Codifica binaria e algebra di Boole

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Codifica binaria e algebra di Boole"

Transcript

1 Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto

2 Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base ottale ed esadecimale Rappresentazione dei numeri L algebra di Boole 2

3 Codifica binaria dell informazione Numeri Naturali

4 Rappresentazione in base p Metodo posizionale: ogni cifra ha un peso Esempio: 123 = Di solito noi usiamo la base decimale Un numero generico di m cifre e` rappresentato quindi dalla sequenza: a n, a n-1, a n-2,..., a 0 a n : cifra piu` significativa a 0 : cifra meno significativa n= m-1 a i {0, 1,..., p-1} 4

5 Rappresentazione in base p Un numero naturale N, composto da m cifre, in base p, si esprime come: Esempio in base decimale(p=10): = ( ) 10 Base sette (p=7): = ( ) 10 Posso rappresentare i numeri nell intervallo discreto:[0, p m -1] 5

6 Codifica in base due Base binaria: p=2; cifre a i {0, 1} chiamate bit (binary digit) Esempio, con m=5: = ( ) 10 = Posso rappresentare i numeri nell intervallo discreto: [0, 2 m -1] Esempio con m=8: rappresento numeri binari: [ , ], ovvero: [0, 255] 6

7 Conversioni di base Per convertire da base due a base 10: Usare la sommatoria illustrata nel lucido precedente Per convertire da base dieci a base due: Metodo delle divisioni successive 7

8 Somma di numeri binari L'addizione del sistema binario deve seguire quattro semplici regole: 8

9 Differenza di numeri binari Per quanto possa sembrare strano: i computer non sono in grado di sottrarre, ma solo di addizionare. Sottrarre un numero, però, equivale ad addizionare un numero negativo. Il computer, che lavora con degli zero e degli uno, non può mettere un segno meno davanti ad un numero, ma deve trovare il complemento due del numero stesso. Questa procedura consiste nel trasformare tutte le cifre del numero: gli 1 diventano 0 e gli 0 diventano 1, poi alla cifra ottenuta si somma un uno. 9

10 Differenza di numeri binari Esempio: Si debba sottrarre 3 da 5, cioè fare 5-3. In binario 3 è Il complemento uno: 1100 Il complemento due: Perciò: Tramite il complemento due una sottrazione viene eseguita come un'addizione. Il riporto viene trascurato. Esso è uno se il risultato è positivo, 0 se è negativo. Sul numero negativo è necessario rifare il complemento due. Esercizio 1) Prova delle sottrazioni binarie con sottraendo maggiore e minore in valore assoluto rispetto al minuendo. 10

11 Esercizi Pensare un algoritmo per Il prodotto di due numeri binari la divisione di due numeri binari 11

12 Base ottale ed esadecimale Base ottale: p=8; ai {0, 1, 2, 3, 4, 5, 6, 7} Esempio: 2348= ( ) 10 = Base esadecimale: p=16; ai {0, 1, 2,, 9, A, B, C, D, E, F} Esempio: B7F 16 = ( ) 10 = Notare: 11 al posto di B e 15 al posto di F, i loro equivalenti in base dieci 12

13 Numeri interi Non posso memorizzare il segno, uso una codifica Uso un bit per memorizzare il segno: 1 significa numero negativo, 0 numero positivo. Esempio m=3: 13

14 Frazioni Rappresentiamo la parte frazionariadi un numero reale In base due, un numero frazionario N, composto da n cifre, si esprime come: Esempio con n=3: =( ) 10 = Date n cifre in base p=2, posso rappresentare numeri nell intervallo continuo: [0, 1-2 -n ] L errore di approssimazione sara` minore di 2 -n 14

15 Esercizio Conversione di un numero frazionario da base 10 a base 2 Trovare l algoritmo per convertire un numero da una base p a una base q qualsiasi. 15

16 Virgola mobile Il numero puo` essere espresso come: r = m b n m e n sono in base p m: mantissa (numero frazionario con segno) b: base della notazione esponenziale (numero naturale) n: caratteristica (numero intero) Esempio (p=10, b=10): -331,6875 = -0, m= -0, ; n= 3 Uso l1 bit e l2 bit per codificare m e n Precisione variabile lungo l asse reale R: 16

17 Caratteri Codifica numerica ASCII (American Standard Code for Information Interchange) utilizza 7 bit (estesa a 8 bit) L ASCII codifica: I caratteri alfanumerici (lettere maiuscole e minuscole e numeri), compreso lo spazio I simboli #, ) Alcuni caratteri di controllo che non rappresentano simboli visualizzabili (TAB, LINEFEED, RETURN, BELL, ecc) 17

18 Tabella ASCII 18

19 L algebra di Boole

20 Algebra booleana In matematica ed informatica, le algebre booleane, o reticoli booleani, sono strutture algebriche che rivestono una notevole importanza per varie ragioni: "catturano l'essenza" degli operatori logici AND, OR e NOT permettono di trattare in termini algebrici questioni riguardanti singoli bit (0 e 1), sequenze binarie, matrici binarie (e di conseguenza, attraverso le loro matrici di incidenza i digrafi) e altre funzioni binarie (si tenga presente anche la nozione di funzione indicatrice) 20

21 Variabili Booleane Variabile binaria: grandezza matematica che può assumere due soli valori: 0 o 1. Sulle variabili binarie definiamo tre operatori: negazione, somma e prodotto. I matematici usano spesso il simbolo + per l'or, e per l'and, in quanto per alcuni versi questi operatori lavorano in modo analogo alla somma e alla moltiplicazione. La negazione NOT viene rappresentata spesso da una linea disegnata sopra l'argomento della negazione, cioè dell'espressione che deve essere negata. 21

22 Negazione La negazione di una variabile binaria x si indica con x oppure ( non x o x negato ) Possiamo rappresentare il valore di tramite tabella di verità: x

23 Somma logica - OR La somma di n variabili binarie x1, x2, x3, --- x n vale 0 solo se tutte le x i (1 i n) valgono contemporaneamente 0, vale 1 in ogni altro caso. x 1 x 2 x 1 + x

24 Prodotto logico - AND Il prodotto di n variabili binarie x1, x2, x3, --- x n vale 1 solo se tutte le x i (1 i n) sono contemporaneamente 1, vale 0 in ogni altro caso x 1 x 2 x 1. x

25 Proprieta Per la negazione valgono le seguenti relazioni e proprietà: Negazione 0 = 0 1 = 1 x = x x + x = 1 x x = 0 25

26 Proprieta Le relazioni e proprietà degli operatori somma e prodotto logico sono riportate nella tabella Somma Prodotto x + 1 = 1 x 0 = 0 x + 0 = x x 1 = x x 1 + x 2 = x 2 + x 1 x 1 x 2 = x 2 x 1 x 1 + x 2 + x3 = (x 1 + x 2 ) + x3 x 1 x 2 x3= (x 1 x 2 ) x3 x 1 x 2 + x 1 x 3 = x 1 (x 2 + x3) (x 1 + x 2 ) (x 1 + x3) = x 1 + x2 x3 26

27 Funzioni Con n variabili binarie (x 1, x 2, x n ) si possono formare 2 n configurazioni diverse. Se prendiamo, ad esempio, 2 variabili: x 1, x 2 dato che ognuna di loro può valere 0 od 1, si possono creano le seguenti quattro (2 2 ) configurazioni diverse: 00, 01, 10, 11. Così con 3 variabili binarie si potranno formare al massimo 2 3 =8 configurazioni diverse che sono: 000, 001, 010, 011, 100, 101, 110,

28 Funzioni Diremo che una variabile y è funzione di n variabili indipendenti x 1, x 2, x n e si scrive: y = F (x 1, x 2, x n ) quando esiste un criterio che fa corrispondere in modo univoco ad ognuna delle 2 n configurazioni di x un determinato valore y (ovviamente 0 o 1). 28

29 Funzioni booleane Tutte le diverse funzioni di n variabili (x 1,x 2, x n ) che si possono costruire sono pari a (2 2 ) n Ad esempio tutte le diverse funzioni che si possono formare con 3 variabili sono pari a (2 2 ) 3 = 2 8 =

30 Esempi di funzioni booleane 30

31 Minterm Se consideriamo 3 variabili, la scrittura x 1 x 2 x 3 = 011 indica tra le 2 3 =8 configurazioni possibili, quella in cui x 1 vale 0, x 2 vale 1 e x 3 vale 1. Questa configurazione si scrive semplicemente con il prodotto 1 x 2 x 3 Se in una configurazione una variabile compare con 1 si assume il valore diretto se invece compare con uno 0 si assume il valore negato. Se consideriamo una funzione di 3 variabili che ha 3 configurazioni in cui la stessa vale 1: ad esempio la funzione vale 1 per le seguenti configurazioni: 1 x x 2 x 3 x 1 2 x 3 Ciascuno di questi prodotti si chiama minterm Considerando una riga della tabella di verita si definisce mintermine il prodotto delle variabili booleane relative a tal riga prese in forma diretta o complementata a seconda se assumono valore 1 o 0. 31

32 Minterm La funzione conoscendo la sua tabella di verità, potrà essere espressa sotto forma di somme di prodotti dei termini minimi. Nel caso della funzione in esempio scriveremo y = 1 x x 2 x 3 + x 1 2 x 3 Se una funzione è direttamente espressa sotto forma di somme di minterm sarà possibile costruire la sua tabella di verità, mettendo 1 nelle configurazioni relative ai minterm, e 0 negli altri casi. 32

33 Minterm Ad esempio data la funzione di 3 variabili F(x,y,z) = x z + xy + yz la sua tabella di verità sarà: x y z F(x,y,z) yz x z xy

34 Teoremi TEOREMI Diretto Duale Idempotenza x + x + x x = x x x x --- x = x x + xy = x x (x +y) = x Assorbimento x + x y = x + y x (x + y) = x y xy +yz + x z = xy + x z (x +y) (y+z) (x +z) = (x+y) (x +z) De Morgan (x+y) = x y (x y) = x + y 34

35 Teorema di De Morgan Il significato del teorema di De Morgan Esempio: non (ho i soldi o la carta di credito) = non ho i soldi e non ho la carta di credito Semplificazione: da tre operazioni passo a due! 35

36 Maxterm Il teorema di De Morgan applicato alle funzioni ci permette di scriverle sotto forma di prodotti di somme, ad esempio: y = (x1+x2+x3) (x1+x2+x 3) (x1+x 2+x 3) (x 1+x 2+x3) (x 1+x 2+x 3) Ciascuna delle somme si chiama maxterm (termine massimo). Si definisce maxtermine la somma delle variabili booleane prese in forma diretta o negata a seconda se assumono valore 0 o 1. 36

37 Maxterm L espressione della y come prodotto di maxterm si può ottenere dalla tabella di verità della funzione; ci sono tanti maxterm quanto sono i valori 0 della funzione; ogni maxterm è la somma di tutte le variabili dirette o negate a seconda che la configurazione contenga 1 o 0. Con n variabili abbiamo 2 n mintermini e maxtermini 37

38 Forma Canonica Entrambe le espressioni della funzione sotto forma di: somme di prodotti (minterm) prodotti di somme (maxterm) si chiamano forme canoniche di una funzione binaria. 38

39 Mappe di Karnaugh Una funzione booleana puo essere rappresentata, oltre che con la tabella di verita`, con le mappe di KARNOUGH Le mappe di Karnaugh sono delle tabelle che permettono in modo immediato la rappresentazione e la semplificazione di funzioni booleane fino 6 variabili. Mappa di K. per funzione ad 1 variabile x 0 1 x x Mappa di K. per funzione a 2 variabili x,y con all interno x 0 1 rappresentati i relativi minterm y 0 x y xy 1 x y xy 39

40 Mappe di Karnaugh La mappa di K. per una funzione a 3 variabili x,y,z è un rettangolo diviso in 8 celle come nell esempio. Al solito dentro le celle sono stati scritti i relativi minterm. z xy x y z x yz xyz xy z 1 x y z x yz xyz xy z Le coordinate della tabella vanno sistemate in modo che nel passaggio da una cella all altra ci sia un sola variazione. Infatti le coordinate per la xy saranno

41 Mappe di Karnaugh xy vz x y v z x yv z xyv z xy v z 01 x y v z x yv z xyv z xy v z 11 x y vz x yvz xyvz xy vz Una mappa di K. per 4 variabili x,y,v,z è un quadrato diviso in 16 celle. All interno indichiamo al solito i relativi minterm. 10 x y vz x yvz xyvz xy vz 41

42 Mappe di Karnaugh Le Mappe di K. costituiscono un altro metodo per rappresentare una funzione booleana; basta scrivere 1 in quelle caselle che hanno le coordinate della tabella di verità in cui la funzione vale 1. x y z F(x,y,z) xy z

43 Esercizi Trovare tabella della verita e mappe di Karnaugh delle seguenti funzioni: Y + Z X V XZ + Z 43

44 Fine lezione

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1. Floating Point Notazione in virgola mobile N = M BE mantissa base esponente esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.6273 102 forma normalizzata: la mantissa ha una sola cifra

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009 Lab 02 Tipi semplici in C Obiettivo dell esercitazione Acquistare familiarità con i tipi di dato semplici supportati

Dettagli

Appunti di Matematica

Appunti di Matematica Silvio Reato Appunti di Matematica Settembre 200 Le quattro operazioni fondamentali Le quattro operazioni fondamentali Addizione Dati due numeri a e b (detti addendi), si ottiene sempre un termine s detto

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Rappresentazione numeri in virgola mobile

Rappresentazione numeri in virgola mobile Rappresentazione numeri in virgola mobile Un numero non intero può essere rappresentato in infiniti modi quando utilizziamo la notazione esponenziale: Es. 34.5 = 0.345 10 2 = 0.0345 10 3 = 345 10-1 Questo

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale !"$#%!" #% Nella prima lezione... Definizione di Informatica Cosa è una soluzione algoritmica Esempi di algoritmi cicalese@dia.unisa.it 2 Prima parte: Società dell informazione Ma cosa vuol dire società

Dettagli

Le variabili. Olga Scotti

Le variabili. Olga Scotti Le variabili Olga Scotti Cos è una variabile Le variabili, in un linguaggio di programmazione, sono dei contenitori. Possono essere riempiti con un valore che poi può essere riletto oppure sostituito.

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN per Expert NANO 2ZN Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie Expert NANO 2ZN Nome documento: MODBUS-RTU_NANO_2ZN_01-12_ITA Software installato: NANO_2ZN.hex

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Non tutto, ma un po di tutto

Non tutto, ma un po di tutto ALFREDO MANGIA Non tutto, ma un po di tutto Nozioni fondamentali per conoscere e usare un foglio di calcolo. Corso di alfabetizzazione all informatica Settembre 2004 SCUOLA MEDIA GARIBALDI Genzano di Roma

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

PROGETTO EM.MA PRESIDIO

PROGETTO EM.MA PRESIDIO PROGETTO EM.MA PRESIDIO di PIACENZA Bentornati Il quadro di riferimento di matematica : INVALSI e TIMSS A CONFRONTO LE PROVE INVALSI Quadro di riferimento per la valutazione Quadro di riferimento per i

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it)

SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it) SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it) In una rete TCP/IP, se un computer (A) deve inoltrare una richiesta ad un altro computer (B) attraverso la rete locale, lo dovrà

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

INVIO SMS CON CHIAMATA DIRETTA ALLO SCRIPT

INVIO SMS CON CHIAMATA DIRETTA ALLO SCRIPT INVIO SMS CON CHIAMATA DIRETTA ALLO SCRIPT La chiamata diretta allo script può essere effettuata in modo GET o POST. Il metodo POST è il più sicuro dal punto di vista della sicurezza. Invio sms a un numero

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale

Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale Prot. n. 2012/140335 Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale IL DIRETTORE DELL AGENZIA In base

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Procedura corretta per mappare con ECM Titanium

Procedura corretta per mappare con ECM Titanium Procedura corretta per mappare con ECM Titanium Introduzione: In questo documento troverete tutte le informazioni utili per mappare correttamente con il software ECM Titanium, partendo dalla lettura del

Dettagli

Programmazione C Massimo Callisto De Donato massimo.callisto@unicam.it www.cs.unicam.it/massimo.callisto

Programmazione C Massimo Callisto De Donato massimo.callisto@unicam.it www.cs.unicam.it/massimo.callisto Università degli studi di Camerino Scuola di scienze e tecnologia - Sezione Informatica Programmazione C Massimo Callisto De Donato massimo.callisto@unicam.it www.cs.unicam.it/massimo.callisto LEZIONE

Dettagli

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

I FILTRI SED, GREP (e AWK) Tratto da http://www.pluto.it/files/ildp/guide/abs/textproc.html SED

I FILTRI SED, GREP (e AWK) Tratto da http://www.pluto.it/files/ildp/guide/abs/textproc.html SED I FILTRI SED, GREP (e AWK) Tratto da http://www.pluto.it/files/ildp/guide/abs/textproc.html SED SED è un programma in grado di eseguire delle trasformazioni elementari in un flusso di dati di ingresso,

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

Linguaggio C: introduzione

Linguaggio C: introduzione Linguaggio C: introduzione Il linguaggio C è un linguaggio general purpose sviluppato nel 1972 da Dennis Ritchie per scrivere il sistema operativo UNIX ed alcune applicazioni per un PDP-11. Il linguaggio

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

SOFTWARE GESTIONE SMS DA INTERFACCE CL MANUALE D INSTALLAZIONE ED USO

SOFTWARE GESTIONE SMS DA INTERFACCE CL MANUALE D INSTALLAZIONE ED USO CLSMS SOFTWARE GESTIONE SMS DA INTERFACCE CL MANUALE D INSTALLAZIONE ED USO Sommario e introduzione CLSMS SOMMARIO INSTALLAZIONE E CONFIGURAZIONE... 3 Parametri di configurazione... 4 Attivazione Software...

Dettagli

Specifiche tecnico-funzionali per comunicazione e conservazione dati da parte dei Sistemi Controllo Accessi. INDICE

Specifiche tecnico-funzionali per comunicazione e conservazione dati da parte dei Sistemi Controllo Accessi. INDICE Specifiche tecnico-funzionali per comunicazione e conservazione dati da parte dei Sistemi Controllo Accessi. INDICE 1.1 CARATTERISTICHE DEL SUPPORTO IMMODIFICABILE E SUO FILE-SYSTEM... 2 1.2 SICUREZZA

Dettagli

FUNZIONI AVANZATE DI EXCEL

FUNZIONI AVANZATE DI EXCEL FUNZIONI AVANZATE DI EXCEL Inserire una funzione dalla barra dei menu Clicca sulla scheda "Formule" e clicca su "Fx" (Inserisci Funzione). Dalla finestra di dialogo "Inserisci Funzione" clicca sulla categoria

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

Import Dati Release 4.0

Import Dati Release 4.0 Piattaforma Applicativa Gestionale Import Dati Release 4.0 COPYRIGHT 2000-2005 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati.questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli