Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli"

Transcript

1 Sommrio Componenti per l ritmetic inri M. Fvlli Engineering Deprtment in Ferrr Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Sommrio (ENDIF) Reti logiche / 27 Introduzione Motivzioni (ENDIF) Reti logiche 2 / 27 Introduzione Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA I itemi di clcolo neceitno di componenti che relizzino operzioni di tipo ritmetico (omme, prodotti...) u numeri interi e in floting point Dl punto di vit teorico, le conocenze che imo ci conentono di relizzre qulii funzione e quindi nche quelle volte d moltiplictori e ommtori Nel co di interee, queto pproccio non d peró riultti oddifcenti Ad eempio l intei ottim di reti due livelli d luogo funzioni ecceivmente cotoe e non modulri (ENDIF) Reti logiche 3 / 27 (ENDIF) Reti logiche 4 / 27

2 Sommrio Eempio di funzione ritmetic: 3-it dder Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Si vuole relizzre un ommtore 2 operndi per numeri interi poitivi rppreentti u 3 it. Sino A = { 2,, } e B = { 2,, } tli prole Il riultto é rppreentile u 4 it: S = { 3, 2,, } Si uppong di intetizzre le funzioni i come epreioni SP ucit ingol 3-it dder (ENDIF) Reti logiche 5 / 27 3-it dder (ENDIF) Reti logiche 6 / 27 Le funzioni hnno un coto che prtire dl it di minor peo ( ) ument molto rpidmente 22= 22= 32 22= 22= = + = (ENDIF) Reti logiche 7 / 27 (ENDIF) Reti logiche 8 / 27

3 3-it dder Prolemi nell relizzzione di ommtori inri Le funzioni hnno un coto che prtire dl it di minor peo ( ) ument molto rpidmente 22= 22= 3= Con l umentre dell dimenione delle prole (n), il coto di ommtori inri relizzti come reti 2 livelli ument molto rpidmente L utilizzo dei metodi di intei multilivello d luogo migliormenti reltivi Le oluzioni che i ottengono non riultno modulri Come lterntiv i vedrá un metodo che é to ull relizzzione hrdwre dell lgoritmo di omm per colonne 22= 22= 32 (ENDIF) Reti logiche 9 / 27 Ripple-crry dder (ENDIF) Reti logiche / 27 Ripple-crry dder Algoritmo di omm per colonne di due prole di n it to ull propgzione del riporto (crry) c4 c 3 c 2 c = ( + ) mod2, c = ( + )/2 i = ( i + i + c i ) mod2, c i+ = ( i + i + c i )/2 co = c n = co 3 2 ove + é l omm ritmetic e / é l diviione inter L decrizione funzionle i trduce in queto chem: 3 3 c c 2 FA FA FA c co 3 2 Dove i locchi che geticono i i di indice i > ono detti full-dder (FA) e quello che getice il co i = é detto hlf-dder () (ENDIF) Reti logiche / 27 (ENDIF) Reti logiche 2 / 27

4 Hlf-dder Full-dder É un componente mpimente utilizzto nell ritmetic inri. Ingrei = e =, ucite = e = c = = + Il ommtore completo é nch eo un componente fondmentle per l ritmetic inri. Ingrei =, =, e c in = c i, ucite = e = c c in = + c in + c in = c in + c in + c in + c in (ENDIF) Reti logiche 3 / 27 Relizzzione di un (ENDIF) Reti logiche 4 / 27 Relizzzione di un FA = = + = = + c in + c in = + c in ( + ) + c in ( + ) = + c in + c in + c in + c in = + c in + c in + c in ( + ) = + c in ( ) Il gte EXOR che relizz l omm modulo 2 é un componente che puó eere relizzto in tecnologi CMOS l livello witch (in mnier píu comple di NAND e NOR) = c in + c in + c in + c in = c in ( + ) + c in( + ) = c in ( + ) + c in( + ) = c in ( + ) = c in ( ) (ENDIF) Reti logiche 5 / 27 (ENDIF) Reti logiche 6 / 27

5 Relizzzione di un FA Struttur di un n-it dder (n=4) cin L relizzzione delle equzioni vite in precedenz conente di riconocere l preenz di due c c in Struttur l livello gte di un n-it dder. Si noti che l hlf-dder che omm e é tto otituito d un full-dder in modo d poter utilizzre un crry-in di ingreo. 2 2 c2 2 c cout (ENDIF) Reti logiche 7 / 27 Vntggi e vntggi Sommrio (ENDIF) Reti logiche 8 / 27 Appliczioni di n-it dder cin c Introduzione Vntggi: modulritá e ridotto coto c2 2 Svntggi: ritrdo Appliczioni di n-it dder c3 4 Sommtore CLA cout (ENDIF) Reti logiche 9 / 27 (ENDIF) Reti logiche 2 / 27

6 Appliczioni di n-it dder n-it dder: ppliczioni Sommrio Sommtore CLA Introduzione Sommtore kn-it Sommtori piú operndi Vlutzione di emplici epreioni ritmetiche Conttore di uni 2 3 Appliczioni di n-it dder 4 Sommtore CLA (ENDIF) Reti logiche 2 / 27 Sommtore CLA Sommtore crry-look hed (ENDIF) Reti logiche 22 / 27 Sommtore CLA Sommtore crry-look hed Per uperre i prolemi dovuti lle pretzioni del ommtore ripple-crry ono tti propoti diveri ommtori Uno dei primi d eere tto propoto é il ommtore crry look hed (CLA) Il ommtore CLA utilizz un rete 3 livelli che i occup di clcolre i crry di un n-it dder enz iogno di propgre il riporto In ucit ll i-mo FA i h riporto (c i+ = ) e i e i hnno vlori tli d produrre un riporto in ucit indipendentemente d c i o e il loro vlore é tle d grntire l propgzione di c i = Generzione del riporto per il it di peo i (crry generte): g i = i i Propgzione del riporto per il it di peo i (crry propgte): p i = i i c i+ = g i + p i c i L ppliczione iterttiv di quet formul port ll logic di generzione dei riporti di un CLA I it dell omm ono clcolti come: i = i i c i (ENDIF) Reti logiche 23 / 27 (ENDIF) Reti logiche 24 / 27

7 Sommtore CLA Sommtore crry look hed (n=4) Sommtore CLA Sommtore crry look hed (n=4) c = g + p c in c 2 = g + p c c 3 = g 2 + p 2 c 2 = g 3 + p 3 c 3 Sotituendo iterttivmente c = g + p c in c 2 = g + p (g + p c in ) c 3 = g 2 + p 2 (g + p (g + p c in )) = g 3 + p 3 (g 2 + p 2 (g + p (g + p c in ))) Applicndo l proprietá ditriutiv c = g + p c in c 2 = g + p g + p p c in c 3 = g 2 + p 2 g + p 2 p g + p 2 p p c in = g 3 + p 3 g 2 + p 3 p 2 g + p 3 p 2 p g + p 3 p 2 p p c in Come i oerv cicun it di crry viene epreo come un epreione SP due livelli in funzione di dei it di crry generte e propgte e del crry-in eterno (ENDIF) Reti logiche 25 / 27 Sommtore CLA Struttur di un ommtore CLA per n=4 (ENDIF) Reti logiche 26 / 27 cin p p g p rete SP c c 2 p 2 2 g p 2 c 3 p g 2 cout p 3 3 p 3 3 g 3 (ENDIF) Reti logiche 27 / 27

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Corso di Microonde II

Corso di Microonde II POITECNICO DI MIANO Coro di Microonde II ezi n. 3: Generalità ugli amplificatori ineari Coro di aurea pecialitica in Ingegneria delle Telecomunicazi Circuiti attivi a microonde (Amplificatori) V in Z g

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

G. Petrucci Lezioni di Costruzione di Macchine

G. Petrucci Lezioni di Costruzione di Macchine G. Petrucci Lezioni di Cotruzione di cchine 0. ASSI E ALBERI L lbero è un eleento rotnte, uulente di ezione circolre, uto per trettere potenz e/o oto di rotzione e/o coppi; eo ornice l e di rotzione o

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Il motore a corrente continua

Il motore a corrente continua l otore corrente continu ntroduzione l otore corrente continu è tto lrgente uto negli zionenti elettrici indutrili. L erzione di tli zionenti è dovut principlente ll eplicità del controllo. ntti i tbilice

Dettagli

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale

Controllore Processo. Le principali componenti del sistema sono: il rivelatore di errore, il controllore che ha il compito di trasformare il segnale CONTROLLORI DI TIO ID rincipi di funzionamento Il termine controllo definice l azione volta per portare e mantenere ad un valore prefiato un parametro fiico di un impianto o di un proceo (ad eempio, la

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

MACCHINE ELETTRICHE. Macchine Asincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Asincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHNE ELETTCHE Mcchine Aincrone Stefno Ptore Diprtimento di ngegneri e Architettur Coro di Elettrotecnic (N 043).. 0-3 ntroduzione Sono dette Mcchine d nduzione (trife) otore gbbi o rotore vvolto Sttore

Dettagli

Complementi di Chimica

Complementi di Chimica omplementi di himic Prof. Giovnni B. Giovenzn Diprtimento di Scienze del Frmco Univerità del Piemonte Orientle A. Avogdro Tel.: 031-375846 giovenzn@phrm.unipmn.it himic Anlitic Brnc dell chimic che tudi

Dettagli

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche:

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche: Si riporta di eguito la rioluzione di alni eercizi riguardanti il calcolo del momento reitente e del dominio di preoleione di ezioni in cemento armato. In tutte le applicazioni ucceive i è utilizzato per

Dettagli

Rendite (2) (con rendite perpetue)

Rendite (2) (con rendite perpetue) Rendite (2) (con rendite perpetue) Esercizio n. Un ziend industrile viene vlutt ttulizzndo i redditi futuri dell gestione l tsso del 9% con inflzione null. I redditi prospettici vengono stimnti nell misur

Dettagli

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA Sch ed di pro gettzion e d elle Un ità d i App rend imento nu mero 1 UDA N 1 Scienze e Tecnologie Applicte: Indirizzo INFORMATICA UdA N 1 Disciplin Riferimento Titolo The incredibile mchine! informtic

Dettagli

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s)

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s) Preciione a regime: errore tatico ERRORE STATICO Alimentazione di potenza E() YRET() G() Y() H() Per errore tatico i intende lo cotamento, a regime, della variabile controllata Y() dal valore deiderato.

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

ALCUNE CONSIDERAZIONI SULL'IMPORTANZA RELATIVA TRA EFFETTI CINEMATICI E INERZIALI PER FONDAZIONI PROFONDE

ALCUNE CONSIDERAZIONI SULL'IMPORTANZA RELATIVA TRA EFFETTI CINEMATICI E INERZIALI PER FONDAZIONI PROFONDE ALCUNE CONSIDERAZIONI SULL'IPORTANZA RELATIVA TRA EFFETTI CINEATICI E INERZIALI PER FONDAZIONI PROFONDE Rffele Di Lor Diprtimento di Ingegneri Civile, Second Univerità di Npoli rffele.dilor@un.it Alendro

Dettagli

Regime di interesse semplice

Regime di interesse semplice Formule d usre : I = interesse ; C = cpitle; S = sconto ; K = somm d scontre V = vlore ttule ; i = tsso di interesse unitrio it i() t = it () 1 ; s () t = ( 2) 1 + it I() t = Cit ( 3 ) ; M = C( 1 + it)

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura:

d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura: Eercizio Si conideri lo chema di controllo riportato in figura: y de e C() d u u F() d y y Applicando le regole di algebra dei blocchi, calcolare le eguenti funzioni di traferimento: y() a) W y,dy() =

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012

Passo dopo passo verso l infinito La mosca oscillante Paderno Del Grappa, 29 Agosto 2012 Po dopo po ero l iiito L moc ocillte Pdero Del Grpp, 9 Agoto 0 Boetur Polillo Liceo Scietiico Frceco Seeri, Slero Uo gurdo d iieme Mtemtic Ricreti Didttic Ricerc Liee guid Il Queito come ote Alii e trtegi

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Univerità degli Studi di Perugi Sezione di Fiic ecnic Fiic ecnic Ambientle Lezione del mrzo 5 Ing. Frnceco D Alendro dlendro.unipg@cirif.it Coro di Lure in Ingegneri Edile e Architettur A.A. /5 Argomenti

Dettagli

Paolo Rocco. Automatica

Paolo Rocco. Automatica Paolo Rocco Dipene ad uo degli tudenti del Politecnico di Milano per i cori da cinque crediti didattici Automatica Ingegneria Aeropaziale E vietato l uo commerciale di queto materiale Avvertenza Queta

Dettagli

Filtri analogici. 1915 Primi filtri elettrici per ripetitori. dei segnali. Un filtro è un calcolatore analogico

Filtri analogici. 1915 Primi filtri elettrici per ripetitori. dei segnali. Un filtro è un calcolatore analogico Filtri analogici 95 Primi filtri elettrici per ripetitori Tutte le applicazioni di trattamento e tramiione dei egnali Un filtro è un calcolatore analogico componenti poco precii, oggetti a variazioni di

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione Retroazione Eetto della retroazione ul guadagno Riduzione della ditorione Impedenze di ingreo e di ucita Reti di retroazione Ripota in requenza Eetto della retroazione ui poli Margini di guadagno e di

Dettagli

Temi speciali di bilancio

Temi speciali di bilancio Università degli Studi di Prm Temi specili di bilncio Le imposte (3) Il consolidto fiscle nzionle RIFERIMENTI Normtiv Artt. 117 129 del TUIR Art. 96 del TUIR Prssi contbile Documento OIC n. 25 Documento

Dettagli

Elettronica dei Sistemi Digitali Progetto di sottosistemi in tecnologia CMOS

Elettronica dei Sistemi Digitali Progetto di sottosistemi in tecnologia CMOS Elettroni dei Sistemi Digitli Progetto di sottosistemi in tenologi CMOS Vlentino Lierli Diprtimento di Tenologie dell Informzione Università di Milno, 2613 Crem e-mil: lierli@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

1 Generalità sui sistemi di controllo

1 Generalità sui sistemi di controllo 1 Generalità ui itemi di controllo Col termine proceo nell impiantitica chimica i intende un inieme di operazioni eeguite u una certa quantità di materia allo copo di modificarne in tutto o in parte alcune

Dettagli

22 - Il principio dei lavori virtuali

22 - Il principio dei lavori virtuali - Il principio dei lavori virtuali ü [.a. 0-0 : ultima reviione 5 aprile 0] Eempio n. Si conideri il portale di Figura, emplicemente ipertatico. Si vuole applicare il principio dei lavori virtuali per

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

2) L acido ipocloroso (HClO) è un acido debole e quindi all equilibrio sarà parzialmente dissociato:

2) L acido ipocloroso (HClO) è un acido debole e quindi all equilibrio sarà parzialmente dissociato: Ordinre econdo il vlore di ph crecente le eguenti oluzioni venti tutte concentrzione - : 1. Nl. HlO (.0-8 ). NOH. Hl 5. NlO 6. NH ( 1.8-5 ) 7. NH l 1) L prim oluzione contiene cloruro di odio che è un

Dettagli

TABELLA DEGLI ONERI DI URBANIZZAZIONE ANNO 2012

TABELLA DEGLI ONERI DI URBANIZZAZIONE ANNO 2012 TABELLA DEGLI ANNO 0 criteri di ppliczione. Ai fini del clcolo degli oneri di urbnizzzione primri e secondri, i volumi sono clcolti secondo le norme degli strumenti urbnistici vigenti (rt. 7 c. 0 L.R./05).

Dettagli

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate Lezione n. 7 Le strutture in cciio Le unioni bullonte Le unioni sldte Unioni Le unioni nelle strutture in cciio devono grntire un buon funzionmento dell struttur e l derenz dell stess llo schem sttico

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

La manutenzione. Definizioni. Evoluzione storica. Manutenzione: Manutenibilità: Dott.ssa Brunella Caroleo

La manutenzione. Definizioni. Evoluzione storica. Manutenzione: Manutenibilità: Dott.ssa Brunella Caroleo La Dott.a Brunella Caroleo Definizioni Manutenzione: È il controllo cotante degli impianti e l inieme dei lavori di riparazione e otituzione neceari ad aicurare il funzionamento regolare e a mantenere

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA

P O M P E. Per un impianto generico, il cui schema è rappresentato in figura, si adotta la seguente terminologia: H g è la PREVALENZA GEODETICA O M E Sono cchine IDRULIE OERTRII. Loro coito è quello di trferire l eneri eccnic di cui dionono in eneri idrulic. Quete cchine cedono l fluido incoriiile che le ttrer eneri di reione e/o eneri cinetic.

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

L interpolazione areale: una soluzione al problema del confronto fra dati riferiti a sistemi spaziali differenti

L interpolazione areale: una soluzione al problema del confronto fra dati riferiti a sistemi spaziali differenti L interpolazione areale: una oluzione al problema del confronto fra dati riferiti a itemi paziali differenti Maria Michela Dickon, Giueppe Epa, Diego Giuliani e Emanuele Taufer 1. Introduzione Accade di

Dettagli

PIANI DI AMMORTAMENTO

PIANI DI AMMORTAMENTO ESERCITAZIONE MATEMATICA FINANZIARIA 09//203 PIANI DI AMMORTAMENTO Pino di mmortmento Itlino Esercizio 2 ESERCIZIO Si clcoli il pino di mmortmento quot cpitle costnte e rt semestrle reltivo d un prestito

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI a cura di Daniela Corbetta

ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI a cura di Daniela Corbetta ESERCIZI RELATIVI AL CAP. 8 GLI INVESTIMENTI E I DISINVESTIMENTI IN TITOLI E PARTECIPAZIONI cur di Dniel Corbett P.S.: l fine di trttre in modo esustivo l rgomento, si precis che nei seguenti esercizi

Dettagli

Esiste un luogo in Italia dove le

Esiste un luogo in Italia dove le Eite un luogo in Itli dove le prticolrità dell mbiente hnno permeo ll uomo di inediri e di orgnizzre un ocietà in evoluzione fin dll lb dei tempi. Queto luogo è Mter e l prticolrità è rppreentt dll rocci

Dettagli

2. LA DIFFUSIONE - CONCETTI BASE

2. LA DIFFUSIONE - CONCETTI BASE LA DIFFUSIONE . LA DIFFUSIONE - CONCETTI BASE Molte reazioni e molti procei di rilevante importanza nel trattamento dei materiali i baano ul traporto di maa. Queto traporto può avvenire o all interno di

Dettagli

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale 6) tati di cedimento 6.1) Introduzione all analii delle cotruzioni in muratura nel loro tato attuale Nel conteto del modello di materiale rigido non reitente a trazione, la valutazione delle capacità portanti

Dettagli

2 I METODI DI ANALISI DEI SISTEMI DI CONTROLLO AD ANELLO CHIUSO LINEARI 12

2 I METODI DI ANALISI DEI SISTEMI DI CONTROLLO AD ANELLO CHIUSO LINEARI 12 COSO DI SISTEMI Sommario 1 I SISTEMI DI CONTOLLO...4 1.1 Introduzione...4 1.1.1 Sitemi di controllo ad anello aperto...5 1.1.2 Sitemi di controllo a previione...7 1.1.3 Sitemi di controllo ad anello chiuo

Dettagli

Commutare, comandare e comunicare è facile con ea y

Commutare, comandare e comunicare è facile con ea y Building Automation Indutrial Automation Sytem Informazioni di prodotto Commutare, comandare e comunicare è facile con ea y Relè di comando eay400, 600, 800 Bildgröe 210 x 118,5 mm 222 Logo 17 x 17 mm

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il

Dettagli

STAMPE DI QUALITÀ PROFESSIONALE IN UFFICIO PER IL TUO BUSINESS

STAMPE DI QUALITÀ PROFESSIONALE IN UFFICIO PER IL TUO BUSINESS STAMPE DI QUALITÀ PROFESSIONALE IN UFFICIO PER IL TUO BUSINESS www.brother.it VI PRESENTIAMO LA NUOVA GAMMA LASER MONOCROMATICA COMPATTA STAMPE DI QUALITÀ PROFESSIONALE IN UFFICIO Brother a che le attività

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni

Dettagli

APPLICAZIONI DELLA TRASFORMATA DI LAPLACE

APPLICAZIONI DELLA TRASFORMATA DI LAPLACE C A P I T O L O 7 APPLICAZIONI DELLA TRASFORMATA DI LAPLACE 7. INTRODUZIONE Ora che è tata introdotta la traformata di Laplace, è poibile paare a eaminare che coa i può fare con ea. La traformata di Laplace

Dettagli

Introduzione... 2 Relazione tra guadagno e larghezza di banda... 2 Limiti all entità della reazione imposti dalla stabilità...

Introduzione... 2 Relazione tra guadagno e larghezza di banda... 2 Limiti all entità della reazione imposti dalla stabilità... unti di Elettronic Citolo 7 Stbilità degli mliictori rezionti Introduzione... Relzione tr gudgno e lrghezz di bnd... Limiti ll entità dell rezione imoti dll tbilità... 6 STUDIO DELL STBILITÀ TRMITE IL

Dettagli

Descrizione generale di Spice

Descrizione generale di Spice Decrizione generale di Spice SPIE A/D (Simulation Program with Integrated ircuit Emphai Analog/Digital) Ppice è un imulatore circuitale di uo generale, prodotto dalla ADENE Il imulatore Spice è uno dei

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale

Biblioteca Tecnica Knauf 05/2006. L acustica con Knauf. Soluzioni tecniche per l edilizia civile e industriale Biliotec Tecnic Knuf 05/2006 L cutic con Knuf Indice 1. Introduzione...4 2. Suoni e rumori...5 Glorio...5 Rumori erei...5 Rumori impttivi...6 Tempo di rivererzione (T60)...6 Fonoiolmento e fonoorimento...7

Dettagli

ESAME VISIVO E SPESSIMETRIA

ESAME VISIVO E SPESSIMETRIA PROCEDURA SPERIENTALE DI VERIFICA DELLE ATTREZZATURE A PRESSIONE Diegno di linee guida e trumenti operativi Edizione 2012 Pubblicazione realizzata da INAIL Settore Ricerca, Certificazione e Verifica Dipartimento

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

Lamiere grecate semplici in acciaio e alluminio

Lamiere grecate semplici in acciaio e alluminio Capitolo 1 Lamiere grecate emplici in acciaio e alluminio Sommario: 1.1 Generalità 1.1.1 Norme di riferimento 1.1. Tipologie, materiali e campi di applicazione 1.1.3 Definizione della ezione efficace 1.

Dettagli

STUDIO SULLA FLUIDITÀ DELLE LEGHE DI ALLUMINIO

STUDIO SULLA FLUIDITÀ DELLE LEGHE DI ALLUMINIO Memorie >> Alluminio e leghe STUDIO SULLA FLUIDITÀ DELLE LEGHE DI ALLUMINIO M. Di Stino L motivzione di queto tudio nce dll eigenz di cpire meglio i vri fttori che influenzno l fluidità delle leghe di

Dettagli

Fig. 9.72 - Prisma di Saint Venant soggetto a torsione

Fig. 9.72 - Prisma di Saint Venant soggetto a torsione 9.6 orione del prima di Saint Venant La trattazione del problema di de Saint Venant volta inora ha ecluo la preenza della torione, coa per la quale era neceario che la retta di azione del taglio paae per

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (disposizioni di trsprenz i sensi dell rt. 2 comm 5 D.L. 29.11.2008 n. 185) Per tutte le condizioni

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Il CONCIME da pollice verde? Non sempre è il più CARO

Il CONCIME da pollice verde? Non sempre è il più CARO Il Salvagente 1- maggio 201 Conumi Tet 21 Il CONCIME da pollice verde? n empre è il più CARO Marta Strinati è tato lungo e faticoo anche per le piante. Freddo, pioggia e mancanza di cu- L inverno re hanno

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (sposizioni trsprenz i sensi dell rt. 2 comm 5 D.L. 29.11.2008 n. 185) Per tutte le conzioni

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

TABELLA DEGLI ONERI DI URBANIZZAZIONE ANNO 2014

TABELLA DEGLI ONERI DI URBANIZZAZIONE ANNO 2014 TABELLA DEGLI ANNO 04 criteri di ppliczione (estrtto rt. 5ter, lett. "" del Regolmento Edilizio vigente) Ai fini del clcolo degli oneri di urbnizzzione primri e secondri, i volumi sono clcolti secondo

