Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli"

Transcript

1 Sommrio Componenti per l ritmetic inri M. Fvlli Engineering Deprtment in Ferrr Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Sommrio (ENDIF) Reti logiche / 27 Introduzione Motivzioni (ENDIF) Reti logiche 2 / 27 Introduzione Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA I itemi di clcolo neceitno di componenti che relizzino operzioni di tipo ritmetico (omme, prodotti...) u numeri interi e in floting point Dl punto di vit teorico, le conocenze che imo ci conentono di relizzre qulii funzione e quindi nche quelle volte d moltiplictori e ommtori Nel co di interee, queto pproccio non d peró riultti oddifcenti Ad eempio l intei ottim di reti due livelli d luogo funzioni ecceivmente cotoe e non modulri (ENDIF) Reti logiche 3 / 27 (ENDIF) Reti logiche 4 / 27

2 Sommrio Eempio di funzione ritmetic: 3-it dder Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Si vuole relizzre un ommtore 2 operndi per numeri interi poitivi rppreentti u 3 it. Sino A = { 2,, } e B = { 2,, } tli prole Il riultto é rppreentile u 4 it: S = { 3, 2,, } Si uppong di intetizzre le funzioni i come epreioni SP ucit ingol 3-it dder (ENDIF) Reti logiche 5 / 27 3-it dder (ENDIF) Reti logiche 6 / 27 Le funzioni hnno un coto che prtire dl it di minor peo ( ) ument molto rpidmente 22= 22= 32 22= 22= = + = (ENDIF) Reti logiche 7 / 27 (ENDIF) Reti logiche 8 / 27

3 3-it dder Prolemi nell relizzzione di ommtori inri Le funzioni hnno un coto che prtire dl it di minor peo ( ) ument molto rpidmente 22= 22= 3= Con l umentre dell dimenione delle prole (n), il coto di ommtori inri relizzti come reti 2 livelli ument molto rpidmente L utilizzo dei metodi di intei multilivello d luogo migliormenti reltivi Le oluzioni che i ottengono non riultno modulri Come lterntiv i vedrá un metodo che é to ull relizzzione hrdwre dell lgoritmo di omm per colonne 22= 22= 32 (ENDIF) Reti logiche 9 / 27 Ripple-crry dder (ENDIF) Reti logiche / 27 Ripple-crry dder Algoritmo di omm per colonne di due prole di n it to ull propgzione del riporto (crry) c4 c 3 c 2 c = ( + ) mod2, c = ( + )/2 i = ( i + i + c i ) mod2, c i+ = ( i + i + c i )/2 co = c n = co 3 2 ove + é l omm ritmetic e / é l diviione inter L decrizione funzionle i trduce in queto chem: 3 3 c c 2 FA FA FA c co 3 2 Dove i locchi che geticono i i di indice i > ono detti full-dder (FA) e quello che getice il co i = é detto hlf-dder () (ENDIF) Reti logiche / 27 (ENDIF) Reti logiche 2 / 27

4 Hlf-dder Full-dder É un componente mpimente utilizzto nell ritmetic inri. Ingrei = e =, ucite = e = c = = + Il ommtore completo é nch eo un componente fondmentle per l ritmetic inri. Ingrei =, =, e c in = c i, ucite = e = c c in = + c in + c in = c in + c in + c in + c in (ENDIF) Reti logiche 3 / 27 Relizzzione di un (ENDIF) Reti logiche 4 / 27 Relizzzione di un FA = = + = = + c in + c in = + c in ( + ) + c in ( + ) = + c in + c in + c in + c in = + c in + c in + c in ( + ) = + c in ( ) Il gte EXOR che relizz l omm modulo 2 é un componente che puó eere relizzto in tecnologi CMOS l livello witch (in mnier píu comple di NAND e NOR) = c in + c in + c in + c in = c in ( + ) + c in( + ) = c in ( + ) + c in( + ) = c in ( + ) = c in ( ) (ENDIF) Reti logiche 5 / 27 (ENDIF) Reti logiche 6 / 27

5 Relizzzione di un FA Struttur di un n-it dder (n=4) cin L relizzzione delle equzioni vite in precedenz conente di riconocere l preenz di due c c in Struttur l livello gte di un n-it dder. Si noti che l hlf-dder che omm e é tto otituito d un full-dder in modo d poter utilizzre un crry-in di ingreo. 2 2 c2 2 c cout (ENDIF) Reti logiche 7 / 27 Vntggi e vntggi Sommrio (ENDIF) Reti logiche 8 / 27 Appliczioni di n-it dder cin c Introduzione Vntggi: modulritá e ridotto coto c2 2 Svntggi: ritrdo Appliczioni di n-it dder c3 4 Sommtore CLA cout (ENDIF) Reti logiche 9 / 27 (ENDIF) Reti logiche 2 / 27

6 Appliczioni di n-it dder n-it dder: ppliczioni Sommrio Sommtore CLA Introduzione Sommtore kn-it Sommtori piú operndi Vlutzione di emplici epreioni ritmetiche Conttore di uni 2 3 Appliczioni di n-it dder 4 Sommtore CLA (ENDIF) Reti logiche 2 / 27 Sommtore CLA Sommtore crry-look hed (ENDIF) Reti logiche 22 / 27 Sommtore CLA Sommtore crry-look hed Per uperre i prolemi dovuti lle pretzioni del ommtore ripple-crry ono tti propoti diveri ommtori Uno dei primi d eere tto propoto é il ommtore crry look hed (CLA) Il ommtore CLA utilizz un rete 3 livelli che i occup di clcolre i crry di un n-it dder enz iogno di propgre il riporto In ucit ll i-mo FA i h riporto (c i+ = ) e i e i hnno vlori tli d produrre un riporto in ucit indipendentemente d c i o e il loro vlore é tle d grntire l propgzione di c i = Generzione del riporto per il it di peo i (crry generte): g i = i i Propgzione del riporto per il it di peo i (crry propgte): p i = i i c i+ = g i + p i c i L ppliczione iterttiv di quet formul port ll logic di generzione dei riporti di un CLA I it dell omm ono clcolti come: i = i i c i (ENDIF) Reti logiche 23 / 27 (ENDIF) Reti logiche 24 / 27

7 Sommtore CLA Sommtore crry look hed (n=4) Sommtore CLA Sommtore crry look hed (n=4) c = g + p c in c 2 = g + p c c 3 = g 2 + p 2 c 2 = g 3 + p 3 c 3 Sotituendo iterttivmente c = g + p c in c 2 = g + p (g + p c in ) c 3 = g 2 + p 2 (g + p (g + p c in )) = g 3 + p 3 (g 2 + p 2 (g + p (g + p c in ))) Applicndo l proprietá ditriutiv c = g + p c in c 2 = g + p g + p p c in c 3 = g 2 + p 2 g + p 2 p g + p 2 p p c in = g 3 + p 3 g 2 + p 3 p 2 g + p 3 p 2 p g + p 3 p 2 p p c in Come i oerv cicun it di crry viene epreo come un epreione SP due livelli in funzione di dei it di crry generte e propgte e del crry-in eterno (ENDIF) Reti logiche 25 / 27 Sommtore CLA Struttur di un ommtore CLA per n=4 (ENDIF) Reti logiche 26 / 27 cin p p g p rete SP c c 2 p 2 2 g p 2 c 3 p g 2 cout p 3 3 p 3 3 g 3 (ENDIF) Reti logiche 27 / 27

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale Biliotec Tecnic Knuf 05/2006 L cutic con Knuf Indice 1. Introduzione...4 2. Suoni e rumori...5 Glorio...5 Rumori erei...5 Rumori impttivi...6 Tempo di rivererzione (T60)...6 Fonoiolmento e fonoorimento...7

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Messa a punto avanzata più semplice utilizzando Funzione Load Observer

Messa a punto avanzata più semplice utilizzando Funzione Load Observer Mea a punto avanzata più emplice utilizzando Funzione Load Oberver EMEA Speed & Poition CE Team AUL 34 Copyright 0 Rockwell Automation, Inc. All right reerved. Co è l inerzia? Tutti comprendiamo il concetto

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Impianti VAV di ultima generazione

Impianti VAV di ultima generazione PANORAMICA Impianti VAV di ultima generazione Prodotti all'avanguardia per la ventilazione regolabile u richieta! www.wegon.com La ventilazione regolabile u richieta garantice grande comfort e coti di

Dettagli

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo ESERCIZI DI FISICA CHAPTER 1 CINEMATICA 1.1. Moto Rettilineo Velocità media: vettoriale e calare. Exercie 1. Carl Lewi ha coro i 100m piani in circa 10, e Bill Rodger ha vinto la maratona (circa 4km)

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni Memorie >> Titnio e ue leghe INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni I. Rmpin, K. Brunelli, M. Dlà In queto lvoro ono tti ottenuti rivetimenti di Ni

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali

BOZZA. Lezione n. 20. Stati limite nel cemento armato Stato limite ultimo per tensioni normali Lezione n. Stati limite nel cemento armato Stato limite ultimo per tenioni normali Determinazione elle configurazioni i rottura per la ezione Una volta introotti i legami cotitutivi, è poibile eterminare

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Problema 1: Una collisione tra meteoriti

Problema 1: Una collisione tra meteoriti Problema : Una colliione ra meeorii Problemi di imulazione della econda prova di maemaica Eami di ao liceo cienifico 5 febbraio 05 Lo udene deve volgere un olo problema a ua cela Tempo maimo aegnao alla

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

ALU STAFFE IN ALLUMINIO SENZA FORI

ALU STAFFE IN ALLUMINIO SENZA FORI ALU STAFFE IN ALLUMINIO SENZA FORI Giunzione a compara in lega di alluminio per utilizzo in ambienti interni ed eterni (cl. di erv. 2) Preforata con ditanze ottimizzate per giunzioni ia u legno (chiodi

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1).

Epigrafe. Premessa. D.Lgs. 29 dicembre 2006, n. 311 (1). D.Lgs. 29-12-2006 n. 311 Disposizioni correttive ed integrtive l D.Lgs. 19 gosto 2005, n. 192, recnte ttuzione dell direttiv 2002/91/CE, reltiv l rendimento energetico nell'edilizi. Pubblicto nell Gzz.

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it Ftturimo Versione 5 Mnule per l utente Active Softwre Corso Itli 149-34170 Gorizi emil info@ctiveweb.it Se questo documento ppre nell finestr del vostro browser Internet di defult, richimte il comndo Registr

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Raffinamenti dell equilibrio di Nash

Raffinamenti dell equilibrio di Nash Raffinamenti dell equilibrio di Nah equilibri perfetti nei ottogiohi (SPE) ed altro Appunti a ura di Fioravante PATRONE verione del: maggio ndie Equilibri perfetti nei ottogiohi (SPE) SPE problematii 4

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi 11. Attività svolt dll Agenzi, risorse e spetti orgnizztivi 11.1 Attività istituzionle svolt i sensi dell Deliberzione istitutiv In un vlutzione complessiv delle ttività svolte dll Agenzi i sensi dell

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di FISICA-TECNICA Ki Gllucci ki.gllucci@univq.i kgllucci@unie.i Progr del corso Dinic dei fluidi: Regii di oo; Moo szionrio di un fluido idele; Moo szionrio di un fluido rele; Il eore di Bernoulli; Perdie

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

INTERCONNESSIONE CONNETTIVITÀ

INTERCONNESSIONE CONNETTIVITÀ EMC VMA AX 10K EMC VMAX 10K fornisce e un'rchitettu ur scle-out multi-controlller Tier 1 rele e che nsolidmento ed efficienz. EMC VMAX 10 0K utilizz l stess s grntisce lle ziende con stemi VMAX 20 0K e

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

EQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO VALORE AOLUTO EQUAZIONI CON VALORE AOLUTO Esercizi DIEQUAZIONI CON VALORE AOLUTO Esercizi Prof. Giulia Cagnetta ITI Marconi Domodossola (VB) *EQUAZIONI CON VALORE AOLUTO Data una qualsiasi espressione

Dettagli

ASSOCIAZIONE ITALIANA PSICOGERIATRIA. anni di AIP. Relazione del Presidente in occasione del 10 Congresso Nazionale

ASSOCIAZIONE ITALIANA PSICOGERIATRIA. anni di AIP. Relazione del Presidente in occasione del 10 Congresso Nazionale ASSOCIAZIONE ITALIANA PSICOGERIATRIA anni di AIP Relazione del Preidente in occaione del 10 Congreo Nazionale Gardone Riviera (BS), 15 aprile 2010 Preidenti Onorari Mario Barucci Lodovico Frattola Pat

Dettagli

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI

ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI ONDE ESERCIZI SVOLTI DAL PROF. TRIVIA GIANLUIGI 1. Tipi di Onde Exercie 1. Un onda viaggia lungo una corda tea. La ditanza verticale dalla creta al ventre è di 13 c e la ditanza orizzontale dalla creta

Dettagli

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie?

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie? ESERCITZIONI. I 1)Un coppi h già due figlie. Se pinificssero di vere 6 figli, con qule probbilità vrnno un fmigli di tutte figlie? ) 1/4 b)1/8 c)1/16 d)1/32 e)1/64 2)In un fmigli con 3 bmbini, qul e l

Dettagli

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni:

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni: Mod. RED Sede di Domnd n. del Pensione n. ct. nto il stto civile bitnte Prov. CAP vi n. DICHIARA, sotto l propri responsbilità, che per gli nni: A B (brrre l csell reltiv ll propri situzione) NON POSSIEDE

Dettagli

LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE:

LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE: LA PREVISIONE DELLE TEMPERATURE MINIME IN TEMPO REALE: DAI MODELLI TRADIZIONALI AI NUOVI APPROCCI REAL-TIME TEMPERATURE MINIMUM PREDICTION: FROM TRADITIONAL MODELS TO NEW APPROACHES Stefno Dll Nor 1, Emnuele

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

CONOSCIAMO LE NORME SULLA SICUREZZA E SUL DIRITTO D AUTORE

CONOSCIAMO LE NORME SULLA SICUREZZA E SUL DIRITTO D AUTORE Conosimo le norme sull siurezz e sul iritto utore Unità 7 UNITÀ DIDATTICA 7 CONOSCIAMO LE NORME SULLA SICUREZZA E SUL DIRITTO D AUTORE IN QUESTA UNITÀ IMPAREREMO... onosere le norme he regolno il iritto

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

PERDITE SU CREDITI E SVALUTAZIONE CREDITI

PERDITE SU CREDITI E SVALUTAZIONE CREDITI PERDITE SU CREDITI E SVALUTAZIONE CREDITI Codice civile: I crediti devono essere iscritti secondo il vlore presumibile di relizzzione; quindi già l netto dell svlutzione derivnte dl monitorggio di ciscun

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Il dato è pubblicato nella sezione "Amministrazione trasparente" del sito istituzionale? (da 0 a 2) Tempo di pubblicazione/ Aggiornamento.

Il dato è pubblicato nella sezione Amministrazione trasparente del sito istituzionale? (da 0 a 2) Tempo di pubblicazione/ Aggiornamento. llegato 1 mministrazione "Comune di Cervaro" Data di compilazione "28/01/15" COMPLETEZZ COMPLETEZZ DEL LLEGTO 1 LL DELIER. 148/2014- GRIGLI DI RILEVZIONE L 31/12/2014 PULICZIONE RISPETTO GLI GGIORNMENTO

Dettagli

3. La matrice dei dati e le analisi preliminari 3.1 Introduzione

3. La matrice dei dati e le analisi preliminari 3.1 Introduzione 3. L mtice dei dti e le nlii pelimini 3. Intoduzione Pe elizze un nlii ttitic concenente fenomeni ziendli, o di qulii lt ntu, non bt ccogliee dti, biogn nche ognizzli in modo ppopito. Si che i dti poengno

Dettagli

ALLA RICERCA DI UNA DIDATTICA ALTERNATIVA THE SQUARE VISUAL LEARNING PROGETTO VINCITORE LABEL EUROPEO 2009 SETTORE FORMAZIONE

ALLA RICERCA DI UNA DIDATTICA ALTERNATIVA THE SQUARE VISUAL LEARNING PROGETTO VINCITORE LABEL EUROPEO 2009 SETTORE FORMAZIONE LL RICERC DI UN DIDTTIC LTERNTIV THE SQURE VISUL LERNING PROGETTO VINCITORE LBEL EUROPEO 2009 SETTORE FORMZIONE L utilizzo di: mappe concettuali intelligenti evita la frammentazione, gli incastri illogici

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Grazie. Normativa sulle emissioni dell'epa. Avviso relativo alla garanzia. Servizio "Mercury Premier"

Grazie. Normativa sulle emissioni dell'epa. Avviso relativo alla garanzia. Servizio Mercury Premier Grzie per vere cquistto uno dei migliori motori fuoribordo sul mercto che si rivelerà un ottimo investimento per l nutic d diporto. Il fuoribordo è stto fbbricto d Mercury Mrine, leder internzionle nel

Dettagli

LE IRRESISTIBILI DOLCI TENTAZIONI DEL MOMENTO, SCEGLI LA TUA BASE SCATENA LA TUA FANTASIA CONQUISTA TANTI NUOVI CLIENTI!

LE IRRESISTIBILI DOLCI TENTAZIONI DEL MOMENTO, SCEGLI LA TUA BASE SCATENA LA TUA FANTASIA CONQUISTA TANTI NUOVI CLIENTI! Le ALL ITALIANA CREA LA TUA ALL ITALIANA Decidi di essere oriin le, cre tivo e diverso d i tuoi concorrenti : Cre le tue person lissime cup c kes ll it li n, LE IRRESISTIBILI DOLCI TENTAZIONI DEL MOMENTO,

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

4. Trasporto pubblico non di linea: taxi e noleggio con conducente (NCC)

4. Trasporto pubblico non di linea: taxi e noleggio con conducente (NCC) 4. Trsporto pubblico non di line: txi e noleggio con conducente (NCC) L domnd di mobilità dei cittdini incontr un corrispondente offert delle diverse modlità di trsporto, sull bse delle crtteristiche degli

Dettagli

COMUNE DI FINALE EMILIA

COMUNE DI FINALE EMILIA COMUNE DI FINALE EMILIA PROVINCIA DI MODENA DETERMINAZIONE N. 398 DEL 17/05/2011 PROPOSTA N. 93 Centro di Responsabilità: Servizio Economato,patrimonio,servizi Informatici, Ambiente Servizio: Patrimonio

Dettagli

NOME BUBBICO ROCCO LUIGI CODICE FISCALE

NOME BUBBICO ROCCO LUIGI CODICE FISCALE Riservto ll Poste itline Sp N. Protocollo t di presentzione UNI CONORME AL PROVVEIMENTO AGENZIA ELLE ENTRATE EL 000 E SUCCESSIVI PROVVEIMENTI Periodo d'impost 0 COGNOME COICE ISCALE Informtiv sul trttmento

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1 Aferru un etiquet identifictiv v999999999 de codi de brres Itlià (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici Puntució: preguntes vertder/fls: 1 punt; preguntes

Dettagli

Le Liste. Elisa Marengo. Università degli Studi di Torino Dipartimento di Informatica. Elisa Marengo (UNITO) Le Liste 1 / 31

Le Liste. Elisa Marengo. Università degli Studi di Torino Dipartimento di Informatica. Elisa Marengo (UNITO) Le Liste 1 / 31 Le Liste Elisa Marengo Università degli Studi di Torino Dipartimento di Informatica Elisa Marengo (UNITO) Le Liste 1 / 31 Cos è una Lista Una lista è una collezione di elementi omogenei che: potrebbero

Dettagli

telefono: 0917076129 3299045149 e-mail: agri1.utenzasian@regione.sicilia.it

telefono: 0917076129 3299045149 e-mail: agri1.utenzasian@regione.sicilia.it REPUBBLIC ITLIN Regione Siciliana SSESSORTO GRICOLTUR E FORESTE DIPRTIMENTO REGIONLE INTERVENTI STRUTTURLI Servizio XXI Monitoraggio e controllo dei fondi comunitari U.O.B. n 254 Gestione utenze SIN Viale

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Sottoprogrammi: astrazione procedurale

Sottoprogrammi: astrazione procedurale Sottoprogrammi: astrazione procedurale Incapsulamento di un segmento di programma presente = false; j = 0; while ( (j

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

STUD FOTOVOLTAICO 16 LED 1.2W CW

STUD FOTOVOLTAICO 16 LED 1.2W CW Cod. 1879.185M STUD FOTOVOLTAICO 16 LED 1.2W CW Crtteristiche tecniche Corpo in lluminio pressofuso Portello di chiusur vno cblggio/btterie in termoindurente Riflettore in lluminio vernicito binco Diffusore

Dettagli

w w w. a x i o s i t a l i a. c o m

w w w. a x i o s i t a l i a. c o m w w w. a x o t a l a. c o m SISSIWEB AXIOS SIDI INVIO SMS INVIO EMAIL ACQUISIZIONE ASSENZE - DA SCANNER - DA PALMARE C/C POSTALE E BANCARIO DICHIARAZIONE DEI SERVIZI GESTIONE ORARIA DEL PERSONALE PRIVACY

Dettagli

Camponovo Asset Management SA, Via S. Balestra 6, PO Box 165, 6830 Chiasso-Switzerland Phone + 41 91 683 63 43, Fax + 41 91 683 69 15,

Camponovo Asset Management SA, Via S. Balestra 6, PO Box 165, 6830 Chiasso-Switzerland Phone + 41 91 683 63 43, Fax + 41 91 683 69 15, SA, Via S. Balestra 6, PO Box 165, 6830 Chiasso-Switzerland Phone + 41 91 683 63 43, Fax + 41 91 683 69 15, info@camponovoam.com La Gestione Patrimoniale Un felice connubio fra tradizione, tecnologia e

Dettagli

Ricerca sequenziale di un elemento in un vettore

Ricerca sequenziale di un elemento in un vettore Ricerca sequenziale di un elemento in un vettore La ricerca sequenziale o lineare è utilizzata per ricercare i dati in un vettore NON ordinato. L algoritmo di ricerca sequenziale utilizza quan non ha alcuna

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE

LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE LE INCERTEZZE E LA LORO PROPAGAZIONE NELLE MISURE INDIRETTE Pof. Agelo Ageletti -.s. 006/007 1) COME SI SCRIVE IL RISULTATO DI UNA MISURA Il modo miglioe pe espimee il isultto di u misu è quello di de,

Dettagli

Statistiche su produzione e consumo di energia primaria e di energia elettrica

Statistiche su produzione e consumo di energia primaria e di energia elettrica Materiale didattico di supporto al corso di Complementi di macchine Statistiche su produzione e consumo di energia primaria e di energia elettrica Michele Manno Dipartimento di Ingegneria Industriale Università

Dettagli

UN BUON VIAGGIO INIZIA PRIMA DI PARTIRE 3 SERVIZI ALITALIA. SEMPRE DI PIÙ, PER TE.

UN BUON VIAGGIO INIZIA PRIMA DI PARTIRE 3 SERVIZI ALITALIA. SEMPRE DI PIÙ, PER TE. UN BUON VIAGGIO INIZIA PRIMA DI PARTIR 3 RVIZI ALITALIA. MPR DI PIÙ, PR T. FAT TRACK. DDICATO A CHI NON AMA PRDR TMPO. La pazienza è una grande virtù. Ma è anche vero che ogni minuto è prezioso. Per questo

Dettagli

GUIDA INCENTIVI all ASSUNZIONE e alla CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI

GUIDA INCENTIVI all ASSUNZIONE e alla CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI GUIDA ll ASSUNZIONE e ll CREAZIONE d IMPRESA AGEVOLAZIONI SU DISPOSIZIONI NAZIONALI, REGIONALI E PROVINCIALI Aggiornt l 31 gennio 2015 PROGRAMMA POT Pinificzione Territorile Opertiv PROGRAMMA POT Pinificzione

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

SVALUTAZIONI E PERDITE SU CREDITI. Dott. Gianluca Odetto

SVALUTAZIONI E PERDITE SU CREDITI. Dott. Gianluca Odetto Dott. Gianluca Odetto ART. 33 DL 83/2012 Novità Inserimento del piano di ristrutturazione del debito tra le procedure concorsuali. Inserimento tra le ipotesi di non sopravvenienza attiva della riduzione

Dettagli