Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno"

Transcript

1 Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni: Istruzioni di ingresso/uscita (es. leggi, visualizza, ) Istruzioni aritmetico-logiche (es. c = a * b) Istruzioni di controllo (es. se allora, ripeti ) Sistema numerico binario Il sistema numerico binario è un sistema numerico posizionale in base 2, cioè che utilizza 2 simboli, tipicamente 0 e 1, invece dei 10 del sistema numerico decimale tradizionale. Di conseguenza, la cifra in posizione N (da destra) si considera moltiplicata per 2 N (anziché per 10 N come avverrebbe nella numerazione decimale). Ecco una tabella che confronta le rappresentazioni binarie, esadecimali e decimali di alcuni numeri: binario esadecimale decimale 0000 = 0 = = 1 = = 2 = = 3 = = 4 = = 5 = = 6 = = 7 = = 8 = = 9 = = A = = B = = C = = D = = E = = F = 15 È usato in informatica per la rappresentazione interna dei numeri, grazie alla semplicità di realizzare fisicamente un elemento con due stati anziché un numero superiore, ma anche per la corrispondenza con i valori logici vero e falso. Rappresentazioni di numeri binari I numeri binari, in campo informatico, non sono utilizzati esclusivamente per memorizzare numeri interi positivi ma, mediante alcune convenzioni, è possibile scrivere numeri binari con segno e parte decimale senza introdurre nuovi caratteri (come la virgola e il segno meno, non memorizzabili su di un bit). Rappresentazione in modulo e segno Questo è il modo più semplice per rappresentare e distinguere numeri positivi e negativi: al numero binario vero e proprio viene anteposto un bit che, per convenzione, assume il valore 0 se il numero è positivo ed assume il valore 1 se il numero è negativo. Il grande difetto di questa rappresentazione è quello di avere due modi per scrivere il numero 0: e significano infatti +0 e -0.

2 Rappresentazione in complemento a 2 Questo metodo di rappresentazione ha notevoli vantaggi, soprattutto per effettuare somme e differenze: in pratica ai numeri viene anteposto un bit di valore zero; se poi il numero è negativo è necessario convertirlo in complemento a 2: per farlo è sufficiente leggere il numero da destra verso sinistra e invertire tutte le cifre a partire dal primo bit pari a 1 (escluso). Per fare un esempio: = = CA2 Come è possibile notare seguendo questo metodo il primo bit diventa automaticamente il bit del segno (come per il metodo precedente). Viene però risolto il problema dell'ambiguità dello 0 (in complemento a e hanno significati diversi) e vengono enormemente facilitate le operazioni di somma e differenza, che si riducono alla sola operazione di somma: per spiegare meglio basta fare un esempio: = ( 10) 10 = = CA CA2 = CA2 = = 5 10 Rappresentazione a virgola fissa Dato che in un bit non è rappresentabile la virgola il metodo più semplice per rappresentare numeri frazionari è quello di scegliere arbitrariamente la posizione della virgola (ad es. se si sceglie di usare 4 bit per la parte intera e 4 per la parte frazionaria: significa 1010, ). Rappresentazione in virgola mobile Esistono innumerevoli modi per rappresentare numeri in virgola mobile ma il sistema più utilizzato è lo standard IEEE P754; questo metodo comporta l'utilizzo della notazione scientifica, in cui ogni numero è identificato dal segno, da una mantissa (1,xxxxx) e dall'esponente (nyyyyy). La procedura standard per la conversione da numero decimale a numero binario P754 è la seguente: 1. Prima di tutto il numero, in valore assoluto, va convertito in binario. 2. Il numero va poi diviso (o moltiplicato) per 2 fino a ottenere una forma del tipo 1,xxxxxx. 3. Di questo numero viene eliminato l'1 iniziale (per risparmiare memoria) 4. Il numero di volte per cui il numero è stato diviso (o moltiplicato) per 2 rappresenta l'esponente: questo valore (decimale) va espresso in eccesso 127, ovvero è necessario sommare 127 e convertire il numero risultante in binario. Nel caso di rappresentazione a precisione doppia (v. definizione seguente) il valore dell'esponente viene espresso in eccesso A questo punto abbiamo raccolto tutti i dati necessari per memorizzare il numero: in base al numero di bit che abbiamo a disposizione possiamo utilizzare tre formati: il formato a precisione singola (32 bit), il formato a precisione doppia (64 bit) e il formato a precisione quadrupla (128 bit). 1. Nel primo caso possiamo scrivere il valore utilizzando 1 bit per il segno, 8 bit per l'esponente e 23 bit per la mantissa. 2. Nel secondo caso servirà 1 bit per il segno, 11 bit per l'esponente e 52 per la mantissa. 3. Nel terzo caso servirà 1 bit per il segno, 15 bit per l'esponente e 112 per la mantissa. Per esempio, convertiamo il valore 14, in binario P754 single: 1. Convertiamo prima di tutto il numero: = per la parte intera e 0, = 0, Quindi il numero definitivo è 1110, (segno escluso). 2. Dividiamo poi il numero per 2 per ottenere la seguente notazione: 1110, = 1, * La mantissa diventa, quindi: Per esprimere l'esponente in eccesso 127, infine: = = Il numero, alla fine, sarà espresso nel formato:

3 Sistema numerico esadecimale Il sistema numerico esadecimale (spesso abbreviato come esa o hex) è un sistema numerico posizionale in base 16, cioè che utilizza 16 simboli invece dei 10 del sistema numerico decimale tradizionale. Per l'esadecimale si usano in genere simboli da 0 a 9 e poi le lettere da A a F, per un totale di 16 simboli. Il sistema esadecimale è molto usato in informatica, per la sua relazione diretta tra una cifra esadecimale e quattro cifre binarie. È spesso usato come intermediario, oppure come sistema numerico a sé stante. Per esempio, è possibile esprimere un byte con esattamente due cifre esadecimali (invece che con 3 decimali). Ci sono numerosi modi per denotare un numero come esadecimale, usati in differenti linguaggi di programmazione: Il C e i linguaggi con una sintassi simile (come il Java) usano il prefisso '0x', per esempio "0x5A3". Lo zero iniziale è presente perché i numeri devono iniziare con un carattere numerico, e la 'x' significa esadecimale (in caso di assenza della 'x', il numero è inteso come ottale. Il Pascal e alcuni Assembly indicano l'esadecimale con il suffisso 'h' (se il numero inizia con una lettera, si usa anche il prefisso '0'), per esempio "0A3Ch", "5A3h". Un metodo per convertire un numero esadecimale in decimale è quello di moltiplicare le sue cifre per le potenze della base 16. quindi (Si ricorda che 16 0 = 1) Allora L'operazione inversa - da decimale ad esadecimale - si realizza con una serie di divisioni successive. Conversione dal sistema esadecimale al sistema binario e viceversa La ragione per cui si adopera in informatica il sistema esadecimale è che può essere considerato come una scrittura più compatta del sistema binario. La conversione dalla base 16 alla base 2 e viceversa può essere svolta per sostituzione di gruppi di cifre invece che con algoritmi di divisione. Ad esempio, si consideri il seguente numero in base 16: A16BC9 16. Per convertilo in base 2, è sufficiente prelevare ciascuna cifra esadecimale e sostituirla con il suo equivalente nel sistema binario. Seguendo questa procedura, si perviene al seguente risultato: A16BC9 16 = A 1 6 B C 9 16 = = Per ottenere la conversione opposta, invece, bisogna procedere nella maniera inversa: si suddivide il numero binario in gruppi di 4 cifre a partire da destra (se l'ultimo gruppo contiene meno di 4 cifre, vanno anteposti tanti zeri quanti servono per completarlo) e si sostituisce ogni gruppo con il suo equivalente esadecimale. Supponiamo ad esempio di convertire in base 16 il numero in base 2: Effettuando le operazioni descritte in precedenza si ha: = = 2 5 F C B 16 = 25FCB 16 Rappresentazione dei caratteri: codice ASCII ASCII è l'acronimo di American Standard Code for Information Interchange (ovvero Codice Standard Americano per lo Scambio di Informazioni), è un sistema di codifica dei caratteri a 7 bit comunemente utilizzato nei calcolatori, proposto dall'ingegnere dell'ibm Bob Bemer nel 1961, e successivamente accettato come standard dall'iso. Per non confonderlo con le estensioni a 8 bit proposte successivamente, questo codice viene talvolta riferito come US-ASCII.

4 Alla specifica iniziale basata su codici di 7 bit fecero seguito negli anni molte proposte di estensione ad 8 bit, con lo scopo di raddoppiare il numero di caratteri rappresentabili. Nei PC IBM si fa per l'appunto uso di una di queste estensioni, ormai standard di fatto, chiamata extended ASCII o high ASCII. In questo ASCII esteso, i caratteri aggiunti sono vocali accentate, simboli semigrafici e altri simboli di uso meno comune.

5 ISO 8859 In seguito al proliferare di codifiche proprietarie, l'iso rilasciò uno standard denominato ISO 8859 contenente un'estensione a 8 bit del set ASCII. Il più importante fu l'iso , detto anche Latin1, contenente i caratteri per i linguaggi dell'europa Occidentale. Furono standardizzate codifiche per gli altri linguaggi: ISO per i linguaggi dell'europa Orientale, ISO per i caratteri cirillici e molti altri. Una particolarità dell'iso 8859 rispetto agli altri caratteri estesi è che i caratteri dal 128 al 159, i cui 7 bit più bassi corrispondono ai caratteri di controllo ASCII, non sono usati per non creare problemi di compatibilità. Microsoft successivamente creò la code page 1252, un set compatibile con l'iso che riempie anche questi 32 caratteri, che divenne lo standard per le versioni europee di Windows. UNICODE Una nuova codifica chiamata Unicode fu sviluppata nel 1991 per poter codificare più caratteri in modo standard e permettere di utilizzare più set di caratteri estesi (es. greco e cirillico) in un unico documento; questo set di caratteri è oggi largamente diffuso. Inizialmente prevedeva caratteri ed è stato in seguito esteso a e finora ne sono stati assegnati circa I primi 256 caratteri ricalcano esattamente quelli dell'iso La maggior parte dei codici sono usati per codificare lingue come il cinese, il giapponese ed il coreano, ma vi sono anche caratteri appartenenti a lingue più esotiche come il klingon. Algebra di Boole I fondamenti dell algebra Booleana sono stati delineati dal matematico inglese George Boole in un lavoro pubblicato nel 1847 riguardante l analisi della logica e in particolare l algebra della logica. Questa algebra include una serie di operazioni che si effettuano su delle variabili, dette appunto variabili booleane, che permettono di codificare le informazioni su due soli livelli. Nell'algebra di Boole essendo, a differenza di quella tradizionale, un'algebra binaria, le variabili possono assumere soltanto due stati: 0/1; v/f ( vero, falso); l/h (low, high); t/f (true, false); on/off; (acceso/spento) Ad esempio la variabile logica x può avere valore vero o valore falso. La variabile logica oggi_piove ha associato un valore che indica appunto se oggi piove oppure no, quindi può essere vera oppure no. Le Funzioni logiche o booleane sono funzioni che associano ad una sequenza di variabili booleane un valore booleano, ad esempio: F(x,y,z) La funzione F associa in base ai tre valori logici assunti dalle variabili logiche x,y,z un valore logico vero o falso. Si può osservare che si hanno solo 8 possibilità per i valori assunti dalle tre variabili: 1. x falso, y falso, z falso 2. x falso, y falso, z vero 3. x falso, y vero, z falso 4. x falso, y vero, z vero 5. x vero, y falso, z falso 6. x vero, y falso, z vero 7. x vero, y vero, z falso 8. x vero, y vero, z vero Per ognuna di queste otto possibilità la funzione F assume valore vero oppure falso. Un modo semplice per rappresentare graficamente questa associazione usa una tabella detta tabella di verità: x y z F(x,y,z) F F F V F F V F F V F F F V V V V F F V V F V F V V F F V V V V

6 L algebra di Boole introduce tre operatori di base AND, OR e NOT tramite i quali può essere espressa qualsiasi funzione logica. Notazione: prodotto logico a AND b a b a b somma logica a OR b a b a + b negazione NOT a a a vero true T 1 falso false 0 Le precedenti sono tre notazioni diverse per esprimere i tre operatori logici, la prima è una notazione linguistica ed è usata in molti linguaggi di programmazione, la seconda è la notazione matematica, la terza è la notazione aritmetica che enfatizza la similarità tra l algebra booleana e l algebra dei numeri. Nella logica le variabili logiche sono chiamate anche proposizioni semplici. Mentre le espressioni booleane che contengono operatori AND, OR e NOT sono chiamate anche proposizioni composte. Esempio di proposizione semplice o variabile logica: a Esempio di proposizione composta o espressione logica: a AND NOT b OR c L esempio precedente è ambiguo perché potrebbe essere interpretato nei modi seguenti: ( a AND (NOT b)) OR c a AND ( (NOT b) OR c) a AND ( NOT ( b OR c)) Per risolvere l ambiguità o si usano obbligatoriamente le parentesi oppure si assume un ordine di priorità degli operatori, quello usuale è NOT, AND, OR. Questo vuol dire che nel valutare una espressione prima si valutano i NOT poi gli AND e poi gli OR, questo corrisponde alla prima interpretazione riportata. Questo è anche l ordine con cui si risolve comunemente l ambiguità nelle espressioni algebriche numeriche con gli operatori -, e + infatti l espressione a b + c viene comunemente interpretata come ( a ( - b ) ) + c. OPERATORI DI BASE: AND, OR, NOT A AND B è una funzione logica che è vera solo se entrambi gli operandi A e B sono veri. A B A AND B F F F F V F V F F V V V A OR B è una funzione logica che è vera solo se almeno uno dei due operandi A o B è vero. A B A OR B F F F F V V V F V V V V NOT A è una funzione logica che inverte il valore logico del suo operando. A V F NOT A F V

7 Questi operatori possono essere combinati per scrivere delle espressioni logiche: A AND ( B OR ( NOT A ) ) ( NOT X ) OR X Nelle espressioni logiche si possono usare anche due costanti logiche true e false ad indicare il valore logico vero e il valore logico falso. A AND (B OR true) Esattamente come per gli operatori aritmetici +, -, *, / gli operatori logici hanno delle proprietà che permettono di manipolare le espressioni logiche lasciando invariato il valore logico della espressione. Proprietà: Simmetrica A AND B = B AND A A OR B = B OR A Associativa A AND ( B AND C ) = ( A AND B ) AND C A OR ( B OR C ) = ( A OR B ) OR C Elemento neutro A AND true = A A OR false = A A B = B A A+B = B+A A ( B C ) = ( A B ) C A + ( B + C ) = ( A + B ) + C A 1 = A A + 0 = A Elemento inverso A AND NOT A = false A A = 0 A OR NOT A = true A + A = 1 Distributiva A AND ( B OR C ) = ( A AND B ) OR ( A AND C ) A OR ( B AND C ) = ( A OR B ) AND ( A OR C ) Idempotenza A AND A = A A OR A = A A ( B + C ) = A B + A C A + ( B C ) = (A + B) (A +C) A A = A A + A = A Assorbimento A OR ( A AND B ) = A A + (A B) = A A AND ( A OR B ) = A A (A + B) = A A AND false = false A 0 = 0 A OR true = true A + 1 = 1 De Morgan NOT ( A AND B ) = (NOT A) OR (NOT B) NOT ( A OR B ) = (NOT A) AND (NOT B) Doppia negazione NOT NOT A = A A B = A + B A + B = A B A = A Sulla sinistra le proprietà sono espresse nella notazione linguistica mentre a destra le stesse proprietà sono espresse nella notazione aritmetica. Si noti proprio come molte proprietà siano comuni con l'algebra dei numeri. Queste proprietà permettono di semplificare una espressione logica, vediamo un esempio: NOT (A OR (B AND NOT A)) = NOT ( (A OR B) AND (A OR NOT A)) = NOT ( (A OR B) AND true ) = NOT ( A OR B ) = NOT A AND NOT B -- prop. distributiva -- elemento inverso OR -- elemento neutro AND -- De Morgan Data una espressione booleana si può trovare la tabella della verità che la rappresenta. Esempio: L espressione (A AND (NOT B)) OR C è una funzione booleana di 3 variabili logiche quindi la tabella di verità è fatta nel seguente modo:

8 A B C (A AND (NOT B) ) OR C F F F? F F V? F V F? F V V? V F F? V F V? V V F? V V V? Per determinare il valore dell espressione si può determinare il valore delle sotto espressioni che compongono l espressione iniziale, prima NOT B, poi A AND (NOT B) ed infine tutta l espressione (A AND (NOT B)) OR C: A B C NOT B A AND (NOT B) (A AND (NOT B) ) OR C F F F V F F F F V V F V F V F F F F F V V F F V V F F V V V V F V V V V V V F F F F V V V F F V Si può fare anche il contrario, cioè data una tabella di verità si può determinare una espressione logica equivalente, vediamo come con un esempio: x y z F(x,y,z) F F F F F F V F F V F F F V V F V F F V V F V V V V F V V V V F Si considerano i valori di x,y e z per cui F(x,y,z) è vera, per ognuno si ottengono delle espressioni booleane: si mettono in AND le variabili che sono vere e le variabili negate che sono false. Quindi si mettono in OR tra loro le espressioni ottenute. Il primo valore vero di F si ha per x vero, y falso e z falso che genera la sotto espressione: x AND (NOT y) AND (NOT z) Questa espressione è vera solo per x falso, y vero e z falso. Il secondo valore vero di F si ha per x vero, y falso, z vero che genera la sotto espressione: x AND (NOT y) AND z

9 Il terzo ed ultimo valore vero di F si ha per x vero, y vero, z falso che genera la sotto espressione: x AND y AND (NOT z) Componendo queste espressioni con l operatore OR si ottiene l espressione che rappresenta la funzione booleana: (x AND (NOT y) AND (NOT z)) OR (x AND (NOT y) AND z) OR (x AND y AND (NOT z)) Questo metodo di scrittura viene denominato forma canonica. Semplificazione tramite mappa di Karnaugh La mappa di Karnaugh è un metodo di rappresentazione esatta di sintesi di reti combinatorie a uno o più livelli. Una tale mappa costituisce una rappresentazione visiva di una funzione booleana in grado di mettere in evidenza le coppie di mintermini o di maxtermini a distanza di Hamming unitaria (ovvero di termini che differiscono per una sola variabile binaria). Siccome derivano da una meno intuitiva visione delle funzioni booleane in spazi {0,1}n con n numero delle variabili della funzione, le mappe di Karnaugh risultano applicabili efficacemente solo a funzioni con al più 5-6 variabili. Le mappe di Karnaugh permettono di costruire semplicemente la forma minima di una funzione come somma di prodotti logici (forma congiuntiva) o come prodotto di somme logiche (forma disgiuntiva) e quindi semplificazioni della funzione booleana spesso più immediate di quelle ottenibili con modifiche algebriche. Per vedere come funziona una mappa di Karnaugh sfruttiamo il precedente esercizio, in particolare la forma canonica della funzione ottenuta: (x AND (NOT y) AND (NOT z)) OR (x AND (NOT y) AND z) OR (x AND y AND (NOT z)) Quindi andiamo a costruire la mappa: xy z Nella mappa sono stati riportati i valori di falsità e verità (nel formato numerico) evidenziando due coppie di mintermini, questo permette di riscrivere la funzione tralasciando quelle variabili che all interno della coppia non hanno un valore costante: (x AND (NOT z)) OR (X AND (NOT y)) Andando poi a semplificare aritmeticamente la funzione trovata otteniamo quanto segue: x AND ((NOT z) OR (NOT y)) x AND (NOT (z AND y)) Reti logiche Le reti logiche sono strettamente legate all algebra di boole, sono reti composte da tre tipi di elementi (AND, OR e NOT) collegati tra loro. Ogni elemento ha degli ingressi booleani (sulla sinistra) ed una uscita booleana (sulla destra) gli elementi hanno una rappresentazione grafica che è la seguente: Un uscita di un elemento può essere collegata ad un ingresso di un altro elemento per realizzare una rete logica.

10 Una rete logica ha un insieme di segnali booleani di ingresso e un insieme di segnali booleani di uscita vediamo un esempio: Questa rete ha due ingressi X e Y ed una uscita F, a questa rete può essere associata un espressione booleana che determina il valore di F in funzione di X e Y, in questo caso si ha: F = ( NOT (X AND Y) ) AND ( (NOT X) OR Y ) Data un espressione booleana si può determinare una rete logica che la calcola. L importanza delle reti logiche è dovuta al fatto che i componenti elementari AND, OR e NOT possono essere realizzati utilizzando componenti elettronici (transistor) dove il valore vero/falso è rappresentato da un valore di tensione alto o basso. Vediamo come è possibile realizzare la somma tra numeri binari utilizzando delle reti logiche. Osserviamo che la cifra 0 può essere rappresentata dal valore booleano falso e la cifra 1 dal valore vero in base a questo si può determinare una espressione booleana che determina la somma di due cifre binarie e del riporto dalla cifra precedente e un altra espressione che determina il riporto per la cifra successiva, questo può essere rappresentato con la seguente tabella della verità: r x y S R Dove x e y sono le cifre binarie da sommare ed r è il riporto dalla cifra precedente, inoltre S è la somma ed R è il riporto per la cifra successiva. Data questa tabella di verità si possono determinare due espressioni logiche che calcolano S e R conoscendo r, x e y. Date queste due espressioni si può costruire una rete logica che le calcola usando componenti logici elementari (AND, OR e NOT): Utilizzando una serie di questi componenti che calcolano la somma di un bit si può realizzare un sommatore che somma 4 bit. Siano x 3 x 2 x 1 x 0 le cifre binarie del primo addendo e y 3 y 2 y 1 y 0 le cifre binarie del secondo addendo allora si possono ottenere le cifre binarie della somma S 3 S 2 S 1 S 0 utilizzando quattro componenti SB e connettendo il riporto ottenuto per una cifra alla cifra successiva: I calcolatori elettronici sono realizzati utilizzando milioni di componenti elementari AND/OR/NOT.

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Dispense Introduzione al calcolatore Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Nota: Queste dispense integrano e non sostituiscono quanto scritto sul libro di testo. 1 Sistemi di

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Indice. 1 Rappresentazione dei dati... 3

Indice. 1 Rappresentazione dei dati... 3 INSEGNAMENTO DI INFORMATICA DI BASE LEZIONE II CODIFICA DELL'INFORMAZIONE PROF. GIOVANNI ACAMPORA Indice 1 Rappresentazione dei dati... 3 1.1. Rappresentazione dei numeri... 3 1.1.1 Rappresentazione del

Dettagli

2. Codifica dell informazione

2. Codifica dell informazione 2. Codifica dell informazione Codifica Una codifica è una regola per associare in modo univoco i valori di un dato da codificare con sequenze di simboli. La corrispondenza definita dalla codifica è arbitraria,

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO TECNICO E LICEO SCIENTIFICO TECNOLOGICO ANGIOY LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace di eseguire

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

2.12 Esercizi risolti

2.12 Esercizi risolti Codifica dell'informazione 55 Lo standard IEEE prevede cinque cause di eccezione aritmetica: underflow, overflow, divisione per zero, eccezione per inesattezza, e eccezione di invalidità. Le eccezioni

Dettagli

Rappresentazione dell informazione Codifica Binaria

Rappresentazione dell informazione Codifica Binaria Fondamenti di Informatica Rappresentazione dell informazione Codifica Binaria Fondamenti di Informatica - D. Talia - UNICAL 1 Rappresentazione dell informazione Tutta l'informazione in un calcolatore è

Dettagli

Sistemi di numerazione: generalità

Sistemi di numerazione: generalità Sistemi di numerazione: generalità Nel corso della storia sono stati introdotti diversi sistemi di numerazione, dettati di volta in volta dalle specifiche esigenze dei vari popoli. Poiché ogni numero maggiore

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Rappresentazione binaria dei numeri negativi

Rappresentazione binaria dei numeri negativi Introduzione all Informatica 1 Conversione decimale binario (continuazione) La conversione di un numero decimale (es. 112) in binario si effettua tramite l algoritmo della divisione, dividendo successivamente

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Base generica: B A = {... }, con A = B, sequenze di n simboli (cifre) c n

Base generica: B A = {... }, con A = B, sequenze di n simboli (cifre) c n Rappresentare le informazioni con un insieme limitato di simboli (detto alfabeto A) in modo non ambiguo (algoritmi di traduzione tra codifiche) Esempio: numeri interi assoluti Codifica decimale (in base

Dettagli

Codifica dei numeri. Rappresentazione dell informazione

Codifica dei numeri. Rappresentazione dell informazione Rappresentazione dell informazione Rappresentazione informazione Elementi di aritmetica dei computer Organizzazione della memoria e codici correttori Salvatore Orlando Differenza tra simbolo e significato

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli

L'informazione e la sua codifica

L'informazione e la sua codifica L'informazione e la sua codifica Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Informatica e telecomunicazione Cos è l informatica informatica? lo studio sistematico degli

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica per chimica industriale e chimica applicata e ambientale LEZIONE 2 Rappresentazione delle informazioni: numeri e caratteri 1 Codice La relazione che associa ad ogni successione ben formata di simboli di

Dettagli

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

7 : I DATI E LA LORO STRUTTURA NELLA PROGRAMMAZIONE

7 : I DATI E LA LORO STRUTTURA NELLA PROGRAMMAZIONE 7 : I DATI E LA LORO STRUTTURA NELLA PROGRAMMAZIONE TIPO DI DATO Un tipo di dato è una entità caratterizzata dai seguenti elementi: un insieme X di valori che raprresenta il dominio del tipo di dato; un

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Sistemi di Numerazione Binaria NB.1

Sistemi di Numerazione Binaria NB.1 Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210 Il sistema BINARIO e quello ESADECIMALE. Il sistema di numerazione binario è particolarmente legato ai calcolatori in quanto essi possono riconoscere solo segnali aventi due valori: uno alto e uno basso;

Dettagli

Codifica dell informazione

Codifica dell informazione Codifica dell informazione Il calcolatore memorizza ed elabora vari tipi di informazioni Numeri, testi, immagini, suoni Occorre rappresentare tale informazione in formato facilmente manipolabile dall elaboratore

Dettagli

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi rnicolussi@fub.it Lezioni

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Parte I Sui testi di approfondimento: leggere dal Cap. del testo C (Console, Ribaudo):.,. fino a pg.6 La codifica delle informazioni Un calcolatore memorizza ed elabora informazioni

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Informatica B a.a 2005/06 (Meccanici 4 squadra) PhD. Ing. Michele Folgheraiter

Informatica B a.a 2005/06 (Meccanici 4 squadra) PhD. Ing. Michele Folgheraiter Informatica B a.a 2005/06 (Meccanici 4 squadra) Scaglione: da PO a ZZZZ PhD. Ing. Michele Folgheraiter Architettura del Calcolatore Macchina di von Neumann Il calcolatore moderno è basato su un architettura

Dettagli

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE

SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE SISTEMI DI NUMERAZIONE IL SISTEMA DECIMALE La base del sistema decimale è 10 I simboli del sistema decimale sono: 0 1 2 3 4 5 6 7 8 9 Il sistema di numerazione decimale è un sistema posizionale. L aggettivo

Dettagli

Rappresentazione di informazioni con un alfabeto finito

Rappresentazione di informazioni con un alfabeto finito Rappresentazione di informazioni con un alfabeto finito Sia A = { a 1,, a k } un insieme (alfabeto) di k simboli, detti anche lettere. Quante sono le sequenze composte da n simboli (anche ripetuti) di

Dettagli

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( ) Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente

Dettagli

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 90.1 Sistemi di numerazione.................................................... 605 90.1.1 Sistema decimale..................................................

