Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno"

Transcript

1 Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni: Istruzioni di ingresso/uscita (es. leggi, visualizza, ) Istruzioni aritmetico-logiche (es. c = a * b) Istruzioni di controllo (es. se allora, ripeti ) Sistema numerico binario Il sistema numerico binario è un sistema numerico posizionale in base 2, cioè che utilizza 2 simboli, tipicamente 0 e 1, invece dei 10 del sistema numerico decimale tradizionale. Di conseguenza, la cifra in posizione N (da destra) si considera moltiplicata per 2 N (anziché per 10 N come avverrebbe nella numerazione decimale). Ecco una tabella che confronta le rappresentazioni binarie, esadecimali e decimali di alcuni numeri: binario esadecimale decimale 0000 = 0 = = 1 = = 2 = = 3 = = 4 = = 5 = = 6 = = 7 = = 8 = = 9 = = A = = B = = C = = D = = E = = F = 15 È usato in informatica per la rappresentazione interna dei numeri, grazie alla semplicità di realizzare fisicamente un elemento con due stati anziché un numero superiore, ma anche per la corrispondenza con i valori logici vero e falso. Rappresentazioni di numeri binari I numeri binari, in campo informatico, non sono utilizzati esclusivamente per memorizzare numeri interi positivi ma, mediante alcune convenzioni, è possibile scrivere numeri binari con segno e parte decimale senza introdurre nuovi caratteri (come la virgola e il segno meno, non memorizzabili su di un bit). Rappresentazione in modulo e segno Questo è il modo più semplice per rappresentare e distinguere numeri positivi e negativi: al numero binario vero e proprio viene anteposto un bit che, per convenzione, assume il valore 0 se il numero è positivo ed assume il valore 1 se il numero è negativo. Il grande difetto di questa rappresentazione è quello di avere due modi per scrivere il numero 0: e significano infatti +0 e -0.

2 Rappresentazione in complemento a 2 Questo metodo di rappresentazione ha notevoli vantaggi, soprattutto per effettuare somme e differenze: in pratica ai numeri viene anteposto un bit di valore zero; se poi il numero è negativo è necessario convertirlo in complemento a 2: per farlo è sufficiente leggere il numero da destra verso sinistra e invertire tutte le cifre a partire dal primo bit pari a 1 (escluso). Per fare un esempio: = = CA2 Come è possibile notare seguendo questo metodo il primo bit diventa automaticamente il bit del segno (come per il metodo precedente). Viene però risolto il problema dell'ambiguità dello 0 (in complemento a e hanno significati diversi) e vengono enormemente facilitate le operazioni di somma e differenza, che si riducono alla sola operazione di somma: per spiegare meglio basta fare un esempio: = ( 10) 10 = = CA CA2 = CA2 = = 5 10 Rappresentazione a virgola fissa Dato che in un bit non è rappresentabile la virgola il metodo più semplice per rappresentare numeri frazionari è quello di scegliere arbitrariamente la posizione della virgola (ad es. se si sceglie di usare 4 bit per la parte intera e 4 per la parte frazionaria: significa 1010, ). Rappresentazione in virgola mobile Esistono innumerevoli modi per rappresentare numeri in virgola mobile ma il sistema più utilizzato è lo standard IEEE P754; questo metodo comporta l'utilizzo della notazione scientifica, in cui ogni numero è identificato dal segno, da una mantissa (1,xxxxx) e dall'esponente (nyyyyy). La procedura standard per la conversione da numero decimale a numero binario P754 è la seguente: 1. Prima di tutto il numero, in valore assoluto, va convertito in binario. 2. Il numero va poi diviso (o moltiplicato) per 2 fino a ottenere una forma del tipo 1,xxxxxx. 3. Di questo numero viene eliminato l'1 iniziale (per risparmiare memoria) 4. Il numero di volte per cui il numero è stato diviso (o moltiplicato) per 2 rappresenta l'esponente: questo valore (decimale) va espresso in eccesso 127, ovvero è necessario sommare 127 e convertire il numero risultante in binario. Nel caso di rappresentazione a precisione doppia (v. definizione seguente) il valore dell'esponente viene espresso in eccesso A questo punto abbiamo raccolto tutti i dati necessari per memorizzare il numero: in base al numero di bit che abbiamo a disposizione possiamo utilizzare tre formati: il formato a precisione singola (32 bit), il formato a precisione doppia (64 bit) e il formato a precisione quadrupla (128 bit). 1. Nel primo caso possiamo scrivere il valore utilizzando 1 bit per il segno, 8 bit per l'esponente e 23 bit per la mantissa. 2. Nel secondo caso servirà 1 bit per il segno, 11 bit per l'esponente e 52 per la mantissa. 3. Nel terzo caso servirà 1 bit per il segno, 15 bit per l'esponente e 112 per la mantissa. Per esempio, convertiamo il valore 14, in binario P754 single: 1. Convertiamo prima di tutto il numero: = per la parte intera e 0, = 0, Quindi il numero definitivo è 1110, (segno escluso). 2. Dividiamo poi il numero per 2 per ottenere la seguente notazione: 1110, = 1, * La mantissa diventa, quindi: Per esprimere l'esponente in eccesso 127, infine: = = Il numero, alla fine, sarà espresso nel formato:

3 Sistema numerico esadecimale Il sistema numerico esadecimale (spesso abbreviato come esa o hex) è un sistema numerico posizionale in base 16, cioè che utilizza 16 simboli invece dei 10 del sistema numerico decimale tradizionale. Per l'esadecimale si usano in genere simboli da 0 a 9 e poi le lettere da A a F, per un totale di 16 simboli. Il sistema esadecimale è molto usato in informatica, per la sua relazione diretta tra una cifra esadecimale e quattro cifre binarie. È spesso usato come intermediario, oppure come sistema numerico a sé stante. Per esempio, è possibile esprimere un byte con esattamente due cifre esadecimali (invece che con 3 decimali). Ci sono numerosi modi per denotare un numero come esadecimale, usati in differenti linguaggi di programmazione: Il C e i linguaggi con una sintassi simile (come il Java) usano il prefisso '0x', per esempio "0x5A3". Lo zero iniziale è presente perché i numeri devono iniziare con un carattere numerico, e la 'x' significa esadecimale (in caso di assenza della 'x', il numero è inteso come ottale. Il Pascal e alcuni Assembly indicano l'esadecimale con il suffisso 'h' (se il numero inizia con una lettera, si usa anche il prefisso '0'), per esempio "0A3Ch", "5A3h". Un metodo per convertire un numero esadecimale in decimale è quello di moltiplicare le sue cifre per le potenze della base 16. quindi (Si ricorda che 16 0 = 1) Allora L'operazione inversa - da decimale ad esadecimale - si realizza con una serie di divisioni successive. Conversione dal sistema esadecimale al sistema binario e viceversa La ragione per cui si adopera in informatica il sistema esadecimale è che può essere considerato come una scrittura più compatta del sistema binario. La conversione dalla base 16 alla base 2 e viceversa può essere svolta per sostituzione di gruppi di cifre invece che con algoritmi di divisione. Ad esempio, si consideri il seguente numero in base 16: A16BC9 16. Per convertilo in base 2, è sufficiente prelevare ciascuna cifra esadecimale e sostituirla con il suo equivalente nel sistema binario. Seguendo questa procedura, si perviene al seguente risultato: A16BC9 16 = A 1 6 B C 9 16 = = Per ottenere la conversione opposta, invece, bisogna procedere nella maniera inversa: si suddivide il numero binario in gruppi di 4 cifre a partire da destra (se l'ultimo gruppo contiene meno di 4 cifre, vanno anteposti tanti zeri quanti servono per completarlo) e si sostituisce ogni gruppo con il suo equivalente esadecimale. Supponiamo ad esempio di convertire in base 16 il numero in base 2: Effettuando le operazioni descritte in precedenza si ha: = = 2 5 F C B 16 = 25FCB 16 Rappresentazione dei caratteri: codice ASCII ASCII è l'acronimo di American Standard Code for Information Interchange (ovvero Codice Standard Americano per lo Scambio di Informazioni), è un sistema di codifica dei caratteri a 7 bit comunemente utilizzato nei calcolatori, proposto dall'ingegnere dell'ibm Bob Bemer nel 1961, e successivamente accettato come standard dall'iso. Per non confonderlo con le estensioni a 8 bit proposte successivamente, questo codice viene talvolta riferito come US-ASCII.

4 Alla specifica iniziale basata su codici di 7 bit fecero seguito negli anni molte proposte di estensione ad 8 bit, con lo scopo di raddoppiare il numero di caratteri rappresentabili. Nei PC IBM si fa per l'appunto uso di una di queste estensioni, ormai standard di fatto, chiamata extended ASCII o high ASCII. In questo ASCII esteso, i caratteri aggiunti sono vocali accentate, simboli semigrafici e altri simboli di uso meno comune.

5 ISO 8859 In seguito al proliferare di codifiche proprietarie, l'iso rilasciò uno standard denominato ISO 8859 contenente un'estensione a 8 bit del set ASCII. Il più importante fu l'iso , detto anche Latin1, contenente i caratteri per i linguaggi dell'europa Occidentale. Furono standardizzate codifiche per gli altri linguaggi: ISO per i linguaggi dell'europa Orientale, ISO per i caratteri cirillici e molti altri. Una particolarità dell'iso 8859 rispetto agli altri caratteri estesi è che i caratteri dal 128 al 159, i cui 7 bit più bassi corrispondono ai caratteri di controllo ASCII, non sono usati per non creare problemi di compatibilità. Microsoft successivamente creò la code page 1252, un set compatibile con l'iso che riempie anche questi 32 caratteri, che divenne lo standard per le versioni europee di Windows. UNICODE Una nuova codifica chiamata Unicode fu sviluppata nel 1991 per poter codificare più caratteri in modo standard e permettere di utilizzare più set di caratteri estesi (es. greco e cirillico) in un unico documento; questo set di caratteri è oggi largamente diffuso. Inizialmente prevedeva caratteri ed è stato in seguito esteso a e finora ne sono stati assegnati circa I primi 256 caratteri ricalcano esattamente quelli dell'iso La maggior parte dei codici sono usati per codificare lingue come il cinese, il giapponese ed il coreano, ma vi sono anche caratteri appartenenti a lingue più esotiche come il klingon. Algebra di Boole I fondamenti dell algebra Booleana sono stati delineati dal matematico inglese George Boole in un lavoro pubblicato nel 1847 riguardante l analisi della logica e in particolare l algebra della logica. Questa algebra include una serie di operazioni che si effettuano su delle variabili, dette appunto variabili booleane, che permettono di codificare le informazioni su due soli livelli. Nell'algebra di Boole essendo, a differenza di quella tradizionale, un'algebra binaria, le variabili possono assumere soltanto due stati: 0/1; v/f ( vero, falso); l/h (low, high); t/f (true, false); on/off; (acceso/spento) Ad esempio la variabile logica x può avere valore vero o valore falso. La variabile logica oggi_piove ha associato un valore che indica appunto se oggi piove oppure no, quindi può essere vera oppure no. Le Funzioni logiche o booleane sono funzioni che associano ad una sequenza di variabili booleane un valore booleano, ad esempio: F(x,y,z) La funzione F associa in base ai tre valori logici assunti dalle variabili logiche x,y,z un valore logico vero o falso. Si può osservare che si hanno solo 8 possibilità per i valori assunti dalle tre variabili: 1. x falso, y falso, z falso 2. x falso, y falso, z vero 3. x falso, y vero, z falso 4. x falso, y vero, z vero 5. x vero, y falso, z falso 6. x vero, y falso, z vero 7. x vero, y vero, z falso 8. x vero, y vero, z vero Per ognuna di queste otto possibilità la funzione F assume valore vero oppure falso. Un modo semplice per rappresentare graficamente questa associazione usa una tabella detta tabella di verità: x y z F(x,y,z) F F F V F F V F F V F F F V V V V F F V V F V F V V F F V V V V

6 L algebra di Boole introduce tre operatori di base AND, OR e NOT tramite i quali può essere espressa qualsiasi funzione logica. Notazione: prodotto logico a AND b a b a b somma logica a OR b a b a + b negazione NOT a a a vero true T 1 falso false 0 Le precedenti sono tre notazioni diverse per esprimere i tre operatori logici, la prima è una notazione linguistica ed è usata in molti linguaggi di programmazione, la seconda è la notazione matematica, la terza è la notazione aritmetica che enfatizza la similarità tra l algebra booleana e l algebra dei numeri. Nella logica le variabili logiche sono chiamate anche proposizioni semplici. Mentre le espressioni booleane che contengono operatori AND, OR e NOT sono chiamate anche proposizioni composte. Esempio di proposizione semplice o variabile logica: a Esempio di proposizione composta o espressione logica: a AND NOT b OR c L esempio precedente è ambiguo perché potrebbe essere interpretato nei modi seguenti: ( a AND (NOT b)) OR c a AND ( (NOT b) OR c) a AND ( NOT ( b OR c)) Per risolvere l ambiguità o si usano obbligatoriamente le parentesi oppure si assume un ordine di priorità degli operatori, quello usuale è NOT, AND, OR. Questo vuol dire che nel valutare una espressione prima si valutano i NOT poi gli AND e poi gli OR, questo corrisponde alla prima interpretazione riportata. Questo è anche l ordine con cui si risolve comunemente l ambiguità nelle espressioni algebriche numeriche con gli operatori -, e + infatti l espressione a b + c viene comunemente interpretata come ( a ( - b ) ) + c. OPERATORI DI BASE: AND, OR, NOT A AND B è una funzione logica che è vera solo se entrambi gli operandi A e B sono veri. A B A AND B F F F F V F V F F V V V A OR B è una funzione logica che è vera solo se almeno uno dei due operandi A o B è vero. A B A OR B F F F F V V V F V V V V NOT A è una funzione logica che inverte il valore logico del suo operando. A V F NOT A F V

7 Questi operatori possono essere combinati per scrivere delle espressioni logiche: A AND ( B OR ( NOT A ) ) ( NOT X ) OR X Nelle espressioni logiche si possono usare anche due costanti logiche true e false ad indicare il valore logico vero e il valore logico falso. A AND (B OR true) Esattamente come per gli operatori aritmetici +, -, *, / gli operatori logici hanno delle proprietà che permettono di manipolare le espressioni logiche lasciando invariato il valore logico della espressione. Proprietà: Simmetrica A AND B = B AND A A OR B = B OR A Associativa A AND ( B AND C ) = ( A AND B ) AND C A OR ( B OR C ) = ( A OR B ) OR C Elemento neutro A AND true = A A OR false = A A B = B A A+B = B+A A ( B C ) = ( A B ) C A + ( B + C ) = ( A + B ) + C A 1 = A A + 0 = A Elemento inverso A AND NOT A = false A A = 0 A OR NOT A = true A + A = 1 Distributiva A AND ( B OR C ) = ( A AND B ) OR ( A AND C ) A OR ( B AND C ) = ( A OR B ) AND ( A OR C ) Idempotenza A AND A = A A OR A = A A ( B + C ) = A B + A C A + ( B C ) = (A + B) (A +C) A A = A A + A = A Assorbimento A OR ( A AND B ) = A A + (A B) = A A AND ( A OR B ) = A A (A + B) = A A AND false = false A 0 = 0 A OR true = true A + 1 = 1 De Morgan NOT ( A AND B ) = (NOT A) OR (NOT B) NOT ( A OR B ) = (NOT A) AND (NOT B) Doppia negazione NOT NOT A = A A B = A + B A + B = A B A = A Sulla sinistra le proprietà sono espresse nella notazione linguistica mentre a destra le stesse proprietà sono espresse nella notazione aritmetica. Si noti proprio come molte proprietà siano comuni con l'algebra dei numeri. Queste proprietà permettono di semplificare una espressione logica, vediamo un esempio: NOT (A OR (B AND NOT A)) = NOT ( (A OR B) AND (A OR NOT A)) = NOT ( (A OR B) AND true ) = NOT ( A OR B ) = NOT A AND NOT B -- prop. distributiva -- elemento inverso OR -- elemento neutro AND -- De Morgan Data una espressione booleana si può trovare la tabella della verità che la rappresenta. Esempio: L espressione (A AND (NOT B)) OR C è una funzione booleana di 3 variabili logiche quindi la tabella di verità è fatta nel seguente modo:

8 A B C (A AND (NOT B) ) OR C F F F? F F V? F V F? F V V? V F F? V F V? V V F? V V V? Per determinare il valore dell espressione si può determinare il valore delle sotto espressioni che compongono l espressione iniziale, prima NOT B, poi A AND (NOT B) ed infine tutta l espressione (A AND (NOT B)) OR C: A B C NOT B A AND (NOT B) (A AND (NOT B) ) OR C F F F V F F F F V V F V F V F F F F F V V F F V V F F V V V V F V V V V V V F F F F V V V F F V Si può fare anche il contrario, cioè data una tabella di verità si può determinare una espressione logica equivalente, vediamo come con un esempio: x y z F(x,y,z) F F F F F F V F F V F F F V V F V F F V V F V V V V F V V V V F Si considerano i valori di x,y e z per cui F(x,y,z) è vera, per ognuno si ottengono delle espressioni booleane: si mettono in AND le variabili che sono vere e le variabili negate che sono false. Quindi si mettono in OR tra loro le espressioni ottenute. Il primo valore vero di F si ha per x vero, y falso e z falso che genera la sotto espressione: x AND (NOT y) AND (NOT z) Questa espressione è vera solo per x falso, y vero e z falso. Il secondo valore vero di F si ha per x vero, y falso, z vero che genera la sotto espressione: x AND (NOT y) AND z

9 Il terzo ed ultimo valore vero di F si ha per x vero, y vero, z falso che genera la sotto espressione: x AND y AND (NOT z) Componendo queste espressioni con l operatore OR si ottiene l espressione che rappresenta la funzione booleana: (x AND (NOT y) AND (NOT z)) OR (x AND (NOT y) AND z) OR (x AND y AND (NOT z)) Questo metodo di scrittura viene denominato forma canonica. Semplificazione tramite mappa di Karnaugh La mappa di Karnaugh è un metodo di rappresentazione esatta di sintesi di reti combinatorie a uno o più livelli. Una tale mappa costituisce una rappresentazione visiva di una funzione booleana in grado di mettere in evidenza le coppie di mintermini o di maxtermini a distanza di Hamming unitaria (ovvero di termini che differiscono per una sola variabile binaria). Siccome derivano da una meno intuitiva visione delle funzioni booleane in spazi {0,1}n con n numero delle variabili della funzione, le mappe di Karnaugh risultano applicabili efficacemente solo a funzioni con al più 5-6 variabili. Le mappe di Karnaugh permettono di costruire semplicemente la forma minima di una funzione come somma di prodotti logici (forma congiuntiva) o come prodotto di somme logiche (forma disgiuntiva) e quindi semplificazioni della funzione booleana spesso più immediate di quelle ottenibili con modifiche algebriche. Per vedere come funziona una mappa di Karnaugh sfruttiamo il precedente esercizio, in particolare la forma canonica della funzione ottenuta: (x AND (NOT y) AND (NOT z)) OR (x AND (NOT y) AND z) OR (x AND y AND (NOT z)) Quindi andiamo a costruire la mappa: xy z Nella mappa sono stati riportati i valori di falsità e verità (nel formato numerico) evidenziando due coppie di mintermini, questo permette di riscrivere la funzione tralasciando quelle variabili che all interno della coppia non hanno un valore costante: (x AND (NOT z)) OR (X AND (NOT y)) Andando poi a semplificare aritmeticamente la funzione trovata otteniamo quanto segue: x AND ((NOT z) OR (NOT y)) x AND (NOT (z AND y)) Reti logiche Le reti logiche sono strettamente legate all algebra di boole, sono reti composte da tre tipi di elementi (AND, OR e NOT) collegati tra loro. Ogni elemento ha degli ingressi booleani (sulla sinistra) ed una uscita booleana (sulla destra) gli elementi hanno una rappresentazione grafica che è la seguente: Un uscita di un elemento può essere collegata ad un ingresso di un altro elemento per realizzare una rete logica.

10 Una rete logica ha un insieme di segnali booleani di ingresso e un insieme di segnali booleani di uscita vediamo un esempio: Questa rete ha due ingressi X e Y ed una uscita F, a questa rete può essere associata un espressione booleana che determina il valore di F in funzione di X e Y, in questo caso si ha: F = ( NOT (X AND Y) ) AND ( (NOT X) OR Y ) Data un espressione booleana si può determinare una rete logica che la calcola. L importanza delle reti logiche è dovuta al fatto che i componenti elementari AND, OR e NOT possono essere realizzati utilizzando componenti elettronici (transistor) dove il valore vero/falso è rappresentato da un valore di tensione alto o basso. Vediamo come è possibile realizzare la somma tra numeri binari utilizzando delle reti logiche. Osserviamo che la cifra 0 può essere rappresentata dal valore booleano falso e la cifra 1 dal valore vero in base a questo si può determinare una espressione booleana che determina la somma di due cifre binarie e del riporto dalla cifra precedente e un altra espressione che determina il riporto per la cifra successiva, questo può essere rappresentato con la seguente tabella della verità: r x y S R Dove x e y sono le cifre binarie da sommare ed r è il riporto dalla cifra precedente, inoltre S è la somma ed R è il riporto per la cifra successiva. Data questa tabella di verità si possono determinare due espressioni logiche che calcolano S e R conoscendo r, x e y. Date queste due espressioni si può costruire una rete logica che le calcola usando componenti logici elementari (AND, OR e NOT): Utilizzando una serie di questi componenti che calcolano la somma di un bit si può realizzare un sommatore che somma 4 bit. Siano x 3 x 2 x 1 x 0 le cifre binarie del primo addendo e y 3 y 2 y 1 y 0 le cifre binarie del secondo addendo allora si possono ottenere le cifre binarie della somma S 3 S 2 S 1 S 0 utilizzando quattro componenti SB e connettendo il riporto ottenuto per una cifra alla cifra successiva: I calcolatori elettronici sono realizzati utilizzando milioni di componenti elementari AND/OR/NOT.

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

Rappresentazione numeri in virgola mobile

Rappresentazione numeri in virgola mobile Rappresentazione numeri in virgola mobile Un numero non intero può essere rappresentato in infiniti modi quando utilizziamo la notazione esponenziale: Es. 34.5 = 0.345 10 2 = 0.0345 10 3 = 345 10-1 Questo

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Esercizi per il recupero del debito formativo:

Esercizi per il recupero del debito formativo: ANNO SCOLASTICO 2005/2006 CLASSE 3 ISC Esercizi per il recupero del debito formativo: Disegnare il diagramma e scrivere la matrice delle transizioni di stato degli automi a stati finiti che rappresentano

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.

Floating Point N = M BE. Notazione in virgola mobile. base. esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1. Floating Point Notazione in virgola mobile N = M BE mantissa base esponente esempi 34.76 104 3.6891 106 = 36.891 105 =368.91 104 12.78 10-3 1.6273 102 forma normalizzata: la mantissa ha una sola cifra

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Guida rapida all uso di ECM Titanium

Guida rapida all uso di ECM Titanium Guida rapida all uso di ECM Titanium Introduzione Questa guida contiene una spiegazione semplificata del funzionamento del software per Chiputilizzare al meglio il Tuning ECM Titanium ed include tutte

Dettagli

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale

Nella prima lezione... Che cos è il Digitale. Prima parte: Che cos è il Digitale. Che cos è il Digitale. Che cos è il Digitale !"$#%!" #% Nella prima lezione... Definizione di Informatica Cosa è una soluzione algoritmica Esempi di algoritmi cicalese@dia.unisa.it 2 Prima parte: Società dell informazione Ma cosa vuol dire società

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE

LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE LA MOLTIPLICAZIONE IN PRIMA ELEMENTARE E bene presentarla confrontando tra loro varie tecniche: addizione ripetuta; prodotto combinatorio (schieramenti). Rispetto a quest'ultima tecnica, grande utilità

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN

MODBUS-RTU per. Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie. Expert NANO 2ZN per Expert NANO 2ZN Specifiche protocollo di comunicazione MODBUS-RTU per controllo in rete dispositivi serie Expert NANO 2ZN Nome documento: MODBUS-RTU_NANO_2ZN_01-12_ITA Software installato: NANO_2ZN.hex

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

Le variabili. Olga Scotti

Le variabili. Olga Scotti Le variabili Olga Scotti Cos è una variabile Le variabili, in un linguaggio di programmazione, sono dei contenitori. Possono essere riempiti con un valore che poi può essere riletto oppure sostituito.

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

I db, cosa sono e come si usano. Vediamo di chiarire le formule.

I db, cosa sono e come si usano. Vediamo di chiarire le formule. I db, cosa sono e come si usano. Il decibel è semplicemente una definizione; che la sua formulazione è arbitraria o, meglio, è definita per comodità e convenienza. La convenienza deriva dall osservazione

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Arduino: Programmazione

Arduino: Programmazione Programmazione formalmente ispirata al linguaggio C da cui deriva. I programmi in ARDUINO sono chiamati Sketch. Un programma è una serie di istruzioni che vengono lette dall alto verso il basso e convertite

Dettagli

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C

Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009. Lab 02 Tipi semplici in C Fondamenti di Informatica e Laboratorio T-AB Ingengeria dell Automazione a.a. 2008/2009 Lab 02 Tipi semplici in C Obiettivo dell esercitazione Acquistare familiarità con i tipi di dato semplici supportati

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Progetti reali con ARDUINO

Progetti reali con ARDUINO Progetti reali con ARDUINO Introduzione alla scheda Arduino (parte 2ª) ver. Classe 3BN (elettronica) marzo 22 Giorgio Carpignano I.I.S. Primo LEVI - TORINO Il menù per oggi Lettura dei pulsanti Comunicazione

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi TIPI DI DATO Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi numeri naturali, interi, reali caratteri e stringhe di caratteri e quasi sempre anche collezioni di oggetti,

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà:

Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà: Ogni frazione si può trasformare, dividendo il numeratore per il denominatore, in un numero che sarà: naturale, se la frazione è apparente. Esempi: 4 2 2 60 12 5 24 8 decimale limitato o illimitato, se

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli