2. Codifica dell informazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Codifica dell informazione"

Transcript

1 2. Codifica dell informazione Codifica Una codifica è una regola per associare in modo univoco i valori di un dato da codificare con sequenze di simboli. La corrispondenza definita dalla codifica è arbitraria, è una convenzione. Essa deve pertanto essere nota e rispettata da chi genera e da chi utilizza i dati. A tale scopo vengono definiti degli standard. 1

2 Codifica binaria In un calcolatore i dati sono rappresentati in forma binaria con sequenze di bit, ovvero sequenze di due soli simboli: 0 e 1. Bisogna perciò poter associare univocamente ad ogni dato elementare (numeri, caratteri, ) una sequenza di bit che lo rappresenti. Codifica binaria Alfabeto (insieme dei simboli utilizzabili) costituito da cifre 0 e 1. Con N cifre binarie si possono codificare 2 N configurazioni diverse e pertanto si possono rappresentare al più 2 N valori distinti. Per rappresentare M valori distinti sono necessarie N = log 2 M cifre binarie. 2

3 Codifica binaria: esempi Con 4 cifre binarie posso rappresentare 2 4 = 16 valori distinti. Per rappresentare i 7 giorni della settimana, occorrono N = log 2 7 = 3 cifre binarie. Una possibile codifica è ad esempio: Lunedì 000 Venerdì 100 Martedì 001 Sabato 101 Mercoledì 010 Domenica 110 Giovedì 011 Codifica binaria dei numeri Distinguiamo la rappresentazione per: numeri naturali (interi positivi) numeri interi con segno numeri reali 3

4 Numeri interi positivi La codifica si basa sulla notazione posizionale o pesata adottata usualmente per i numeri codificati in decimale. Nella notazione posizionale il valore numerico rappresentato da una cifra dipende dal valore della cifra e dalla sua posizione nel numero. Data una base B, le cifre c k possono assumere i valori da 0 a B - 1. Numeri interi positivi In notazione posizionale un numero X di N cifre si può esprimere in base B come: X = N 1 k = 0 c k B k = c B c B c N 1 B N 1 Ad esempio = = = =

5 Numeri interi positivi Nel caso binario (base B = 2), una sequenza di bit b n-1...b 1 b 0 rappresenta il numero: n 1 i= 0 b i n 1 i = 2 bn b2 + 2 b1 + 2 b 0 Dati n bit è possibile rappresentare numeri da 0 a 2 n -1 (con 8 bit): rappresenta il numero 9 ( = 8 + 1) Rappresentazione a 4 bit dei numeri interi positivi tra 0 e 15: Base 10 Base 2 Base 10 Base

6 Numeri interi positivi Per calcolare la rappresentazione binaria di un numero intero positivo lo si divide successivamente per 2 (fino ad ottenere 0), scrivendo da destra a sinistra il resto della divisione. La sequenza di 0 e 1 ottenuta dai resti della divisione, costituisce la rappresentazione binaria del numero. Si calcoli la rappresentazione binaria a 8 bit del numero decimale 125: / 2 = 62 resto 1-62 / 2 = 31 resto 0-31 / 2 = 15 resto 1-15 / 2 = 7 resto 1-7 / 2 = 3 resto 1-3 / 2 = 1 resto 1-1 / 2 = 0 resto 1 = > Controprova: = = = 125 6

7 Interi con segno I numeri interi con segno sono rappresentati tramite diverse codifiche Le codifiche più usate sono: codifica segno-valore codifica complemento a 1 codifica complemento a 2 Codifica segno-valore Il primo bit rappresenta il segno, gli altri il valore. (con 8 bit): rappresenta -9 Comporta una doppia rappresentazione dello zero: e I numeri rappresentati appartengono all intervallo -(2 n-1-1) +(2 n-1-1) Occorre usare due diversi algoritmi per la somma a seconda che il segno degli addendi sia concorde o discorde 7

8 Rappresentazione in segno e valore a 4 bit dei numeri interi tra -7 e 7: Base 10 Base 2 Base 10 Base Somma tra addendi concordi in segno: Somma tra addendi discordi in segno: = = 5 OK = (- 2) = -5!? La somma tra addendi discordi in segno dà risultati non corretti! 8

