Additività del Una importante proprietà del è l additività. Supponiamo di ripetere più volte un determinato esperimento ottenendo una serie di valori 1,, 3, 4 rispettivamente con 1,, 3, 4 gradi di libertà. Ebbene, si dimostra che la somma di tutti i è anch essa distribuita come un ( i ) con i gradi di libertà Applicazione dell additività Supponiamo di essere interessati a verificare una determinata ipotesi H 1 attraverso un opportuno disegno sperimentale, e supponiamo che il test utilizzato per refutare H 0 sia un (non importa se di indipendenza o di buon adattamento). Effettuiamo l esperimento; supponiamo che il corrispondente 1 con 1 gradi di libertà non permetta di rigettare l ipotesi nulla al livello desiderato. Non soddisfatti dell esito dell esperimento decidiamo di ripetere la prova (magari attuando un maggiore o migliore controllo sui fattori di disturbo, o cambiando i gradi di libertà della statistica ); otteniamo un secondo con gradi di libertà; supponiamo che anche in questo caso i risultati non siano significativi. Procedendo analogamente altre volte supponiamo di otteniamo ancora risultati deludenti. Una situazione analoga si può avere se diversi sperimentatori hanno effettuato la stessa prova e nessuno di loro ha ottenuto risultati significativi. Ebbene, sfruttando l additività del possiamo approdare ad esiti favorevoli, in quanto non si esclude che il gradi di libertà possa essere significativo pur in difetto di significatività degli addendi. i con i Un esempio concreto è illustrato nel Box 9.5: alcuni istituti scolastici di una provincia, coordinati a livello di Provveditorato, effettuano una sperimentazione su una tecnica dissuasiva nei confronti del fumo. L obiettivo è quello di modificare per le tre classi NF (non fumatori) MF (medi fumatori) e FF (forti fumatori), definite in base al numero medio di sigarette giornaliere, le percentuali NF=34%, MF=41% e FF=5% registrate in una precedente inchiesta. In nessun istituto preso isolatamente si raggiunge la significatività, mentre sfruttando l additività del si dimostra l efficacia del metodo Cenno alla meta analisi Riconsideriamo l esempio trattato in e nel Box 9.5. In pratica succede spesso che sperimentazioni condotte diffusamente sul territorio producano risultati non significativi per il solo fatto di essere basate su campioni troppo ristretti, o per il fatto che circostanze accidentali non bene controllate o non controllabili dal disegno sperimentale hanno in qualche modo interferito col risultato. D altra parte è di tutta evidenza l impegno notevole che richiede una sperimentazione condotta su vasta scala. Per questi motivi si sono rese necessarie una serie di tecniche le quali, sulla base di un censimento dei risultati raccolti in sperimentazioni diffuse, sintetizzano i risultati, i quali possono globalmente raggiungere la significatività anche in assenza di significatività dei singoli esperimenti. Abbiamo visto in della Parte metodologica che tali tecniche vanno sotto il nome di meta analisi. Abbiamo anche visto che le tecniche di meta analisi mirano a riunificare gli esiti di più sperimentazioni sia sotto il profilo della significatività, sia sotto l aspetto della dimensione dell effetto. Nel abbiamo un semplicissimo esempio di meta analisi del primo tipo.

7 Box 9.1. Test di indipendenza per tavole di contingenza m n; correzione di Yates; coefficiente di contingenza C Livelli di selettività (P=Promossi; PD=Promossi con Debito; NP=Non Promossi) in rapporto al tipo di scuola negli scrutini finali delle prime classi. Frequenze osservate: P PD NP Totali Professionale Tecnico Totali Parte a Test di indipendenza H 0 : fra i fattori tipo di scuola e selettività non vi è associazione, ovvero i due fattori sono indipendenti; H 1 : fra i fattori tipo di scuola e selettività vi è associazione, ovvero i due fattori non sono indipendenti. Schema di calcolo per le frequenze attese sotto H 0 : proporzioni P PD NP Totali Professionale x : 6 = 140 : 44 x : 6 = 10 : 44 x : 6 = 9 : 44 6 Tecnico x : 16 = 140 : 44 x : 16 = 10 : 44 x : 16 = 9 : Totali Risolvendo le proporzioni otteniamo le frequenze attese: P PD NP Totali Professionale Tecnico Totali m 1 n ˆ f f f ˆ [] *** Conclusioni: è significativo a livello 0.001; rigetto H 0 : vi è associazione fra selettività e tipo di scuola. Parte b Calcolo con la correzione di Yates: 0.001[] f f ˆ fˆ *** In questo caso la correzione non modifica l esito complessivo del test precedente, perché anche è superiore a 0.001[]; talvolta può tuttavia succedere che con la correzione si perda un livello di significatività quando il valore corrispondente calcolato senza correzione fosse appena sopra la soglia di significatività. Parte c Coefficiente di contingenza C: C n (N.B.: Non disponendo del valore massimo possibile è difficile dire se il valore trovato sia alto oppure basso) Usando il valore di C si riduce leggermente:

8 C n Rif.: Parte a: ; Parte b: ; Parte c:

9 Box 9.. Accorpamento di due colonne in test di indipendenza per tavole di contingenza m n; coefficiente di correlazione degli attributi; coefficiente di contingenza C. Numero di sufficienze (S), insufficienze (I) e gravi insufficienze (GI) in due classi parallele con uno stesso insegnante. S I GI Totali 1A B Totali Parte a Test di indipendenza H 0 : fra i fattori classe e risultati non vi è associazione, ovvero i due fattori sono indipendenti; H 1 : fra i fattori classe e risultati vi è associazione, ovvero i due fattori non sono indipendenti. Frequenze attese sotto H 0 : S I GI Totali 1A 3 3/47= /47= /47= B 4 3/47= /47= /47= Totali Le frequenze attese alla colonna I sono inferiori a 5 (4.40 e 4.60). Il test in queste condizioni sarebbe inattendibile. Occorre accorpare la colonna I con una delle due colonne a lato. Accorpamento delle colonne S+I: S+I GI Totali 1A B Totali Frequenze attese sotto H 0 con due colonne accorpate: S+I GI Totali 1A 3 3/47= /47= B 4 3/47= /47= Totali Tutte le frequenze attese superano il valore 5. Posso procedere col test. m 1 n [1] f f ˆ fˆ Conclusioni: è significativo a livello 0.05; rigetto H 0 : vi è associazione fra classe e risultati. Parte b 3.91* La tavola di contingenza nella sua versione a colonne aggregate è quadrata, con k =. Posso calcolare il coefficiente di correlazione degli attributi (in questo caso si tratta del coefficiente di correlazione tetracorico). r n 3.91 k Per il coefficiente di contingenza C abbiamo: C n Per C max abbiamo: C max k 1 k

10 che confrontato con C indica un livello modesto di associazione. Rif.: Parte a: ; Parte b:

11 Box 9.3. Test di buon adattamento per ipotesi estrinseca Percentuali attese e frequenze osservate circa il recupero del debito formativo; R = recuperato, PR = parzialmente recuperato, NR = non recuperato. % attese f osservate 13% 11 46% 41 41% Test di buon adattamento H 0 : non c è differenza fra le frequenze osservate e quelle attese secondo le percentuali note; H 1 : c è differenza fra le frequenze osservate e quelle attese secondo le percentuali note. Per il calcolo delle frequenze attese: f fˆ /100= /100= /100= c 1 31 Formula con correzione di Yates: ns [] Conclusioni: non è significativo; non vi sono elementi per rigettare H 0 : non è provata l efficacia della nuova strategia per il recupero. Rif.:

12 Box 9.4. Test di buon adattamento per ipotesi intrinseca: buon adattamento di una classificazione pentesimale ad una distribuzione normale Percentuali attese e frequenze osservate per una classificazione pentesimale, in un test di ingresso per la verifica delle abilità di base. % attese f osservate Test di buon adattamento H 0 : non c è differenza fra le frequenze osservate e quelle attese secondo la distribuzione normale; H 1 : c è differenza fra le frequenze osservate e quelle attese secondo la distribuzione normale. Per il calcolo delle frequenze attese: f fˆ /100= /100= /100= /100= /100= c 1 m 5 1 Formula con correzione di Yates: 0.05[] 0.01[] * Conclusioni: è significativo a livello 0.05; rigetto H 0 : c è differenza fra le frequenze osservate e quelle attese in caso di normalità. Rif.:

13 Box 9.5. Additività del Esiti di sperimentazioni condotte in tre diversi istituti per verificare l efficacia di una tecnica dissuasiva per fumatori (NF = non fumatori, MF = medi fumatori, FF = forti fumatori) % attese f istituto A f istituto B f istituto C NF 34% MF 41% FF 5% H 0 : il metodo persuasivo è inefficace; ovvero: non c è differenza fra le frequenze osservate e quelle attese secondo l ipotesi di inefficacia del metodo; H 1 : il metodo è efficace: c è differenza fra le frequenze osservate e quelle attese secondo l ipotesi di inefficacia del metodo. Attenzione! Un eventualmente significativo di per sé non indica l efficacia del metodo, ma solo che i risultati ottenuti sono differenti da quelli attesi; la differenza potrebbe anche essere nel senso di un peggioramento! Per valutare se si tratta di una differenza nella direzione auspicata occorre valutare i dati grezzi; nel nostro caso le frequenze FF dei forti fumatori sono leggermente inferiori a quanto previsto dalle percentuali attese; si tratterebbe quindi di un miglioramento. Essendo , nessuno degli esperimenti di istituto è in grado di provare isolatamente l efficacia del 0.05[] trattamento. Per l additività del abbiamo: i 6 i 0.05[6] 0.01[6] * Conclusioni: è significativo a livello 0.05; rigetto H 0 : c è differenza fra le frequenze osservate e quelle attese in caso di inefficacia del trattamento. Rif.:

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Capitolo 1 - Numerazione binaria

Capitolo 1 - Numerazione binaria Appunti di Elettronica Digitale Capitolo - Numerazione binaria Numerazione binaria... Addizione binaria... Sottrazione binaria... Moltiplicazione binaria... Divisione binaria... Complementazione... Numeri

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Blanchard, Macroeconomia Una prospettiva europea, Il Mulino 2011 Capitolo IV. I mercati finanziari. Capitolo IV. I mercati finanziari

Blanchard, Macroeconomia Una prospettiva europea, Il Mulino 2011 Capitolo IV. I mercati finanziari. Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 1. La domanda di moneta La moneta può essere usata per transazioni, ma non paga interessi. In realtà ci sono due tipi di moneta: il circolante, la moneta metallica e cartacea,

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

1. Domande mal poste 2. Respons set 3. Curvilinearità degli items 4. Inutilità del dato reperito

1. Domande mal poste 2. Respons set 3. Curvilinearità degli items 4. Inutilità del dato reperito Nota Metodologica IL QUESTIONARIO La stesura del questionario richiede una particolare attenzione nella scelta, nella compilazione e nella successione degli ITEMS che formano lo strumento d indagine. Per

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Selezione avversa, screening e segnalazione

Selezione avversa, screening e segnalazione Selezione avversa, screening e segnalazione Il modello principale agente è uno strumento fondamentale per analizzare le relazioni economiche caratterizzate da problemi di asimmetrie informative un primo

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI INFORMATICA E STATISTICA DANIELE.MONTANINO@UNISALENTO.IT CONVENZIONE SULLE CIFRE SIGNIFICATIVE La convenzione usata sul troncamento delle cifre è troncare

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per continue Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 7 - RELAZIONI TRA DUE O

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 14. Controllo con reti di Petri Luigi Piroddi piroddi@elet.polimi.it Uso delle reti di Petri nel controllo di sistemi a eventi discreti Ai fini del controllo

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

DATA MINING PER IL MARKETING

DATA MINING PER IL MARKETING DATA MINING PER IL MARKETING Andrea Cerioli andrea.cerioli@unipr.it Sito web del corso GLI ALBERI DI CLASSIFICAZIONE Algoritmi di classificazione Zani-Cerioli, Cap. XI CHAID: Chi-square Automatic Interaction

Dettagli

matematica per le quinte

matematica per le quinte istituto professionale versari-macrelli, cesena lorenzo pantieri matematica per le quinte Dipartimento di Matematica Anno scolastico 2015-2016 Questo lavoro spiega il programma di matematica agli alun-

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

Progettazione del processo

Progettazione del processo Progettazione del processo produttivo Il miglioramento della qualità e della produttività ha maggiore efficacia quando è parte integrante del processo di realizzazione del prodotto. In particolare l uso

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico Capitolo 4 4.1 Il foglio elettronico Le più importanti operazioni richieste dall analisi matematica dei dati sperimentali possono essere agevolmente portate a termine da un comune foglio elettronico. Prenderemo

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Guida all uso del foglio elettronico Excel Lezioni ed esercizi

Guida all uso del foglio elettronico Excel Lezioni ed esercizi Lezioni di EXCEL Guida all uso del foglio elettronico Excel Lezioni ed esercizi 1 Il foglio elettronico Excel Excel è un foglio elettronico che consente di effettuare svariate operazioni nel campo matematico,

Dettagli

CAPITOLO SECONDO ANALISI DELLE SERIE STORICHE 1. INTRODUZIONE ALLE SERIE STORICHE

CAPITOLO SECONDO ANALISI DELLE SERIE STORICHE 1. INTRODUZIONE ALLE SERIE STORICHE CAPITOLO SECONDO ANALISI DELLE SERIE STORICHE SOMMARIO: 1. Introduzione alle serie storiche. -. Analisi classica delle serie storiche. - 3. Analisi moderna delle serie storiche. 4. Procedura TRAMO-SEATS

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE. A. A. 2014-2015 L. Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 7. DERIVATE A. A. 2014-2015 L. Doretti 1 Il concetto di derivata di una funzione è uno dei più importanti e fecondi di tutta la matematica sia per

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Il campionamento statistico

Il campionamento statistico Lezione 13 Gli strumenti per il miglioramento della Qualità Il campionamento statistico Aggiornamento: 19 novembre 2003 Il materiale didattico potrebbe contenere errori: la segnalazione e di questi errori

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Dipartimento di Scienze dell Educazione Università degli studi Roma Tre

Dipartimento di Scienze dell Educazione Università degli studi Roma Tre Dipartimento di Scienze dell Educazione Università degli studi Roma Tre Materiale del Laboratorio sulle Procedure Statistiche di base con SPSS CASD Centro Analisi Statistica Dati 1 1. Il Questionario Nella

Dettagli

E solo questione di metodo:

E solo questione di metodo: E solo questione di metodo: problemi e algoritmi di matematica elementare Progetto Lauree Scientifiche Scuola Estiva di Matematica (4092015) Stefano Finzi Vita Dipartimento di Matematica - Sapienza Università

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità

Valutare un test. Affidabilità e validità di un test. Sensibilità e specificità Valutare un test 9 Quando si sottopone una popolazione ad una procedura diagnostica, non tutti i soggetti malati risulteranno positivi al test, così come non tutti i soggetti sani risulteranno negativi.

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

Assicurazioni sulla vita: nozioni fondamentali Unità 82

Assicurazioni sulla vita: nozioni fondamentali Unità 82 Prerequisiti: - Nozioni di probabilità e statistica OBIETTIVI DI APPRENDIMENTO Una volta completata l unità, gli allievi devono essere in grado di: - definire i tassi di sopravvivenza e di mortalità -

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Statistical learning Strumenti quantitativi per la gestione

Statistical learning Strumenti quantitativi per la gestione Statistical learning Strumenti quantitativi per la gestione Emanuele Taufer Vendite Simbologia Reddito Statistical learning A cosa ci serve f? 1 Previsione 2 Inferenza Previsione Errore riducibile e errore

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

RISONANZA. Introduzione. Risonanza Serie.

RISONANZA. Introduzione. Risonanza Serie. RISONANZA Introduzione. Sia data una rete elettrica passiva, con elementi resistivi e reattivi, alimentata con un generatore di tensione sinusoidale a frequenza variabile. La tensione di alimentazione

Dettagli

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata?

b. Che cosa succede alla frazione di reddito nazionale che viene risparmiata? Esercitazione 7 Domande 1. L investimento programmato è pari a 100. Le famiglie decidono di risparmiare una frazione maggiore del proprio reddito e la funzione del consumo passa da C = 0,8Y a C = 0,5Y.

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Capacità di canale in molte salse

Capacità di canale in molte salse Capacità di canale in molte salse. Bernardini 6 maggio 008 Indice 1 Introduzione 1 Modelli di canale 1.1 Matrice di transizione........................................ 1. Funzione aleatoria..........................................

Dettagli

IL COLLAUDO DI ACCETTAZIONE

IL COLLAUDO DI ACCETTAZIONE IL COLLAUDO DI ACCETTAZIONE Il collaudo di accettazione 1 Popolazione Campione Dati MISURA Processo Lotto Campione DATI CAMPIONAMENTO INTERVENTO MISURA Lotto Campione DATI CAMPIONAMENTO INTERVENTO Il collaudo

Dettagli

Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva

Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva Corso di laurea in biotecnologie - Statistica Medica Statistica descrittiva 1 I dati

Dettagli

Ricerca scientifica Processo di ricerca

Ricerca scientifica Processo di ricerca Ricerca scientifica Processo di ricerca Testi di riferimento: Coon, Mitterer (2011) Psicologia generale. UTET Cap. 1 Pedon, Gnisci (2004) Metodologia della ricerca psicologica. Mulino Cap. 2 La ricerca

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli