OPERATORIMORFOLOGICIELEMENTARI MAUROENNAS,ENRICOPIERONI (Luglio-Agosto,1995)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "OPERATORIMORFOLOGICIELEMENTARI MAUROENNAS,ENRICOPIERONI (Luglio-Agosto,1995)"

Transcript

1 OPERATORIMORFOLOGICIELEMENTARI MAUROENNAS,ENRICOPIERONI (Luglio-Agosto,1995) CentrodiRicerca,SviluppoeStudiSuperioriinSardegna GruppodiModellisticaAmbientaleeGeosica

2 EditedbyM.Ennas PrintedonMarch,1996 CRS4 CentrodiRicerca,SviluppoeStudiSuperioriinSardegna. CenterforAdvancedStudies,ResearchandDevelopmentinSardinia. WorkcarriedoutwiththenancialcontributionofSardiniaRegionalAuthorities. LavoroeseguitocolcontributodellaRegioneAutonomadellaSardegna. INTERNALREPORT

3 Questebrevinotefannopartediunostudiopreliminaredidigitalimageprocessing,nalizzato allaricercadistrategieecaciperl'analisidisezionisismichemigrate,inseritoall'internodiuna tesidilaureaincentratapiuingeneralesullaelaborazionedidatigeosici. L'analisidelleimmaginiassistitadall'utilizzodelcalcolatoreeun'importantebranca dell'informatica,dellamatematicaedell'ingegneriadell'informazione.ilsistemavisivoumano PREFAZIONE. disfareadeguatamenteleesigenzediadabilitarichieste;sonodegliesempiconcretiilcontrollo dellaqualitadeiprodottiindustriali(pezzimeccanici,prodottialimentari...),sistemiintelligenti visivoumano.esistono,comunque,contestimoltospecicineiqualilemacchineriesconoasod- approssimazione,presentadelledicolta.nonostantelecapacitadicalcolodeicalcolatorisiano semprecrescentiancoranonsiriesconoadaveredeisistemichepossanocompetereconilsistema alcalcolatoredeglialgoritmichepermettanodisimularelavisioneumana,seppurecongrande chisottoformadiradiazionedall'ambienteesterno.untalesistemanaturalepuoelaborare manifestaun'incredibilecapacitadielaborazionedeidaticheglipervengonoattraversoglioc- monitoraggioambientaleedinambitomilitare. diispezioneinambitobio-medico,sistemidiriconoscimentodiimmaginiradarneisettoridel grossemolididatirapidamente,congrandeessibilitaesenzasforzoapparente.programmare mettereinatto. Un'immaginerappresentaunaseriedimisuresuunbenprecisoinsiemedioggettichecomplessivamentecostituisconounascena(siaessaunpaesaggio,unaradiograaounafotodasatellite). cheilcontenutoinformativodiun'immaginepuoessereesplicitatoadiversilivelli,dierential variaredelsetdicaratteristichechesivoglionoevidenziareedalleassociazionichesiintendono evidentementedallanaturadell'applicazioneallaqualesifariferimento.piuinparticolarediremo formativodell'immaginestessa;qualiaspettidevonoessereevidenziatiinunaimmagine,dipende L'obbiettivoprimariodell'elaborazionedelleimmaginiequellodirendereesplicitoilcontenutoin- essereadottateperrisolvereunprecisoproblema. diapplicazioneditalitecnicheedellaparticolaritadellesoluzionichedivoltainvoltadevono Ilgrandenumeroditecnicheperl'elaborazionedelleimmaginietestimonedellavastitadeisettori daoggetti(misuredibandasullospettroelettromagneticonell'indagineradio-astronomica),oppuremisuredellariessionediondesonore(negliapparatiultrasonicibiomedicienell'indagine sismica)oancoramisurediconcentrazionedideterminatielementichimiciinuncampione. unacaratteristicalocalediinteresse.comunementesonomisuresull'intensitadellaluceriessa Talimisurevengonoeseguitegeneralmentesuporzionidell'immagine(segmenti),evidenziando Nelseguitoverrannoapprofonditedelletecnicheelementarifondatesullamorfologiamatematica,checisonosembrateinteressantinelcontestospecicodell'indaginegeosica,inparticolare nell'elaborazionediimmaginidisezionisismiche.

4 dell'elaborazionedelleimmagini,ilsuoimpiantomatematicosifondaprincipalmentesullateoria diconfronto;taliconnessionidipendono,oltrechedallageometriadellastrutturadaevidenziare, anchedallasuaposizioneall'internodell'immaginedaesaminare. Solorecentementelamorfologiamatematicahaacquisitodignitadidisciplinaclassicanell'ambito ometricadiun'immaginealnedirendereevidentilesueconnessionitopologicheconunelemento L'ideasullaqualesifondalamorfologiamatematicae,essenzialmente,l'esamedellastrutturage- INTRODUZIONE. degliinsiemiedassumeinseconcettidialgebra,topologiaegeometria. Glistudioriginaririsalgonoagliannisessantaesonodovutiallavorodiduericercatoridella ScuolaMinerariaParigina(EcoleParisiennedesMinesdeFontainebleau),GeorgeMatheron tualmentel'impiantoconcettualedellamorfologiamatematicavieneapplicatoconsuccessoinun vastoambitochecomprendedisciplinequaliladiagnosticamedicael'istologia,edepresente ejeanserra,iqualisioccupavanoditematichelegateallapetrograaeallamineralogia.at- deglialgoritmiimplementatisuibm-sp2. maginia256livellidigrigio.leimmaginiriportatenelseguitosonostateottenutedall'esecuzione PerformanceFortran,operantisuimmaginibinarieeverraindicatalaloroestensioneadim- immagini. Nelseguitoverrannobrevementecaratterizzatialcunioperatoridibasedellamorfologiamatematica,verrannomostratealcunesempliciimplementazioni,realizzateinFORTRAN90eHigh comecorredodibasedeipiusvariatipacchettiapplicativichesioccupanodielaborazionedelle delleinformazioni.taliinformazionipotrannoesserelogiche(indicantil'appartenenzaomeno concettonelcontestodellateoriadegliinsiemi.tenteremodicostruireunadenizionechesi Nelnostrocasoconsidereremoinsiemiparticolaridipuntidelpianoaiqualivengonoassociate adattialleimmaginibinarieeadunaeventualeestensioneadimmaginiapiulivellidigrigio. Ilconcettodiimmagineenotointuitivamenteadognuno.Nelseguitosifaraspessoriferimento adoperatoriapplicatialleimmagini,daciodiscendelanecessitadichiarireeformalizzaretale INSIEMIEDIMMAGINI. adundeterminatosottoinsieme)odivalore(indicantiproprietadell'oggettoinquestionecomeil colore). Possiamocaratterizzareognipuntodell'insiemecostituentel'immagineconunatriplettaordinata (n;m;l),nellaqualeiprimidueelementirappresentanolecoordinatedelpianodiscretizzato adessoassociata(livello). Un'immaginebinariapotraessereespressainterminidiprodottocartesiano()trainsiemi: (n;m)2n2,individuantiunivocamenteilpuntod'immagine,eilterzoindicantel'informazione confrontandoilivellidipuntiaventistessecoordinate;nelcasobinariopossonoapplicarsioperatori Gliinsiemiunione([)edintersezione(\)possonoottenersi,operandosuinsiemicosicostruiti, analogamente,perun'immaginea256tonidigrigioavremo: Ig=f0::Ngf0::Mgf0::255g Ibin=f0::Ngf0::Mgf0;1g; booleaniailivellil2f0;1g. 1