Dettagli

PROVA INTRACORSO TRACCIA A Pagina 1 di 6

PROVA INTRACORSO TRACCIA A Pagina 1 di 6 PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A =

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A = ALGEBRA DI BOOLE L'algebra di Boole è un insieme di regole matematiche; per rappresentare queste regole si utilizzano variabili logiche, funzioni logiche, operatori logici. variabili logiche: si indicano

Dettagli

Lezione 2: Codifica binaria dell informazione. Codifica binaria

Lezione 2: Codifica binaria dell informazione. Codifica binaria Lezione 2: Codifica binaria dell informazione Codifica binaria Elaborazione di dati binari Materiale didattico Lucidi delle lezioni, disponibili al sito: http://wwwinfo.deis.unical.it/~irina Oppure sul

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

LA NUMERAZIONE BINARIA

LA NUMERAZIONE BINARIA LA NUMERAZIONE BINARIA 5 I SISTEMI DI NUMERAZIONE Fin dalla preistoria l uomo ha avuto la necessità di fare calcoli, utilizzando svariati tipi di dispositivi: manuali (mani, bastoncini, sassi, abaco),

Dettagli

Alessandro Pellegrini

Alessandro Pellegrini Esercitazione sulle Rappresentazioni Numeriche Esistono 1 tipi di persone al mondo: quelli che conoscono il codice binario e quelli che non lo conoscono Alessandro Pellegrini Cosa studiare prima Conversione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Numerazione binaria e rappresentazione delle informazioni

Numerazione binaria e rappresentazione delle informazioni Numerazione binaria e rappresentazione delle informazioni Info Sito del corso: http://home.dei.polimi.it/amigoni/informaticab.html Nicola Basilico, nicola.basilico@gmail.com Problema Abbiamo informazioni

Dettagli

Informatica Generale 02 - Rappresentazione numeri razionali

Informatica Generale 02 - Rappresentazione numeri razionali Informatica Generale 02 - Rappresentazione numeri razionali Cosa vedremo: Rappresentazione binaria dei numeri razionali Rappresentazione in virgola fissa Rappresentazione in virgola mobile La rappresentazione

Dettagli

Codifica binaria dei numeri

Codifica binaria dei numeri Codifica binaria dei numeri Caso più semplice: in modo posizionale (spesso detto codifica binaria tout court) Esempio con numero naturale: con 8 bit 39 = Codifica in virgola fissa dei numeri float: si

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Informatica Generale (Prof. Luca A. Ludovico) Presentazione 6.1 Rappresentazione digitale dell informazione

Informatica Generale (Prof. Luca A. Ludovico) Presentazione 6.1 Rappresentazione digitale dell informazione Rappresentazione digitale dell informazione Introduzione Nelle scorse lezioni, abbiamo mostrato come sia possibile utilizzare stringhe di bit per rappresentare i numeri interi e frazionari, con o senza

Dettagli

Rappresentazione digitale

Rappresentazione digitale I BIT POSSONO RAPPRESENTARE TUTTO Tutta l informazione interna ad un computer è codificata con sequenze di due soli simboli : 0 e 1 è facile realizzare dispositivi elettronici che discriminano fra due

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Parte 1. Vettori di bit - AA. 2012/13 1.1

Parte 1. Vettori di bit - AA. 2012/13 1.1 1.1 Parte 1 Vettori di bit 1.2 Notazione posizionale Ogni cifra assume un significato diverso a seconda della posizione in cui si trova Rappresentazione di un numero su n cifre in base b: Posizioni a n

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

Codifica binaria dell Informazione Aritmetica del Calcolatore

Codifica binaria dell Informazione Aritmetica del Calcolatore Codifica binaria dell Informazione Aritmetica del Calcolatore 1 Significati e simboli Significati Codifica Simboli riga linea Interpretazione Codifica ridondante sun soleil güneş x y a Codifica ambigua

Dettagli

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011 RAPPRESENTAZIONE DEI NUMERI BINARI Corso di Fondamenti di Informatica AA 2010-2011 Prof. Franco Zambonelli Numeri interi positivi Numeri interi senza segno Caratteristiche generali numeri naturali (1,2,3,...)

Dettagli

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore.

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore. In una delle molteplici possibili definizioni di informazione, questa viene fatta corrispondere a qualunque elemento, in grado di essere rappresentato e comunicato, che consenta di fornire o aumentare

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Appunti sulla rappresentazione dell informazione

Appunti sulla rappresentazione dell informazione Appunti sulla rappresentazione dell informazione Roberto Beraldi DISPENSA PER IL CORSO DI FONDAMENTI DI INFORMATICA CORSI DI LAUREA IN INGEGNERIA CHIMICA, DEI MATERIALI,NUCLEARE (vecchi ordinamenti) Anno

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

SISTEMI DI NUMERAZIONE

SISTEMI DI NUMERAZIONE Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica SISTEMI DI NUMERAZIONE Come nei calcolatori sono rappresentati i numeri Numeri I numeri rappresentano

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Rappresentazione binaria

Rappresentazione binaria Rappresentazione binaria DOTT. ING. LEONARDO RIGUTINI RICERCATORE ASSOCIATO DIPARTIMENTO INGEGNERIA DELL INFORMAZIONE UNIVERSITÀ DI SIENA VIA ROMA 56 53100 SIENA UFF. 0577234850-7102 RIGUTINI@DII.UNISI.IT

Dettagli

Lezione 3 Prof. Angela Bonifati

Lezione 3 Prof. Angela Bonifati Lezione 3 Prof. Angela Bonifati Complemento a 2 Algebra booleana Le infrastrutture hardware Esercizi sulla codifica dei numeri Eseguire le seguenti conversioni: Da base 2 e 16 in base 10: 110 2 =???? 10

Dettagli

Introduzione all Informatica

Introduzione all Informatica Introduzione all Informatica Lezione 4 Davide Di Ruscio Dipartimento di Informatica Università degli Studi dell Aquila diruscio@di.univaq.it Nota Questi lucidi sono tratti dal materiale distribuito dalla

Dettagli

Informatica 1. Riepilogo

Informatica 1. Riepilogo Informatica 1 Hardware e Software ing. Luigi Puzone 1 Riepilogo Nella lezione scorsa abbiamo visto i seguenti concetti di base Dati e informazioni e loro ciclo di elaborazione Hardware e Software Tipologie

Dettagli

Megabyte (MB) = 1024KB 1 milione di Byte (e.g. un immagine di 30MB) Gigabyte (GB) = 1024MB 1 miliardo di Byte (e.g. un hard disk da 80GB)

Megabyte (MB) = 1024KB 1 milione di Byte (e.g. un immagine di 30MB) Gigabyte (GB) = 1024MB 1 miliardo di Byte (e.g. un hard disk da 80GB) Unità di misura per l informatica Un bit (b) rappresenta una cifra binaria. E l unità minima di informazione. Un Byte (B) è costituito da 8 bit. Permette di codificare 256 entità di informazione distinte

Dettagli

OBIETTIVI SPECIFICI DI APPRENDIMENTO

OBIETTIVI SPECIFICI DI APPRENDIMENTO Disciplina:... Anno scolastico: 20.../20... Classe/i :... Docente:... DI APPRENDIMENTO SEZIONE 1 Premesse matematiche Nozioni fondamentali sui sistemi di numerazione Sistemi di numerazione in base diversa

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Sistemi di numerazione

Sistemi di numerazione Sistemi di numerazione 1 Sistemi di numerazione 2 Sistemi di numerazione I primi esempi di utilizzo di sistemi di numerazione risalgono al neolitico, ovvero a circa 50.000 anni fa. In epoca preistorica,

Dettagli

La codifica delle informazioni

La codifica delle informazioni La codifica delle informazioni Bit e byte Come già visto l elaboratore è in grado di rappresentare informazioni al proprio interno solo utilizzando cifre binarie (bit) che solitamente vengono manipolate

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

Tecnologia dell'informazione e della Comunicazione (TIC) Modulo 2: Informazione, dati e codifica

Tecnologia dell'informazione e della Comunicazione (TIC) Modulo 2: Informazione, dati e codifica Tecnologia dell'informazione e della Comunicazione (TIC) Modulo 2: Informazione, dati e codifica Informazione: è lo scambio di conoscenza tra due o più persone nonché il significato che le persone coinvolte

Dettagli

Alcune nozioni di base di Logica Matematica

Alcune nozioni di base di Logica Matematica Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di

Dettagli

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti

Esercitazione Informatica I AA 2012-2013. Nicola Paoletti Esercitazione Informatica I AA 2012-2013 Nicola Paoletti 4 Gigno 2013 2 Conversioni Effettuare le seguenti conversioni, tenendo conto del numero di bit con cui si rappresenta il numero da convertire/convertito.

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Corso di Laurea in Scienze dell'educazione, 2014-15 Lorenzo Bettini http://www.di.unito.it/~bettini Informazioni generali Ricevimento studenti su appuntamento Dipartimento di

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013 LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di

Dettagli

Corso di informatica di base

Corso di informatica di base Rel. 1.0 16.10.2010 Luigi Ferrari Indice 1. Modulo 1 - Concetti base dell'informatica...1 1.1. Dato e informazione...1 1.1.1. Misura dell'informazione...1 1.2. Sistema decimale e sistema binario, ma non

Dettagli

Università degli Studi di Messina Cattedra di Chirurgia Generale Prof. Salvatore Gorgone. Informatica

Università degli Studi di Messina Cattedra di Chirurgia Generale Prof. Salvatore Gorgone. Informatica Università degli Studi di Messina Cattedra di Chirurgia Generale Prof. Salvatore Gorgone Informatica Informatica = Informazione automatica Philippe Dreyfus 962 Scienza che studia i sistemi per l elaborazione

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOJ GRAFICA E COMUNICAZIONE LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli