Variabili logiche e circuiti combinatori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Variabili logiche e circuiti combinatori"

Transcript

1 Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato logico l. Una variabile logica è pertanto un segnale binario in quanto nella variazione dello stato logico è insita l'informazione. La posizione di un interruttore, che può essere aperto (off) o chiuso (on), con la conseguente assenza o presenza di corrente, rappresenta una variabile logica; una tensione di tipo binario, che può assumere solo due valori, quello alto (H = high) o quello basso (L = low), è un altro esempio di variabile logica. Se si hanno due variabili logiche A e B, queste sono combinabili in quattro modi diversi ( ). In generale, detto n il numero delle variabili, le combinazioni sono 2 n. Circuiti combinatori Si tratta di circuiti che presentano, in generale, più ingressi e più uscite, a ognuna delle quali corrisponde una variabile logica binaria. A ogni combinazione delle variabili logiche in ingresso, presente in un dato istante, corrisponde, nello stesso istante, una ben determinata combinazione delle variabili logiche in uscita. In altri termini, noto lo stato logico degli ingressi è noto anche quello delle uscite nello stesso istante. La funzione logica di un circuito combinatorio, ovvero il legame ingressi-uscite dello stesso, è esprimibile attraverso una tabella della verità, che riporta per ogni combinazione degli ingressi la corrispondente combinazione delle uscite. La funzione logica di un circuito può essere descritta in forma sintetica, oltre che tramite una tabella della verità, attraverso una o più espressioni logiche che sfruttano le regole dell algebra di Boole. A B C Circuito Combinatorio a) Generico circuito combinatorio Y A B C Y b) Esempio di tabella della verità nel caso di tre ingressi ed una uscita Algebra di Boole L'algebra booleana fu ideata da George Boole ( ) per la soluzione di problemi logici, come la verità o la falsità di affermazioni conseguenti ad altre secondo determinate regole. Le variabili booleane a cui corrispondono le affermazioni vere/false sono variabili binarie e possono facilmente adattarsi al livello alto o basso di una tensione o a un interruttore aperto o chiuso. Pertanto l'algebra booleana, con la sostituzione dell'affermazione vera/falsa con i valori 1/0, ben si adatta all'elettronica digitale binaria. L'algebra di Boole si basa sui seguenti assiomi: 1

2 1 1 = = = = 0 1 = = = = = 1 0 = 1 L'operatore ( ) è detto operatore di prodotto logico (AND). L'operatore (+) è detto operatore di somma logica (OR). L operatore ( ) è detto operatore di complementazione logica (NOT). Questi assiomi vanno accettati nella logica booleana e quindi non si devono interpretare secondo le regole matematiche abituali (sarebbe in questo caso assurdo porre = 1). Un'interpretazione circuitale a questi assiomi può essere data per mezzo della seguente figura: Sfruttando le regole di quest'algebra è possibile esprimere, in forma sintetica, la funzione logica di un qualunque circuito, attraverso una sua espressione logica. Ad esempio l'espressione Y = A B + C soddisfa la tabella della verità precedente (per verificarlo basta applicare a ogni possibile combinazione degli ingressi gli assiomi booleani). Dualità Se una espressione logica è vera, ovvero soddisfa gli assiomi di Boole, anche la sua duale è vera. Infatti, la prima colonna degli assiomi booleani è sostituibile alla seconda se si scambia l'operatore AND con l'operatore OR, ogni 1 con uno 0 e ogni 0 con un 1 e, viceversa, è possibile passare dalla seconda colonna alla prima. Questa proprietà è detta della dualità ed è valida per ogni espressione logica vera. Proprietà e teoremi dell'algebra di Boole Proprietà: A+B = B+A A B = B A (A+B)+C = A+(B+C) (A B) C = A (B C) (A B) + (A C) = A (B + C) (A + B) (A + C) = A + (B C) proprietà commutativa proprietà associativa proprietà distributiva 2

3 Teoremi: A + A+1=1 A 0 = 0 A+0=A A l = A A + A = 1 A = 0 A +A = A A A = A A+(A B) = A A (A + B) = A ( B) = A + ( A + = B B teorema di annullamento teorema di identità teorema dei complementi teorema di idempotenza primo teorema dell'assorbimento secondo teorema dell'assorbimento A + B = B B = A + B teorema di De Morgan Grazie alla dualità tutte le proprietà e tutti i teoremi sono esprimibili per mezzo di due relazioni. Teorema di Shannon Una estensione del teorema di De Morgan è il teorema di Shannon che afferma che il complemento di una espressione logica è ottenibile complementando le singole variabili e scambiando tra loro le operazioni di somma e prodotto. Questi teoremi sono tutti facilmente dimostrabili semplicemente verificandone la validità per ognuna delle possibili combinazioni delle variabili logiche (per la dualità basta ovviamente verificare per ogni teorema una sola espressione). Esempio: De Morgan. A B A+B A + B A B B Tali teoremi possono anche essere dimostrati per deduzione ossia provando l'identità dell'espressione mediante l'applicazione successiva di altri teoremi o proprietà. Esempio: nel caso del primo teorema dell'assorbimento, raccogliendo la A si ottiene A + (A B) = A (1 + B), ma poiché (1 + B) vale 1 per il teorema dell'annullamento e A 1 vale A per il teorema d'identità. 3

4 Funzioni logiche primarie I circuiti capaci di svolgere le operazioni logiche assiomatiche AND OR - NOT realizzano delle funzioni logiche primarie in quanto, combinando opportunamente più circuiti di questo tipo, è possibile realizzare una funzione logica comunque complessa. Funzione logica AND La funzione logica AND: simbolo classico (a), simbolo secondo le norme ANSI/IEEE (b) e tabella della verità (c). Osservando la tabella, si può notare che l'uscita è a l solo se tutte le entrate sono a 1. Funzione logica OR La funzione logica OR: simbolo classico (a), simbolo secondo le norme ANSI/IEEE (b) e tabella della verità (c). Dalla tabella della verità si nota che in questo caso si ha 1 in uscita ogni volta che si ha l in uno degli ingressi. Funzione logica NOT La funzione logica NOT realizza l'assioma della complementazione e quindi se l'ingresso è 1, l'uscita è 0 e viceversa. Funzione logica NOT: simbolo classico (a), simbolo ANSI/IEEE (b) e tabella della verità. 4

5 Il problema della minimizzazione Una certa funzione logica può essere ottenuta con diverse soluzioni circuitali, a ognuna delle quali corrisponde una diversa espressione logica; in linea generale, la soluzione circuitale migliore è quella a cui corrisponde l'espressione logica minima, ovvero è realizzabile con il numero minimo possibile di funzioni logiche primarie. Per minimizzare una espressione logica si possono applicare le proprietà dell'algebra di Boole, anche se si tratta di una tecnica "per tentativi" non sempre agevole da utilizzare. Esempio di minimizzazione: ( B + ) + AB = AC AB Y = ABC + AB + AC = AC 1 + Dove si è applicata rispettivamente la proprietà distributiva, il teorema dell annullamento e quello di identità. Dove si è applicata rispettivamente la proprietà distributiva, il teorema dei complementi e quello d identità. Altre funzioni logiche ( + B) + A( B + B) = A + = 1 Y = AB + AB + AB + AB = A B A La funzione NAND Un NAND è facilmente ricavabile facendo seguire a un AND un NOT, le uscite sono i complementi di quelle di un AND. Funzione logica NAND: simboli, equivalenza logica e tabella della verità. La funzione NOR Tale funzione si ottiene facendo seguire un NOT a un OR. In questo caso le uscite sono i complementi delle corrispondenti di un OR. Funzione logica NOR: simboli, equivalenza logica, tabella della verità. 5

6 La funzione OR esclusivo (EX-OR) L'OR esclusivo a due ingressi è un circuito capace di riconoscere se due ingressi sono diversi (uscita = 1) o sono uguali (uscita = 0). EX-OR: simbolo classico (a), ANSI/IEEE (b) e tabella della verità (c). Ad esclusione della quarta combinazione, la tabella della verità corrisponde a quella di un OR a due ingressi. Per un numero di ingressi qualsiasi n si può verificare che un'operazione di OR esclusivo fornisce l'uscita a l se è dispari il numero di l in ingresso, fornisce invece 0 in uscita se il numero di l è pari. Volendo è anche possibile definire la EX-NOR, ottenibile facendo seguire a un EX-OR un NOT; questa funzione è anche detta funzione coincidenza (Y = l se gli ingressi sono uguali). Gruppi universali EX-NOR: simbolo classico (a), ANSI/IEEE (b) e tabella della verità (c). I circuiti AND-OR-NOT costituiscono, nel loro insieme, un gruppo universale in quanto combinando opportunamente queste funzioni primarie è possibile ottenere qualunque funzione logica, comunque complessa. Anche i gruppi AND-NOT e OR-NOT sono universali, di conseguenza i NAND da soli già costituiscono un gruppo universale e così pure i NOR. Per dimostrare quest'ultima affermazione basta verificare che tutte e tre le funzioni primarie sono ottenibili con solo NAND o solo NOR. Forme canoniche Data una espressione logica è possibile minimizzarla e risalire al corrispondente circuito; procedendo in modo inverso è ovviamente possibile, noto il circuito, ricavare la sua corrispondente espressione logica. Vediamo, però, come nota la tabella della verità sia possibile risalire da questa a una espressione logica che la soddisfi, da cui ricavare il circuito. 6

7 Prima forma canonica Supponiamo di volere realizzare una rete combinatoria che soddisfi la seguente tabella della verità: A B C Y Consideriamo inizialmente le combinazioni degli ingressi a cui corrisponde un l in uscita e scriviamo per ognuna di queste un'espressione capace di dare l solo in corrispondenza della combinazione di ingresso scelta: combinazione 000: combinazione 100: Y Y = = B C B C combinazione 001: combinazione 110: Y Y = = B C B C Possiamo osservare che ogni espressione logica è stata ottenuta facendo il prodotto delle tre variabili prese complementate se valgono 0 e non complementate se valgono l. Questi singoli prodotti sono detti mintermini. Se ora si vuole ricavare l'espressione che soddisfa la tabella delle verità, basta sommare i mintermini; così facendo avremo l in uscita ogni volta che si verificherà una delle quattro combinazioni desiderate, negli altri casi l'uscita sarà 0: Questa espressione è detta prima forma canonica. Y = B C + B C + B C + B C Generalizzando si può affermare che una generica espressione logica, a n variabili di ingresso e una di uscita, è sempre esprimibile nella forma canonica somma di mintermini; questi ultimi sono tanti quante le combinazioni degli ingressi a cui corrisponde l in uscita e sono caratterizzati dal fatto di contenere tutte le variabili di ingresso tra loro moltiplicate, prese complementate se valgono 0 o non complementate se valgono l. La prima forma canonica non è però, in generale, una espressione minima, perciò si dovrà procedere ad una possibile semplificazione. Seconda forma canonica Riferendoci sempre alla precedente tabella della verità possiamo ora procedere nel modo seguente: individuato gli 0 in uscita si scrivono le espressioni capaci di dare 0 solo in corrispondenza della combinazione considerata; queste espressioni logiche vengono dette maxtermini e si ottengono sommando le tre variabili, prese complementate se valgono l e non complementate se valgono 0. L'espressione che si ottiene facendo il prodotto logico di tutti i maxtermini soddisfa la tabella della verità ed è detta seconda forma canonica ( A + B + C) ( A + B + C) ( A + B + C) ( A + B C) Y = + 7

8 Generalizzando si può dire che una generica espressione logica a n variabili di ingresso e una di uscita, è sempre esprimibile nella forma canonica prodotto di maxtermini; questi ultimi sono tanti quante le combinazioni degli ingressi a cui corrisponde 0 in uscita e sono caratterizzati dal fatto di contenere tutte le variabili in ingresso tra loro addizionate, prese complementate se valgono l o non complementate se valgono 0. Anche la seconda forma canonica non è in linea generale minima. In conclusione ogni circuito combinatorio a un'uscita è sempre esprimibile attraverso due diverse forme canoniche, eventualmente minimizzabili. Le mappe di Karnaugh Abbiamo visto come sia possibile effettuare la minimizzazione usando le regole dell'algebra di Boole, anche se tale operazione non sempre risulta agevole ed intuitiva. Un metodo sistematico che offre il vantaggio di essere particolarmente semplice e comodo e permette di arrivare partendo dalla tabella della verità o (e ciò fa lo stesso) da una espressione canonica a espressioni minime del tipo somma di prodotti o del tipo prodotti di somme è dato dalle mappe di Karnaugh che risulta particolarmente agevole per un numero di variabili non superiore a quattro. Karnaugh presuppone di conoscere la tabella della verità (o una forma canonica); tramite questa si costruisce una mappa che ne è, in forma diversa, un equivalente Ogni mappa contiene un numero di caselle pari alle 2 n combinazioni delle n variabili d ingresso. Le caselle con un lato in comune sono dette adiacenti; si devono considerare tali anche le caselle alle estremità opposte, come se la mappa si richiudesse su se stessa. Le caselle devono essere disposte in modo che passando da una qualsiasi di queste a una sua adiacente, lungo una riga o una colonna, cambi il valore di una sola variabile (è, in effetti, tale condizione che stabilisce l adiacenza o meno di due caselle assumendo così un significato non solo geometrico). Per rappresentare una funzione logica con una mappa, se si fa riferimento alla prima forma canonica, si scrive l nelle caselle che corrispondono alle combinazioni delle variabili di ingresso per le quali la funzione vale l, e nelle caselle lasciate vuote si sottintendono gli 0. In modo analogo si scrivono solo gli 0 se si fa riferimento alla seconda forma canonica. Per comprendere il metodo si supponga di dovere minimizzare la seguente funzione espressa nella prima forma canonica: Y = ABC + ABC + ABC Ricordando la definizione di mintermine si vede che le combinazioni degli ingressi a cui corrisponde 1 in uscita sono: Una volta individuate queste combinazioni è facile costruire la mappa: C\AB Consideriamo il raggruppamento indicato con il tratteggio di colore blu: a questi due 1 nella funzione canonica corrisponde la somma: ( C + C) AB Y = ABC + ABC = AB = Possiamo notare che nel raggruppamento considerato A e B non variano spostandosi da una casella all'altra, mentre C che varia corrisponde alla variabile semplificata. 8

9 Analogamente, al raggruppamento indicato con il tratteggio di colore rosso corrisponde la semplificazione: ( A + A) BC Y = ABC + ABC = BC = Anche in questo caso la variabile eliminata è quella che varia passando da una casella all'altra. In conclusione la minimizzazione porta alla seguente funzione: Y = AB + BC A questo risultato si è arrivati considerando il mintermine ABC due volte, questo è sempre possibile in quanto, per il teorema di idempotenza, la somma di più mintermini uguali non altera la funzione logica. Come minimizzare con una mappa di 1 Riassumendo, la minimizzazione con le mappe di Karnaugh, qualora siano evidenziati gli 1, si effettua nel seguente modo: a) si individuano tutti i possibili raggruppamenti rettangolari di 1 adiacenti, che ne contengano il maggior numero possibile, ma sempre in quantità potenza del 2 (l ); b) si sceglie il minimo numero di raggruppamenti possibile per considerare tutti gli 1 della mappa almeno una volta; c) a ogni raggruppamento si fa corrispondere un prodotto delle sole variabili che hanno lo stesso valore in tutte le caselle; queste variabili vanno complementate se valgono 0 e non complementate se valgono 1 (le variabili che cambiano valore spostandosi da una casella all altra dello stesso raggruppamento vanno semplificate); d) l'espressione minima è pari alla somma dei termini ricavati al punto c). Esempio: Realizzare un circuito in forma minima che soddisfi questa tabella. La funzione canonica risulta: A B C Y La forma minima risulta essere: Y = ABC + ABC + ABC + ABC + ABC C\AB Y = AB + AB + BC 9

10 Oppure equivalentemente: Per cui abbiamo C\AB Y = AC + AB + AB Nella figura seguente sono riportate due possibili soluzioni tra loro equivalenti: Esempio: C\AB Y = C + AB + A B Come minimizzare con una mappa di 0 In modo del tutto analogo si procede evidenziando gli 0: a) si individuano tutti i possibili raggruppamenti rettangolari di 0 adiacenti, che ne contengano il maggior numero possibile, ma sempre in quantità potenza del 2; b) si sceglie il minimo numero di raggruppamenti necessari, per considerare tutti gli 0 almeno una volta; c) a ogni raggruppamento si fa corrispondere una somma delle sole variabili che hanno lo stesso valore in tutte le caselle; le variabili vanno complementate se valgono l e non complementate se valgono 0; d) l'espressione minima è il prodotto dei termini ricavati al punto c). Esempio: CD\AB ( B + D) ( A + B D) Y = + 10

11 Caso con più di quattro variabili Con opportuni accorgimenti è possibile estendere il metodo anche a funzioni logiche con più di quattro variabili. Per esempio, nel caso di cinque variabili si possono considerare due sottomappe riferite alle variabili A, B, C, D, una con E = 0 e una con E = 1. I raggruppamenti nelle sottomappe vengono realizzati al solito modo, ma bisogna tener presente che gli 1 occupanti le stesse posizioni nelle due sottomappe vanno considerati adiacenti (infatti varia solo E). In pratica, si deve immaginare le due sottomappe sovrapposte in trasparenza. In sintesi: 1. Per realizzare il circuito combinatorio corrispondente a una tabella della verità è necessario ricavare un'espressione logica che la soddisfa: la prima e la seconda forma canonica sono le espressioni più facilmente ricavabili da una tabella della verità e che la soddisfano. 2. Se l'espressione logica non è minima, prima di procedere alla realizzazione del circuito corrispondente conviene minimizzarla. 3. La minimizzazione tramite l'applicazione delle regole dell'algebra di Boole può risultare difficile e comunque è scomoda; più adatto può risultare (fino a 6 variabili) l'uso delle mappe di Karnaugh. 4. Se in una tabella della verità esistono delle condizioni di indifferenza (se per una o più combinazioni d ingresso sia indifferente che l uscita risulti 0 o 1), queste vanno usate in modo da ottimizzare la minimizzazione. Laboratorio Si propone la verifica sperimentale della tabella della verità di un NAND a due ingressi. Strumenti e materiali necessari: Alimentatore stabilizzato; IC 7400 (oppure IC 4011), due resistori da 1 kohm, un resistore da 100 Ohm, un LED; Bread-board. Fasi operative: Realizzazione del circuito, come da piano di montaggio seguente; Taratura dell alimentatore e collegamento al circuito; Verifica sperimentale della tabella di verità. Circuito per la verifica della tabella della verità di una NAND, visualizzazione del livello alto. 11

12 Esercizi di verifica Cosa si intende per circuiti combinatori? I circuiti logici AND-OR-NOT costituiscono, nel loro insieme, un gruppo universale. Cosa intendiamo con quest affermazione e quali altri gruppi universali conosci? Per cosa è utili la minimizzazione? Minimizzare usando l algebra di Boole, le seguenti espressioni logiche: Y = AB + AB + AB + AB; Y = A ( B + C) + ABC + AB + C. Si proponga una realizzazione circuitale, con soli NAND, della seguente espressione logica: y = B + B C + B C D Data la seguente tabella della verità, si ricavino le corrispondenti forme canoniche (I et II), proponendone per ognuna di esse una realizzazione circuitale. A B C D Y Ricavare, utilizzando i mintermini, l espressione minima corrispondente alla precedente tabella della verità. 12

13 Realizzare il circuito combinatorio corrispondente alla seguente tabella della verità, utilizzando esclusivamente l IC 74150: A B C D Y Ricavare dalla seguenti Mappe di Karnaugh le corrispondenti funzioni minime CD\AB CD\AB

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Laboratorio di.... Scheda n. 2 Livello: Base A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE D OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere lo

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN

VERIFICA DEI PRINCIPI DI KIRCHHOFF, DEL PRINCIPIO DI SOVRAPPOSIZIONE DEGLI EFFETTI, DEL TEOREMA DI MILLMAN FCA D PNCP D KCHHOFF, DL PNCPO D SOAPPOSZON DGL FFTT, DL TOMA D MLLMAN Un qualunque circuito lineare (in cui agiscono più generatori) può essere risolto applicando i due principi di Kirchhoff e risolvendo

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

ESERCIZI DI ELETTROTECNICA

ESERCIZI DI ELETTROTECNICA 1 esercizi in corrente continua completamente svolti ESERCIZI DI ELETTROTECNICA IN CORRENTE CONTINUA ( completamente svolti ) a cura del Prof. Michele ZIMOTTI 1 2 esercizi in corrente continua completamente

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come

e l insieme delle soluzioni, dopo le analoghe riduzioni del caso n = 2, si scrive come Numeri complessi 9 Da questi esempi si può osservare che, facendo le successive potene di un numero complesso, i punti corrispondenti girano attorno all origine. Se inoltre > allora i punti si allontanano

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

Frazioni e numeri razionali

Frazioni e numeri razionali Frazioni e numeri razionali I numeri naturali sono i primi numeri che hai incontrato, quando hai cominciato a contare con le dita. Ma vuoi eseguire tutte le sottrazioni. E allora hai bisogno dei numeri

Dettagli