SISTEMA DI RAPPRESENTAZIONE BINARIA DEI NUMERI E. Giordani

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMA DI RAPPRESENTAZIONE BINARIA DEI NUMERI E. Giordani"

Transcript

1 SISTEMA DI RAPPRESENTAZIONE BINARIA DEI NUMERI E. Giordani LEMS- Laboratorio Elettronico per la Musica Sperimentale Conservatorio di Musica G. Rossini- Pesaro,QWURGX]LRQH Tutti i FDOFRODWRUL HOHWWURQLFL GLJLWDOL operano su base numerica e ciò significa che la rappresentazione interna di tutte le informazioni è di tipo numerica, sia che l'informazione sia propriamente un numero o qualche cosa di diverso. La base di rappresentazione dei dati è di tipo binario cioè attraverso un sistema di numerazione che è costituito da due soli simboli, a differenza del sistema decimale che fa uso invece di dieci simboli. Questa circostanza deriva dal fatto che le macchine elettroniche numeriche sono costituite da unità fisiche elementari che sono in grado di operare con soli due livelli stabili. In origine queste unità elementari erano dei semplici UHODLV, vale a dire interruttori comandati elettricamente in maniera elementare: assenza di corrente / interruttore aperto, presenza di corrente/ interruttore chiuso. Nel giro di poco tempo questa tecnologia primordiale è stata soppiantata dapprima dalle valvole termoioniche, quindi successivamente dai transistor e in tempi relativamente recenti dai circuiti integrati a larga scala di integrazione (VLSI), capaci cioè di contenere al loro interno centinaia di migliaia di transistor. Sebbene la tecnologia costruttiva sia profondamente mutata, il principio di rappresentazione dei dati è rimasto sostanzialmente invariato. 5DSSUHVHQWD]LRQHELQDULD Esistono due sistemi di rappresentazione per esprimere il valore di un numero: sistemi QRQSRVL]LRQDOL e sistemi SRVL]LRQDOL. Ad esempio, la numerazione romana appartiene al primo tipo mentre la tradizionale numerazione decimale (di origine araba) appartiene alla seconda tipologia. In questo ultimo caso, ogni cifra occupa una posizione alla quale è associato un peso e il valore del numero si ottiene sommando i prodotti di ogni cifra per il peso associato. A sua volta, ogni peso è dato da una quantità ottenuta elevando a potenze intere e progressive la base del sistema: nella numerazione decimale i pesi sono formati da termini del tipo 10 N dove N=0,1,2,3,.. mentre le cifre vanno da 0 a 9 (in totale 10 cifre), cioè tante quante ne prevede la base del sistema In modo del tutto corrispondente, il sistema posizionale che utilizza solo due cifre è detto sistema binario, ove i pesi sono formati da termini del tipo 2 N dove N=0,1,2,3,.. Ci occuperemo quindi di esporre alcuni elementi fondamentali dell aritmetica binaria a partire dalla rappresentazione dei numeri a base 2. L'unità minima.di rappresentazione numerica binaria è data da una YDULDELOHche può assumere due soli stati stabili: zero (0) / uno (l). In genere i due stati stabili corrispondono a due diversi livelli stabili di tensione ( ad esempio 0, + 5 volt) presenti in un punto preciso di ciascuno delle centinaia di migliaia di dispositivi a semiconduttore che costituiscono gli attuali sistemi di calcolo. Tale variabile prende il nome di BIT, derivato dalla combinazione delle parole inglesi %inary d,gi7 (cifra binaria) e può essere considerata l'unità minima di informazione. Se consideriamo inizialmente il più familiare sistema di numerazione decimale, possiamo ad esempio esprimere il numero 735 attraverso la logica posizionale: ovvero più formalmente 735 = l0+ 5 l 735 = Possiamo quindi rappresentare il numero 735 attraverso la somma pesata di tre cifre 7, 3, 5, ciascuna moltiplicata per la base del sistema (10) elevata alla potenza intera il cui grado rappresenta la posizione relativa della cifra stessa a partire da 0. In maniera del tutto analoga possiamo esprimere una quantità numerica disponendo di due soli simboli: 0, l: 1101 = l l 2 0 1

2 La sequenza dei pesi si può estendere agli esponenti negativi: in tale modo è possibile rappresentare numeri non interi: = l l = l / Nell esempio, la quantità (in decimale) espressa dal numero è data dalla somma di tutti i termini dei quali è formata e cioè: = 13 per la parte intera = per la parte decimale La quantità assoluta espressa da un qualsivoglia numero dipende dal sistema di numerazione adottato. Benché 0 e l siano simboli che possono appartenere sia al sistema di numerazione decimale che a quello binario, non c'è ambiguità nella rappresentazione, purché sia definito a priori su quale base si sta operando. Infatti il numero 1101 nel sistema decimale esprime una quantità numerica diversa rispetto al sistema binario. li numero 735 non pone questa ambiguità poiché il sistema binario non dispone dei simboli 7, 3 e 5, ma potrebbe rappresentare un numero in base 8 (cifre da 0 a 7 ). La quantità assoluta espressa da un qualsivoglia numero dipende dal sistema di numerazione adottato. Benché 0 e 1 siano simboli che possono appartenere sia al sistema di numerazione decimale che a quello binario, non c è ambiguità nella rappresentazione, purchè sia definito a priori su quale base si sta operando. Infatti il numero 1101 nel sistema decimale esprime una quantità numerica diversa rispetto al sistema binario. Il numero 735 non pone questa ambiguità poiché il sistema binario non dispone dei simboli 7, 3, e 5, ma potrebbe rappresentare un numero in una base contenente 8 diversi simboli (da 0 a 7). All'interno di una formalizzazione rigorosa ogni numero andrebbe quindi rappresentato esplicitando la propria base: e Nella pratica l'ambiguità è eliminata dal contesto e solo quando si opera in contesti misti può essere utile impiegare tale formalismo. E'prassi comune esprimere verbalmente i numeri binari come sequenze di zeri e uni e quindi il numero 1101 non si legge PLOOHFHQWRXQR(come normalmente avverrebbe se la base fosse decimale) bensì XQRXQR ]HURXQR La cifra più a sinistra ( cioè quella elevata alla potenza 3 nell'esempio) viene detta 06% ( Most Significant Bit o cifra più significativa o bit più pesante) mentre la cifra più a destra (cioè quella elevata alla potenza O nell'esempio) viene detta /6% ( Least Significant Bit o cifra meno significativa o bit più leggero). La numerazione naturale si ottiene, analogamente a quanto avviene nel sistema decimale e similmente a tutte le altre basi, per mezzo di una successione ordinata di tutti i simboli disponibili (due nel sistema binario, dieci nel sistema decimale) a partire dalla posizione meno significativa. Esauriti i simboli in tale posizione si aumenta di una unità la posizione successiva e si ricomincia la successione dei simboli daccapo: Questa sequenza di numeri binari, ciascuno costituito da tre cifre binarie (3 bit) consente di generare 8 diverse combinazioni per cui se includiamo lo zero, con 3 soli bit potremmo contare fino a 7 unità. Ciò conduce alla regola generale secondo la quale disponendo di un numero N di cifre binarie è possibile rappresentare 2 N combinazioni e quindi rappresentare come massima quantità positiva il numero 2 N-1. Ad esempio, con 16 bit si possono ottenere 2 16 = combinazioni diverse e quindi esprimere come massima quantità positiva il numero Attraverso questa relazione è immediata la corrispondenza tra le due basi di rappresentazione, o almeno per tutti i numeri rappresentati esattamente dalle potenze crescenti di 2 ossia 1,2,4,8, 16,32, 64, 128, 256, 512,1024 e così via. E'però più interessante vedere come sia possibile passare da una base all'altra attraverso un procedimento generalizzato. Se riprendiamo il solito numero binario 1101, attraverso la sua rappresentazione esplicita, siamo in grado di esprimere immediatamente il valore corrispondente nel sistema decimale: 1101 =

3 Sarà infatti sufficiente eseguire la somma di prodotti e il risultato sarà il valore cercato: = = In sostanza vanno considerati solo i contributi delle cifre diverse da zero e si sommano i relativi pesi. Nella pratica, specie se i numeri sono piuttosto grandi si può ricorrere alle tavole di conversione o ancora più agevolmente impiegare una calcolatrice tascabile di tipo scientifico dotata di rappresentazione binaria e relativa funzioni di conversione. Vediamo ora come sia possibile convertire un numero decimale nel corrispondente binario prendendo come numero di partenza proprio il numero 13. Il procedimento consiste nel dividere successivamente per 2 il numero di partenza fino a che il quoziente intero risulti diverso da zero e nel formare il numero binario coi resti delle divisioni successive SUHVLLQRUGLQHLQYHUVR 13 : 2 = 6 R = 1 6 : 2 = 3 R = 0 3 : 2 = 1 R = l 1 : 2 = 0 R = l da cui risulta appunto che = Un sistema alternativo ma assai efficace consiste nel valutare a mente le somme parziali successive attraverso un procedimento iterativo che accumula i pesi decrescenti : Test: 13 < di 16? Sì. Allora si pone 1 nella posizione immediatamente inferiore ( posizione 3 = 2 3 = 8 ) Test: 8< 13? Sì. Allora si pone 1 nella posizione immediatamente inferiore ( posizione 2 = 2 2 = 4 ) e si fa la somma parziale : = Test: 12< 13? Sì. Allora si pone 1 nella posizione immediatamente inferiore ( posizione 2 = 2 1 = 4 ) e si fa la somma parziale : = 14. Il risultato è maggiore di 13 quindi si deve porre a zero questo bit. La somma parziale ritorna quelle precedente cioè Test: 12<13? Sì. Allora si pone 1 nella posizione immediatamente inferiore ( posizione 2 = 2 0 = 1 ) e si fa la somma parziale: = 13. Quando la somma parziale uguaglia il numero di partenza la conversione è completa Come spesso accade in questi casi è meno intuitiva la spiegazione del procedimento rispetto alla sua effettiva semplicità applicativa. Prima di estendere la rappresentazione binaria ai numeri relativi, occorre dire come si esegue l'operazione di addizione tra numeri binari. Poiché in un calcolatore si ha a disposizione un numero limitato di bit, occorre che il risultato della somma sia contenuto all'interno del massimo numero esprimibile con quella specifica quantità di bit. In ogni caso l'addizione si esegue come si è imparato a farla elementarmente, tenendo conto che i riporti si hanno quando la somma supera 1. Ad esempio si ha: 3

4 11(riporti) = = = 6 = Quando la somma supera la capacità massima disponibile (in questo esempio 6 bit, 2 6-1= 63) si verifica il fenomeno dell'ryhuilrzin questi casi, se ciò non è opportunamente segnalato, il risultato dell'addizione perde di significato. Ad esempio se avessimo sommato al numero 54 il numero l0 ( ovvero ) si sarebbe avuto: ( = 54 + ) = = 10= ) In questo caso, per esprimere il risultato corretto (che è 64) occorre una cifra addizionale. Nelle applicazioni reali, è sempre possibile prevedere l ordine di grandezza del risultato in modo tale che possa essere espresso in modo corretto. 5DSSUHVHQWD]LRQHELQDULDGHLQXPHULUHODWLYL La rappresentazione di un numero relativo in generale necessita di un'informazione sul segno e poiché tale segno può essere o positivo o negativo, tale informazione, nella rappresentazione binaria, può essere associata ad uno specifico bit, assumendo che il valore 0 rappresenti il + (numero positivo) mentre 1 rappresenti il - (numero negativo). In pratica disponendo di N bit si utilizzeranno N-l bit per rappresentare il valore del modulo e 1 bit per rappresentare il segno. Tale rappresentazione prende appunto il nome di rappresentazione in PRGXORHVHJQR Supponendo ad esempio di disporre di soli 3 bit, il primo bit a sinistra sarà impiegato per esprimere il segno ed i restanti 2 bit per il modulo. Così facendo, delle 2 3 = 8 combinazioni, 4 avranno uno 0 a sinistra e 4 un l a sinistra: positivi negativi In questo modo si avrebbe, per i numeri positivi la successione 0, 1, 2, 3 e analogamente per i numeri negativi 0, -1, -2, -3. Risulta allora evidente l'ambiguità della rappresentazione dello zero poiché due sono possibili due diverse rappresentazioni dello stesso numero (+0,-0). E'come se esistesse uno zero positivo e uno zero negativo. Per rimuovere tale ambiguità si ricorre ad un tipo di rappresentazione detta LQFRPSOHPHQWRDGXHche consiste nel rappresentare i numeri negativi attraverso un'operazione di complementazione del corrispondente positivo. Sono possibili due forme di complementazione: complementazione a uno e complementazione a due, ma per motivi di ordine pratico relative ad operazioni di calcolo si preferisce quest'ultima. Per ottenere il complemento a due di un numero si devono compiere due passi: a) complementazione 1 a 1 del numero stesso che consiste nel cambiare gli zeri in uni e viceversa b) sommare 1 al complemento a uno Ad esempio, se consideriamo ancora 3 bit, il numero 011 rappresenta +3. Allora per ottenere il valore corrispondente negativo si avrà: 1 Per FRPSOHPHQWD]LRQHsi deve intendere cambiare gli uni con gli zeri. 4

5 011 numero positivo (+3) 100 complemento a 1 (gli zeri vengono cambiati in uni e viceversa) 1 somma numero negativo in complemento a 2 (-3) Si noti che se c è un riporto nel bit di segno, questo non viene considerato. Attraverso la complementazione a 2, nel caso di 3 bit possiamo rappresentare la seguente sequenza: Si possono fare due osservazioni: la prima riguarda il tipo di disposizione circolare dei numeri binari. A partire dallo 0 verso l'alto la numerazione si raccorda tra il massimo positivo (+3) e il massimo negativo (-4). La seconda, ben più rilevante della prima, è che attraverso la rappresentazione in complemento a 2 non c'è simmetria dal momento che il massimo numero negativo è di una unità superiore rispetto al corrispondente numero positivo. Questo è il prezzo che si deve pagare per non avere nessuna ambiguità nella rappresentazione dei numeri relativi. Allora dati N bit, la rappresentazione in complemento a 2 consentirà una numerazione bipolare i cui valori estremi (positivi e negativi) sono rispettivamente +2 N-l - l e -2 N-l. Ad esempio disponendo di 16 bit complessivi e volendo rappresentare numeri relativi si avranno come limiti estremi , Questa apparente limitazione dovuta alla asimmetria, non porta nella pratica a nessun inconveniente. Naturalmente il procedimento di complementazione è ancora applicabile per ottenere il corrispondente positivo di un numero negativo dato. La rappresentazione in complemento a due è molto diffusa e una certa classe di dati numerici viene rappresentata secondo tale formato.,osureohpdghoodfrqyhuvlrqh Abbiamo già visto brevemente come si può passare dal sistema decimale a quello binario e viceversa. Per i numeri relativi la conversione può essere fatta utilizzando procedure (algoritmi) che eseguono il calcolo separatamente per la parte intera e per quella frazionaria. Per la sola parte frazionaria si può procedere nel modo che segue: si moltiplica per 2 il numero iniziale e si pone uno 0 se la cifra intera è pari oppure 1 se la prima cifra è dispari. Si procede ad una nuova moltiplicazione fino al raggiungimento dell annullamento della parte frazionaria dopodiché, si prenderà la sequenza ottenuta nell ordine di successione e si arriverà al risultato finale. Supponiamo che il numero decimale da convertire sia Si avrà allora: = = = = = Quindi Come controprova, possiamo sommare i pesi corrispondenti. Si otterrà allora: / = (come si voleva dimostrare) 5

6 Non sempre però è possibile rappresentare correttamente la parte frazionara di un numero con un numero finito di cifre. In questo caso si deve arrestare la conversione giungendo così ad un risultato che approssima il numero desiderato. La rappresentazione sarà precisa ad un certo numero di cifre significative. 6

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE La base del sistema decimale è 10 I simboli del sistema decimale sono: 0 1 2 3 4 5 6 7 8 9 Il sistema di numerazione decimale è un sistema posizionale. L aggettivo

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

- Sistemi di numerazione 1 - Sistemi di Numerazione

- Sistemi di numerazione 1 - Sistemi di Numerazione - Sistemi di numerazione 1 - Sistemi di Numerazione - Sistemi di numerazione 2 - Un sistema di numerazione è definito dalla base che usa La base è il numero di differenti simboli richiesti da un sistema

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

1 Sistema additivo e sistema posizionale

1 Sistema additivo e sistema posizionale Ci sono solamente 10 tipi di persone nel mondo: chi comprende il sistema binario e chi no. Anonimo I sistemi di numerazione e la numerazione binaria 1 Sistema additivo e sistema posizionale Contare per

Dettagli

Aritmetica dei Calcolatori 1

Aritmetica dei Calcolatori 1 Architettura degli Elaboratori e Laboratorio 1 Marzo 2013 1 Sistema di numerazione sistema posizionale 2 rappresentazione binaria cambio di base basi potenze di 2 3 Rappresentazione binaria con segno Sistema

Dettagli

Sistemi di numerazione: generalità

Sistemi di numerazione: generalità Sistemi di numerazione: generalità Nel corso della storia sono stati introdotti diversi sistemi di numerazione, dettati di volta in volta dalle specifiche esigenze dei vari popoli. Poiché ogni numero maggiore

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Anche se spesso si afferma che il sistema binario, o in base 2, fu inventato in

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli

Operazioni binarie fondamentali

Operazioni binarie fondamentali Operazioni binarie fondamentali Operazioni fondamentali: operazioni elementari sui bit. Sono definite le operazioni aritmetiche più le operazioni logiche (AND, OR, NOT). Le operazioni possono essere descritte

Dettagli

LA NUMERAZIONE BINARIA

LA NUMERAZIONE BINARIA LA NUMERAZIONE BINARIA 5 I SISTEMI DI NUMERAZIONE Fin dalla preistoria l uomo ha avuto la necessità di fare calcoli, utilizzando svariati tipi di dispositivi: manuali (mani, bastoncini, sassi, abaco),

Dettagli

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO SISTEMI DI NUMERAZIONE DECIMALE E BINARIO Il sistema di numerazione decimale (o base dieci) possiede dieci possibili valori (0, 1, 2, 3, 4, 5, 6, 7, 8 o 9) utili a rappresentare i numeri. Le cifre possiedono

Dettagli

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente

Dettagli

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011 RAPPRESENTAZIONE DEI NUMERI BINARI Corso di Fondamenti di Informatica AA 2010-2011 Prof. Franco Zambonelli Numeri interi positivi Numeri interi senza segno Caratteristiche generali numeri naturali (1,2,3,...)

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore.

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore. In una delle molteplici possibili definizioni di informazione, questa viene fatta corrispondere a qualunque elemento, in grado di essere rappresentato e comunicato, che consenta di fornire o aumentare

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210 Il sistema BINARIO e quello ESADECIMALE. Il sistema di numerazione binario è particolarmente legato ai calcolatori in quanto essi possono riconoscere solo segnali aventi due valori: uno alto e uno basso;

Dettagli

Indice. 1 Rappresentazione dei dati... 3

Indice. 1 Rappresentazione dei dati... 3 INSEGNAMENTO DI INFORMATICA DI BASE LEZIONE II CODIFICA DELL'INFORMAZIONE PROF. GIOVANNI ACAMPORA Indice 1 Rappresentazione dei dati... 3 1.1. Rappresentazione dei numeri... 3 1.1.1 Rappresentazione del

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Sistemi di Numerazione Binaria NB.1

Sistemi di Numerazione Binaria NB.1 Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

Alessandro Pellegrini

Alessandro Pellegrini Esercitazione sulle Rappresentazioni Numeriche Esistono 1 tipi di persone al mondo: quelli che conoscono il codice binario e quelli che non lo conoscono Alessandro Pellegrini Cosa studiare prima Conversione

Dettagli

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno Parte II Indice Operazioni aritmetiche tra valori rappresentati in binario puro somma sottrazione Rappresentazione di numeri con segno modulo e segno complemento a 2 esercizi Operazioni aritmetiche tra

Dettagli

BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario?

BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario? BIT? Cosa c è dietro a questo nome? Che cos è il bit? Perché si usa? Come si converte un numero binario? Cosa c è dietro a questo nome? BIT è un acronimo e deriva da BInary digit, cioè cifra binaria Che

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

SISTEMI DI NUMERAZIONE

SISTEMI DI NUMERAZIONE Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica SISTEMI DI NUMERAZIONE Come nei calcolatori sono rappresentati i numeri Numeri I numeri rappresentano

Dettagli

Codifica binaria dei numeri

Codifica binaria dei numeri Codifica binaria dei numeri Caso più semplice: in modo posizionale (spesso detto codifica binaria tout court) Esempio con numero naturale: con 8 bit 39 = Codifica in virgola fissa dei numeri float: si

Dettagli

Introduzione all Informatica

Introduzione all Informatica Introduzione all Informatica Lezione 4 Davide Di Ruscio Dipartimento di Informatica Università degli Studi dell Aquila diruscio@di.univaq.it Nota Questi lucidi sono tratti dal materiale distribuito dalla

Dettagli

Definizioni iniziali

Definizioni iniziali Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Definizioni iniziali BIT: unita elementare di informazione Due soli valori: 0 e 1 Byte: sequenza di 8 bit Fondamenti di Informatica: Codifica

Dettagli

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore.

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore. In una delle molteplici possibili definizioni di informazione, questa viene fatta corrispondere a qualunque elemento, in grado di essere rappresentato e comunicato, che consenta di fornire o aumentare

Dettagli

2.12 Esercizi risolti

2.12 Esercizi risolti Codifica dell'informazione 55 Lo standard IEEE prevede cinque cause di eccezione aritmetica: underflow, overflow, divisione per zero, eccezione per inesattezza, e eccezione di invalidità. Le eccezioni

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Università degli Studi di Messina Facolta di Ingegneria - 98100 Messina Tel. (090) 393229 - Fax (090) 393502 Fondamenti di Informatica Ing. delle Tecnologie Industriali Docente: Ing. Mirko Guarnera 1 Sistemi

Dettagli

Rappresentazione binaria dei numeri negativi

Rappresentazione binaria dei numeri negativi Introduzione all Informatica 1 Conversione decimale binario (continuazione) La conversione di un numero decimale (es. 112) in binario si effettua tramite l algoritmo della divisione, dividendo successivamente

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Informatica Generale 02 - Rappresentazione numeri razionali

Informatica Generale 02 - Rappresentazione numeri razionali Informatica Generale 02 - Rappresentazione numeri razionali Cosa vedremo: Rappresentazione binaria dei numeri razionali Rappresentazione in virgola fissa Rappresentazione in virgola mobile La rappresentazione

Dettagli

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 In questo documento vengono illustrate brevemente le operazioni aritmetiche salienti e quelle logiche ad esse strettamente collegate.

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Rappresentazione delle informazioni

Rappresentazione delle informazioni Rappresentazione delle informazioni Abbiamo informazioni (numeri, caratteri, immagini, suoni, video... ) che vogliamo rappresentare (e poter elaborare) in un calcolatore. Per motivi tecnologici un calcolatore

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Corso basilare di programmazione

Corso basilare di programmazione Parte vi Corso basilare di programmazione Introduzione............................................ 947 Programma didattico.................................. 947 Strumenti per la compilazione..........................

Dettagli

Elementi di Informatica. ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale

Elementi di Informatica. ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale Elementi di Informatica ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale Il sistema di numerazione posizionale decimale Nella numerazione posizionale ogni cifra del numero

Dettagli

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 90.1 Sistemi di numerazione.................................................... 605 90.1.1 Sistema decimale..................................................

Dettagli

Codifica dei numeri. Rappresentazione dell informazione

Codifica dei numeri. Rappresentazione dell informazione Rappresentazione dell informazione Rappresentazione informazione Elementi di aritmetica dei computer Organizzazione della memoria e codici correttori Salvatore Orlando Differenza tra simbolo e significato

Dettagli

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione Lezione 3 Le operazioni aritmetiche binarie Sommario L aritmetica binaria La somma La sottrazione La moltiplicazione 1 Definizione Si indica con il termine bit più significativo il bit più a sinistra,

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Sistemi di Numerazione un sistema di numerazione è definito da il numero di differenti simboli utilizzati per rappresentare i numeri (BASE) i Sumeri usavano un sistema sessagesimale, basato su 60 simboli

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Rappresentazione digitale

Rappresentazione digitale I BIT POSSONO RAPPRESENTARE TUTTO Tutta l informazione interna ad un computer è codificata con sequenze di due soli simboli : 0 e 1 è facile realizzare dispositivi elettronici che discriminano fra due

Dettagli

La somma. Esempio: Il prodotto. Esempio:

La somma. Esempio: Il prodotto. Esempio: La somma L algoritmo della operazione di somma non cambia qualunque sia la base considerata. Naturalmente, le regole da imparare nel caso di una base b sono relative alle sole b 2 posssibili combinazioni

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Parte I Sui testi di approfondimento: leggere dal Cap. del testo C (Console, Ribaudo):.,. fino a pg.6 La codifica delle informazioni Un calcolatore memorizza ed elabora informazioni

Dettagli

Università degli Studi di Ferrara Corso di Laurea in Informatica A.A. 2007/2008

Università degli Studi di Ferrara Corso di Laurea in Informatica A.A. 2007/2008 Università degli Studi di Ferrara Corso di Laurea in Informatica A.A. 2007/2008 Tutorato di Architettura degli Elaboratori e Laboratorio Cambio di base Operazioni binarie Dott.ssa Ambra Giovannini 15 Aprile

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

L informatica comprende:

L informatica comprende: Varie definizioni: INFORMATICA Scienza degli elaboratori elettronici (Computer Science) Scienza dell informazione Definizione proposta: Scienza della rappresentazione e dell elaborazione dell informazione

Dettagli

2. Codifica dell informazione

2. Codifica dell informazione 2. Codifica dell informazione Codifica Una codifica è una regola per associare in modo univoco i valori di un dato da codificare con sequenze di simboli. La corrispondenza definita dalla codifica è arbitraria,

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

Rappresentazione di informazioni con un alfabeto finito

Rappresentazione di informazioni con un alfabeto finito Rappresentazione di informazioni con un alfabeto finito Sia A = { a 1,, a k } un insieme (alfabeto) di k simboli, detti anche lettere. Quante sono le sequenze composte da n simboli (anche ripetuti) di

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi rnicolussi@fub.it Lezioni

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica per chimica industriale e chimica applicata e ambientale LEZIONE 2 Rappresentazione delle informazioni: numeri e caratteri 1 Codice La relazione che associa ad ogni successione ben formata di simboli di

Dettagli

L'informazione e la sua codifica

L'informazione e la sua codifica L'informazione e la sua codifica Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Informatica e telecomunicazione Cos è l informatica informatica? lo studio sistematico degli

Dettagli

Informatica Generale (Prof. Luca A. Ludovico) Presentazione 5.1 Operazioni aritmetiche nel sistema binario

Informatica Generale (Prof. Luca A. Ludovico) Presentazione 5.1 Operazioni aritmetiche nel sistema binario Operazioni aritmetiche nel sistema binario Operazioni aritmetiche basilari Le regole da imparare nel caso di una base b sono relative alle b 2 possibili combinazioni delle cifre da 0 a b- 1. Ad esempio,

Dettagli

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA Ministero dell Istruzione, dell Università e della Ricerca Istituto Comprensivo Statale di Calolziocorte Via F. Nullo,6 23801 CALOLZIOCORTE (LC) e.mail: lcic823002@istruzione.it - Tel: 0341/642405/630636

Dettagli

Rappresentazione dell informazione Codifica Binaria

Rappresentazione dell informazione Codifica Binaria Fondamenti di Informatica Rappresentazione dell informazione Codifica Binaria Fondamenti di Informatica - D. Talia - UNICAL 1 Rappresentazione dell informazione Tutta l'informazione in un calcolatore è

Dettagli

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA COMPETENZA 1 UTILIZZARE CON SICUREZZA LE TECNICHE E LE PROCEDURE DI CALCOLO ARITMETICO SCRITTO E MENTALE CON RIFERIMENTO A CONTESTI REALI Stabilire

Dettagli

Appunti sulla rappresentazione dell informazione

Appunti sulla rappresentazione dell informazione Appunti sulla rappresentazione dell informazione Roberto Beraldi DISPENSA PER IL CORSO DI FONDAMENTI DI INFORMATICA CORSI DI LAUREA IN INGEGNERIA CHIMICA, DEI MATERIALI,NUCLEARE (vecchi ordinamenti) Anno

Dettagli

Corso di Programmazione I dati nei linguaggi di programmazione Tipi Semplici. I dati nei linguaggi di programmazione. Dati. Dott.

Corso di Programmazione I dati nei linguaggi di programmazione Tipi Semplici. I dati nei linguaggi di programmazione. Dati. Dott. Materiale didattico preparato dal dott. Stefano Ferilli Corso di Programmazione I dati nei linguaggi di programmazione Tipi Semplici Dott. Pasquale Lops lops@di.uniba.it Corso di Programmazione - DIB 1/49

Dettagli

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI PROGRAMMA DI MATEMATICA PER LE CLASSI SECONDA E TERZA DELLA SCUOLA PRIMARIA SETTEMBRE 2003 COMPETENZE IN NUMERO Obiettivi: - Contare, eseguire semplici operazioni

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO MATEMATICA Scuola primaria

Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO MATEMATICA Scuola primaria Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO MATEMATICA Scuola primaria CLASSE PRIMA Obiettivi formativi ABILITA CONOSCENZE Il numero - Contare in senso progressivo e regressivo. -

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

Numerazione binaria e rappresentazione delle informazioni

Numerazione binaria e rappresentazione delle informazioni Numerazione binaria e rappresentazione delle informazioni Info Sito del corso: http://home.dei.polimi.it/amigoni/informaticab.html Nicola Basilico, nicola.basilico@gmail.com Problema Abbiamo informazioni

Dettagli

Corso basilare di programmazione «

Corso basilare di programmazione « Parte iv Corso basilare di programmazione Introduzione................................................................... 601 Programma didattico.......................................................

Dettagli

MATEMATICA - CLASSE TERZA

MATEMATICA - CLASSE TERZA MATEMATICA - CLASSE TERZA I NUMERI NATURALI E LE 4 OPERAZIONI U. A. 1 - IL NUMERO 1. Comprendere la necessità di contare e usare i numeri. 2. Conoscere la struttura dei numeri naturali. 3. Conoscere e

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Trasduttore digitale Rettilineo

Trasduttore digitale Rettilineo Trasduttori digitali Un trasduttore digitale fornisce, costruttivamente, in uscita un segnale digitale; I più diffusi trasduttori digitali sono i codificatori di posizione digitale chiamatiencoder. Gli

Dettagli