9 Complemento a 1 Un numero negativo è rappresentato con il complemento del corrispondente numero positivo. : rappresenta -9 (dove rappresenta 9) Comporta una doppia rappresentazione dello zero: e I numeri rappresentati appartengono all intervallo -(2 n-1-1) +(2 n-1-1) Rappresentazione in complemento a 1 a 4 bit dei numeri interi tra -7 e 7: Base 10 Base 2 Base 10 Base

10 Ancora problemi con la somma: = (-2) = 0!? = (-2) = -6!? Per ottenere i risultati corretti occorre sommare il riporto (ovvero sommare 1). Complemento a 2 Un numero negativo è ottenuto calcolando il suo complemento e poi aggiungendo 1. : rappresenta -9 Comporta un unica rappresentazione dello zero che è I numeri rappresentati appartengono all intervallo -2 n-1 +(2 n-1-1) 10

11 Rappresentazione in complemento a 2 a 4 bit dei numeri interi tra -8 e 7: Base 10 Base 2 Base 10 Base Ora la somma dà risultati corretti! = = = (- 2) = = (-2) = -5 11

12 Ancora due somme: = = -5!? = (-6) = 6!? In realtà con 4 bit si possono rappresentare numeri tra -8 e +7. I risultati corretti (11 e -10) sono fuori da questo intervallo (overflow). Numeri Reali Due tipi di rappresentazione: Rappresentazione in virgola fissa (fixed point) Rappresentazione in virgola mobile (floating point) 12

13 Numeri Reali Rappresentazione in virgola fissa: Un numero reale è rappresentato come una coppia di numeri interi, uno per la parte intera e uno per la parte frazionaria. Un numero fisso di bit è dedicato a ciascuna delle due parti. : 4 bit per la parte intera e 4 bit per la parte frazionaria: = = = = Numeri Reali Rappresentazione in virgola mobile: m 10 e m è la mantissa ed e è l esponente segno codifica per e codifica per m intervallo di rappresentazione (con 32 bit) e La codifica è dipendente dal numero di bit e dalla particolare rappresentazione binaria 13

14 Standard IEEE-754 E la rappresentazione (in virgola mobile) per i numeri reali adottata oggi praticamente da tutti. Codifica dei caratteri Qualunque codifica deve soddisfare: 'a' < 'b' <... < 'z' 'A' < 'B' <... < 'Z' '0' < '1' <... < '9' Continuità dei codici delle successioni 'a', 'b',..., 'z' 'A', 'B',..., 'Z' '0', '1',..., '9' Nota: non è fissa la relazione tra maiuscole e minuscole o fra i caratteri non alfabetici 14

15 Codifica dei caratteri Codifica ASCII (American Standard Code for Information Interchange) Comprende caratteri speciali, punteggiatura, a-z, A-Z, 0-9 Utilizza 7 bit (128 caratteri) I codici ASCII estesi usano 8 bit (256 caratteri) Codifica UNICODE Utilizza 16 bit (65536 caratteri) I primi 128 caratteri sono gli stessi di ASCII Gli altri corrispondono ad altri alfabeti (greco, cirillico, ) Non copre i simboli (oltre ) di tutte le lingue! : Codifica ASCII 0 NUL 1 ^A 2 ^B 3 ^C 4 ^D 5 ^E 6 ^F 7 ^G 8 ^H 9 ^I 10 ^J 11 ^K 12 ^L 13 ^M 14 ^N 15 ^O 16 ^P 17 ^Q 18 ^R 19 ^S 20 ^T 21 ^U 22 ^V 23 ^W 24 ^X 25 ^Y 26 ^Z 27 ^[ 28 ^\ 29 ^] 30 ^^ 31 ^- 32 SP 33! 34 " 35 # 36 $ 37 % 38 & 39 ' 40 ( 41 ) 42 * , / : 59 ; 60 < 61 = 62 > 63? 65 A 66 B 67 C 68 D 69 E 70 F 71 G 72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O 80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W 88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _ 96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g 104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o 112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w 120 x 121 y 122 z 123 { } 126 ~ 127 DEL 15

16 Codifica esadecimale La rappresentazione esadecimale consente di esprimere lunghe sequenze binarie in modo più compatto. Ogni gruppo di 4 bit può infatti essere direttamente convertito nella corrispondente cifra esadecimale. Parole di 16 o di 32 bit possono così essere espresse in modo più conveniente rispettivamente con 4 e 8 cifre esadecimali. Codifica esadecimale Alfabeto costituito da 16 simboli. : rappresentazione esadecimale dei numeri interi positivi tra 0 e 15: Base 10 Base 16 Base 10 Base A B C D E F 16

17 La rappresentazione esadecimale della parola di 16 bit è 6C3A. La rappresentazione esadecimale della parola di 32 bit è E21FDB05 Quando nello scrivere un programma occorre specificare i dati in forma binaria, spesso si usa la rappresentazione esadecimale. 17

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1. Floating Point Notazione in virgola mobile N = M BE mantissa base esponente esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.6273 102 forma normalizzata: la mantissa ha una sola cifra

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Rappresentazione numeri in virgola mobile

Rappresentazione numeri in virgola mobile Rappresentazione numeri in virgola mobile Un numero non intero può essere rappresentato in infiniti modi quando utilizziamo la notazione esponenziale: Es. 34.5 = 0.345 10 2 = 0.0345 10 3 = 345 10-1 Questo

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

C.L. Tecniche della prevenzione nell ambiente e nei luoghi di lavoro Polo di Rieti. Calendario Lezioni 3 anno 2 Semestre - A.A.

C.L. Tecniche della prevenzione nell ambiente e nei luoghi di lavoro Polo di Rieti. Calendario Lezioni 3 anno 2 Semestre - A.A. I Settiman 2-6 Ore Lunedi 2 Martedi 3 Mercoledi 4 Giovedì 5 Venerdì 6 II 09-13 Ore Lunedì 9 Martedì 10 Mercoledì 11 Giovedì 12 Venerdì 13 III 16-20 Ore Lunedì 16 Martedì 17 Mercoledì 18 Giovedì 19 Venerdì

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

SAMEV 24/10/2013 08.57 - Pagina 1. Lunedì 30/09 Martedì 01/10 Mercoledì 02/10 Giovedì 03/10 Venerdì 04/10 8h00

SAMEV 24/10/2013 08.57 - Pagina 1. Lunedì 30/09 Martedì 01/10 Mercoledì 02/10 Giovedì 03/10 Venerdì 04/10 8h00 SAMEV 24/10/2013 08.57 - Pagina 1 Scienze Forestali e Ambientali I liv. - 3 anno - dal 30 settembre al 04 ottobre 2013 Lunedì 30/09 Martedì 01/10 Mercoledì 02/10 Giovedì 03/10 Venerdì 04/10 Aula 9 Aula

Dettagli

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale !"$#%!" #% Nella prima lezione... Definizione di Informatica Cosa è una soluzione algoritmica Esempi di algoritmi cicalese@dia.unisa.it 2 Prima parte: Società dell informazione Ma cosa vuol dire società

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

INVIO SMS CON CHIAMATA DIRETTA ALLO SCRIPT

INVIO SMS CON CHIAMATA DIRETTA ALLO SCRIPT INVIO SMS CON CHIAMATA DIRETTA ALLO SCRIPT La chiamata diretta allo script può essere effettuata in modo GET o POST. Il metodo POST è il più sicuro dal punto di vista della sicurezza. Invio sms a un numero

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

I db, cosa sono e come si usano. Vediamo di chiarire le formule.

I db, cosa sono e come si usano. Vediamo di chiarire le formule. I db, cosa sono e come si usano. Il decibel è semplicemente una definizione; che la sua formulazione è arbitraria o, meglio, è definita per comodità e convenienza. La convenienza deriva dall osservazione

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009 Lab 02 Tipi semplici in C Obiettivo dell esercitazione Acquistare familiarità con i tipi di dato semplici supportati

Dettagli

Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale

Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale Prot. n. 2012/140335 Approvazione delle modifiche al modello di versamento F24 enti pubblici ed alle relative specifiche tecniche Introduzione del secondo codice fiscale IL DIRETTORE DELL AGENZIA In base

Dettagli

Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà:

Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà: Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà: naturale, se la frazione è apparente. Esempi: 4 2 2 60 12 5 24 8 decimale limitato o illimitato, se

Dettagli

Determinare la grandezza della sottorete

Determinare la grandezza della sottorete Determinare la grandezza della sottorete Ogni rete IP possiede due indirizzi non assegnabili direttamente agli host l indirizzo della rete a cui appartiene e l'indirizzo di broadcast. Quando si creano

Dettagli

Specifiche tecniche per la trasmissione telematica della certificazione Unica 2015

Specifiche tecniche per la trasmissione telematica della certificazione Unica 2015 ALLEGATO A Specifiche tecniche per la trasmissione telematica della certificazione Unica 2015 per i redditi di lavoro dipendente/assimilati e di lavoro autonomo/provvigioni e diversi Specifiche tecniche

Dettagli

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN per Expert NANO 2ZN Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie Expert NANO 2ZN Nome documento: MODBUS-RTU_NANO_2ZN_01-12_ITA Software installato: NANO_2ZN.hex

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Documentazione tecnica

Documentazione tecnica Documentazione tecnica Come spedire via Post 1.1) Invio di Loghi operatore 1.2) Invio delle Suonerie (ringtone) 1.3) Invio di SMS con testo in formato UNICODE UCS-2 1.4) Invio di SMS multipli 1.5) Simulazione

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Fondamenti di Informatica 300 ed oltre esercizi di teoria

Fondamenti di Informatica 300 ed oltre esercizi di teoria Fondamenti di Informatica 300 ed oltre esercizi di teoria Fulvio Corno Antonio Lioy Politecnico di Torino Dip. di Automatica e Informatica v. 4.02 01/09/2009 Indice 1 Introduzione 2 1.1 Nota metodologica........................................

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

Appunti di Matematica

Appunti di Matematica Silvio Reato Appunti di Matematica Settembre 200 Le quattro operazioni fondamentali Le quattro operazioni fondamentali Addizione Dati due numeri a e b (detti addendi), si ottiene sempre un termine s detto

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

PIANO ANNUALE A.S.2014/15 agg. 5/9/2014 1 lunedì collegio docenti 8.15 10.15

PIANO ANNUALE A.S.2014/15 agg. 5/9/2014 1 lunedì collegio docenti 8.15 10.15 PIANO ANNUALE A.S.2014/15 agg. 5/9/2014 1 lunedì collegio docenti 8.15 10.15 adempimenti di inizio anno 15 lunedì C.di C. 3AG 13.30 14.15 programmazione - visite studio - varie solo docenti 15 lunedì C.di

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

Ministero Numero assegnato dal ORDINE DI ACCREDITAMENTO DI CONTABILITA SPECIALE SU IMPEGNO ESTREMI CLAUSOLA DI APERTURA IMPEGNO

Ministero Numero assegnato dal ORDINE DI ACCREDITAMENTO DI CONTABILITA SPECIALE SU IMPEGNO ESTREMI CLAUSOLA DI APERTURA IMPEGNO Ministero Numero assegnato dal Direzione Generale Ufficio Sistema ORDINE DI ACCREDITAMENTO DI CONTABILITA SPECIALE SU IMPEGNO ESTREMI CLAUSOLA DI APERTURA IMPEGNO Esercizio Ufficio N decreto N progressivo

Dettagli

LA MISURAZIONE DEL CARATTERE

LA MISURAZIONE DEL CARATTERE TPO PROGETTAZIONE UD 03 GESTIONE DEL CARATTERE IL TIPOMETRO LA MISURAZIONE DEL CARATTERE A.F. 2011/2012 MASSIMO FRANCESCHINI - SILVIA CAVARZERE 1 IL TIPOMETRO: PARTI FONDAMENTALI Il tipometro è uno strumento

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49

INDICE. Unità 0 LINGUAGGI MATEMATICI, 1. Unità 1 IL SISTEMA DI NUMERAZIONE DECIMALE, 49 INDICE Unità 0 LINGUAGGI MATEMATICI, 1 Il libro prosegue nel CD Il linguaggio degli insiemi, 2 1 GLI INSIEMI E LA LORO RAPPRESENTAZIONE, 2 Gli insiemi, 2 Insieme vuoto, finito e infinito, 3 La rappresentazione

Dettagli

La procedura di registrazione prevede cinque fasi: Fase 4 Conferma

La procedura di registrazione prevede cinque fasi: Fase 4 Conferma Guida Categoria alla registrazione StockPlan Connect Il sito web StockPlan Connect di Morgan Stanley consente di accedere e di gestire online i piani di investimento azionario. Questa guida offre istruzioni

Dettagli

IL DIRETTORE DELL AGENZIA. In base alle attribuzioni conferitegli dalle norme riportate nel seguito del presente provvedimento Dispone:

IL DIRETTORE DELL AGENZIA. In base alle attribuzioni conferitegli dalle norme riportate nel seguito del presente provvedimento Dispone: Prot. 2015/4790 Approvazione della Certificazione Unica CU 2015, relativa all anno 2014, unitamente alle istruzioni di compilazione, nonché del frontespizio per la trasmissione telematica e del quadro

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

Trasmissione Seriale e Parallela. Interfacce di Comunicazione. Esempio di Decodifica del Segnale. Ricezione e Decodifica. Prof.

Trasmissione Seriale e Parallela. Interfacce di Comunicazione. Esempio di Decodifica del Segnale. Ricezione e Decodifica. Prof. Interfacce di Comunicazione Università degli studi di Salerno Laurea in Informatica I semestre 03/04 Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ 2 Trasmissione

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

MATEMATICA. I numeri relativi. I numeri relativi. il testo:

MATEMATICA. I numeri relativi. I numeri relativi. il testo: 01 sono i numeri che hanno davanti il segno + o il segno -. li usano quando devi far capire se un numero sta sopra o sotto dello zero. Se dico che la temperatura è di 30 gradi per te è sicuramente difficile

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

PROGRAMMA IMPORT C/59 ISTAT MANUALE UTENTE

PROGRAMMA IMPORT C/59 ISTAT MANUALE UTENTE PROGRAMMA IMPORT C/59 ISTAT MANUALE UTENTE SETTEMBRE 2013 DATASIEL S.p.A Pag. 2/23 INDICE 1. INTRODUZIONE...3 1.1. Scopo...3 1.2. Servizio Assistenza Utenti...3 2. UTILIZZO DEL PROGRAMMA...4 2.1. Ricevere

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Altri cifrari a blocchi

Altri cifrari a blocchi Altri cifrari a blocchi Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci RC2 [1989] IDEA (International

Dettagli

I FILTRI SED, GREP (e AWK) Tratto da http://www.pluto.it/files/ildp/guide/abs/textproc.html SED

I FILTRI SED, GREP (e AWK) Tratto da http://www.pluto.it/files/ildp/guide/abs/textproc.html SED I FILTRI SED, GREP (e AWK) Tratto da http://www.pluto.it/files/ildp/guide/abs/textproc.html SED SED è un programma in grado di eseguire delle trasformazioni elementari in un flusso di dati di ingresso,

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

Linguaggio C: introduzione

Linguaggio C: introduzione Linguaggio C: introduzione Il linguaggio C è un linguaggio general purpose sviluppato nel 1972 da Dennis Ritchie per scrivere il sistema operativo UNIX ed alcune applicazioni per un PDP-11. Il linguaggio

Dettagli

Specifiche tecnico-funzionali per comunicazione e conservazione dati da parte dei Sistemi Controllo Accessi. INDICE

Specifiche tecnico-funzionali per comunicazione e conservazione dati da parte dei Sistemi Controllo Accessi. INDICE Specifiche tecnico-funzionali per comunicazione e conservazione dati da parte dei Sistemi Controllo Accessi. INDICE 1.1 CARATTERISTICHE DEL SUPPORTO IMMODIFICABILE E SUO FILE-SYSTEM... 2 1.2 SICUREZZA

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Guida alla scansione su FTP

Guida alla scansione su FTP Guida alla scansione su FTP Per ottenere informazioni di base sulla rete e sulle funzionalità di rete avanzate della macchina Brother, consultare la uu Guida dell'utente in rete. Per ottenere informazioni

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

Manuale di Okteta. Friedrich W. H. Kossebau Alex Richardson Traduzione della documentazione: Federico Zenith

Manuale di Okteta. Friedrich W. H. Kossebau Alex Richardson Traduzione della documentazione: Federico Zenith Friedrich W. H. Kossebau Alex Richardson Traduzione della documentazione: Federico Zenith 2 Indice 1 Introduzione 6 2 Fondamentali 7 2.1 Avviare Okteta........................................ 7 2.2 Uso..............................................

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

Classe di abilitazione A019 Calendario e modalità di svolgimento delle prove

Classe di abilitazione A019 Calendario e modalità di svolgimento delle prove Classe di abilitazione A019 Calendario e modalità di delle prove Per lo degli esami sono previste più date in tre diversi periodi (maggio/giugno 2015, luglio 2015, gennaio 2016) con la possibilità per

Dettagli

Gare di Informatica Olimpiadi di Problem Solving per Scuole del Primo Ciclo

Gare di Informatica Olimpiadi di Problem Solving per Scuole del Primo Ciclo Giorgio Casadei Antonio Teolis Centro Studi e Ricerche di Storia e Didattica dell Informatica Dipartimento di Scienze dell Informazione Università di Bologna Gare di Informatica Olimpiadi di Problem Solving

Dettagli

Corso di Fondamenti di Informatica

Corso di Fondamenti di Informatica Corso di Fondamenti di Informatica L uso delle funzioni in C++ Claudio De Stefano - Corso di Fondamenti di Informatica 1 Funzioni Nel C++ è possibile scomporre problemi complessi in moduli più semplici

Dettagli

Le variabili. Olga Scotti

Le variabili. Olga Scotti Le variabili Olga Scotti Cos è una variabile Le variabili, in un linguaggio di programmazione, sono dei contenitori. Possono essere riempiti con un valore che poi può essere riletto oppure sostituito.

Dettagli

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento.

Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. Excel: le funzioni Le formule possono essere scritte utilizzando un insieme di funzioni predefinite che Excel mette a disposizione, raggruppate per argomento. DEFINIZIONE: Le funzioni sono dei procedimenti

Dettagli

Trattamento aria Regolatore di pressione proporzionale. Serie 1700

Trattamento aria Regolatore di pressione proporzionale. Serie 1700 Trattamento aria Serie 7 Serie 7 Trattamento aria Trattamento aria Serie 7 Serie 7 Trattamento aria +24VDC VDC OUTPUT MICROPROCESS. E P IN EXH OUT Trattamento aria Serie 7 Serie 7 Trattamento aria 7 Trattamento

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

Famiglie di font. roman ( normale ) corsivo o italic grassetto o bold grassetto corsivo o bold italic

Famiglie di font. roman ( normale ) corsivo o italic grassetto o bold grassetto corsivo o bold italic Famiglie di font Nella maggior parte dei casi, un font appartiene a una famiglia I font della stessa famiglia hanno lo stesso stile grafico, ma presentano varianti Le varianti più comuni sono: roman (

Dettagli

Come utilizzare il contatore elettronico monofase. E scoprirne tutti i vantaggi.

Come utilizzare il contatore elettronico monofase. E scoprirne tutti i vantaggi. Come utilizzare il contatore elettronico monofase. E scoprirne tutti i vantaggi. Indice Il contatore elettronico. Un sistema intelligente che vive con te 2 Un contatore che fa anche bella figura 3 Oltre

Dettagli

FUNZIONI AVANZATE DI EXCEL

FUNZIONI AVANZATE DI EXCEL FUNZIONI AVANZATE DI EXCEL Inserire una funzione dalla barra dei menu Clicca sulla scheda "Formule" e clicca su "Fx" (Inserisci Funzione). Dalla finestra di dialogo "Inserisci Funzione" clicca sulla categoria

Dettagli

Procedura corretta per mappare con ECM Titanium

Procedura corretta per mappare con ECM Titanium Procedura corretta per mappare con ECM Titanium Introduzione: In questo documento troverete tutte le informazioni utili per mappare correttamente con il software ECM Titanium, partendo dalla lettura del

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Import Dati Release 4.0

Import Dati Release 4.0 Piattaforma Applicativa Gestionale Import Dati Release 4.0 COPYRIGHT 2000-2005 by ZUCCHETTI S.p.A. Tutti i diritti sono riservati.questa pubblicazione contiene informazioni protette da copyright. Nessuna

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it)

SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it) SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it) In una rete TCP/IP, se un computer (A) deve inoltrare una richiesta ad un altro computer (B) attraverso la rete locale, lo dovrà

Dettagli

Guida al backup. 1. Introduzione al backup. Backup dei dati una parte necessaria nella gestione dei rischi. Backup su nastro media ideale

Guida al backup. 1. Introduzione al backup. Backup dei dati una parte necessaria nella gestione dei rischi. Backup su nastro media ideale 1. Introduzione al backup Guida al backup Backup dei dati una parte necessaria nella gestione dei rischi Con l aumentare dei rischi associati a virus, attacchi informatici e rotture hardware, implementare

Dettagli