Dettagli

Misure Elettroniche seconda parte

Misure Elettroniche seconda parte Miure Elettroniche econda parte G. Martini Dipartimento di Elettronica Web: http://ele.unipv.it/~ele/me E-mail: ele@ele.unipv.it (peciicare me nel Subject) Ocillatori, Filtri, PLL ierimenti bibliograici

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca Brriere ll entrt e modello del Prezzo imite onomi industrile Università Bio Christin Grvgli - Giugno 006 Brriere ll entrt definizioni Condizioni he permettono lle imprese opernti in un industri di elevre

Dettagli

Project Management Base

Project Management Base Mater in Management e Getione dell'innovazione http://www.rieforum.org/mater/index.php?option=com_content&view=article&id=48&itemid=53&lang=it Management Bae Modulo 1/3 Seconda Parte Sabato 16 Febbraio

Dettagli

Il Database Topografico Regionale

Il Database Topografico Regionale Il Dtbse Topogrfico Regionle Stefno Olivucci Stefno Bonretti Servizio Sttistic ed Informzione Geogrfic Il Dtbse Topogrfico Regionle Rppresent il nucleo portnte dell infrstruttur regionle reltiv i dti territorili

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

LCA e prevenzione dei rifiuti: caso di studio sull acqua da bere

LCA e prevenzione dei rifiuti: caso di studio sull acqua da bere Anlisi del ciclo di vit del sistem di gestione rifiuti in Lombrdi Milno 8 Mggio 212 LCA e prevenzione dei rifiuti: cso di studio sull cqu d bere S. Nessi Politecnico di Milno DIIAR Sezione mbientle Obiettivo

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione.

Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione. Diaz - Appunti di tatitica - AA 1/ - edizione 9/11/1 Cap. 4 - Pag. 1 Capitolo 4. Regreione e Correlazione. Regreione Il termine regreione ha un'origine antica ed un ignificato molto particolare. L inventore

Dettagli

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners.

STUDIO COMMERCIALE TRIBUTARIO TOMASSETTI & PARTNERS Corso Trieste 88 00198 Roma Tel. 06/8848666 (RA) Fax 068844588 info@mt-partners. CIRCOLARE INFORMATIVA NR. 14 del 30/11/2012 ARGOMENTO: IMPOSTA SOSTITUIVA TFR 2013 Scde il prossimo 16 dicembre il termine per pgre l impost sostitutiv sul TFR. Tle impost rppresent l nticipo di tsse dovute

Dettagli

Messa a punto avanzata più semplice utilizzando Funzione Load Observer

Messa a punto avanzata più semplice utilizzando Funzione Load Observer Mea a punto avanzata più emplice utilizzando Funzione Load Oberver EMEA Speed & Poition CE Team AUL 34 Copyright 0 Rockwell Automation, Inc. All right reerved. Co è l inerzia? Tutti comprendiamo il concetto

Dettagli

NIROFLEX NFX 7.101. Descrizione del sistema. La famiglia del NIROFLEX. Applicazioni. La tubazione. Construzione. Tecnologia delle connessioni

NIROFLEX NFX 7.101. Descrizione del sistema. La famiglia del NIROFLEX. Applicazioni. La tubazione. Construzione. Tecnologia delle connessioni Decrizione del itema 7.101 La famiglia del NIROFLEX Il NIROFLEX è un itama di tubazioni corrugate con profilo a pirale, aventi parete ingola e realizzate in acciaio inox. I punti chiavi della cotruzione

Dettagli

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni

INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni Memorie >> Titnio e ue leghe INDURIMENTO SUPERFICIALE DI LEGHE DI TITANIO MEDIANTE TRATTAMENTI TERMICI DI DIFFUSIONE DI Ni I. Rmpin, K. Brunelli, M. Dlà In queto lvoro ono tti ottenuti rivetimenti di Ni

Dettagli

SPECIALISTI DELL AUTOMOTIVE

SPECIALISTI DELL AUTOMOTIVE 80_84_147do5 d Pagina 80 o di MILA MOLINARI i e SPECIALISTI DELL AUTOMOTIVE Eperti nella lavorazione di prototipi e particolari detinati al ettore automobilitico, CMG Cofeva da oltre 30 anni opera nel

Dettagli