5 (erosion),detteanchesommaesottrazionediminkowski,edinoltrel'operatorehitormiss. Leoperazionielementaridellamorfologiamatematicasonoladilatazione(dilation),l'erosione (structuringelement);ciosiottieneapplicandodeglioperatoricheagisconosuognipuntoh2a. didimensionenota,attraversol'utilizzodiun'immaginebpiupiccoladettaelementostrutturante richedaun'immaginebinariaae,doveconesiindical'insiemedituttelepossibiliimmagini L'obiettivodellamorfologiamatematicaequellodiestrarreinformazionitopologicheegeomet- OPERATORIELEMENTARI. ha256livellidigrigio,percuil'applicazionedeglioperatorimorfologicideveessereprecedutada unaopportunabinarizzazione(ottenutamedianteunbinarizzatoreridge-valley,(fig.3)). Vengonofrequentementeindicaticomeoperatorielementariancheletrasformazionidiapertura (opening)edichiusura(closing)ottenutidall'opportunacombinazionedelletrasformazionidi erosioneedilatazione. Nelseguitoconsidereremoimmaginibinarieicuipuntiassumonovalorinell'insiemefNero= particolare,abbiamosceltocomeimmaginediinputun'improntadigitale.taleimpronta(fig.2) 0;Bianco=1g.Negliesempiabbiamoutilizzatodeipatternsdidimensione512512pixelsedin ConsideriamounreticolodiformaquadrataeperognisuoelementodeniamoN-vicinanza(Nneighbourhood)l'insiemedeipuntidelreticoloadiacentiadunssatopuntoP. N-VICINANZA. colarecorrispondeadunanestra33conpuntodiriferimentocentrale.generalnente,nella pratica,vieneutilizzatounelementostrutturantediquestotipoacausadelsuobassocostocomputazionale.inquestomodosipuoformulareunaprimadenizionedierosioneedilatazione, elementostrutturanteuncerchiounitariodiraggiopariadunpunto,chenellageometriareti- relativaadimmaginibinarie,interminidi8-vicinanza:pererosiones'intendel'insiemedeipunti FIG.1.8-vicinanzae4-vicinanza Nelseguitociriferiremoadun'8-vicinanza(Fig.1).Inquestocontestoconsideriamocome l'insiemedeipuntidelreticoloche,osonoelementidell'oggettooppurehannotrailoro8-vicini dell'oggetto,icui8-vicinisonotuttielementidell'oggetto;colterminedilatazioneinvecesiindica almenounelementodell'oggetto. 2

6 FIG.2.Immagined'ingresso(256livellidigrigio). FIG.3.Immagined'ingressobinarizzata. 3

7 intorno)consisteinunltraggiodell'informazioneinessocontenutapermezzodiopportune diun'immaginetramiteoperatorilocali(cheagisconosuunpuntotraendoinformazionidalsuo dicatividellapresenzaoassenzadiunoggettorispettoallosfondo(valorilogici)oppuredeilivelli digrigioodicolore(valorinumerici)propridiognipuntodell'immagineconsiderata.l'analisi adognipuntodicoordinate(n;m),appartenentealreticolopiano,unvalore;talivalorisonoin- Un'immaginepuoesseredenitacomeunafunzionebidimensionalediscretaf(n;m)cheassocia OPERATORILOCALICOMEFILTRI. rispondeatuttiglieettiadunltraggiolinearebidimensionale,matematicamenterappresentato dallaconvoluzionetral'immagined'ingressoe\l'immagineltro": forma: \immaginisonda"h(n;m),dimensionaterispettoall'intornochesidesideraanalizzare.ciocor- tenendocontodelfattocheunaqualunquefunzionediscretabidimensionalepuoesprimersinella fout(n;m)=xixjfin(i;j)h(n?i;m?j)=xixjfin(n?i;m?j)h(n;m); Inquestomodol'immaginepuoritenersicostituitadauninsiemedivaloriimpulsivi(unoper ognipunto)elaconvoluzione(fig.4)tral'immagineiningressofin(n;m)elarispostaimpulsiva delltroh(n;m)puospiegarsiinterminiditraslazionedelpianod'immaginenelledirezionidegli g(n;m)=xixjg(i;j)(n?i)(n?j): elementidelltroesuccessivasommadeiprodotti quadrato 5x5 Tutti = P(0,0)=2 P(0,4)=4 P(0,2)=1 P(4,0)=6 P(4,4)=8 glioperatorielementaridellamorfologiamatematica. puntiutilizzandoglioperatoridellalogicabooleana;equestalaviachesisegueperimplementare Similmenteaquantoavvieneperilltraggiobidimensionale,sipossonotrasformareinsiemidi FIG.4.Convoluzionediunreticolo55con5deltadiDirac

8 Deniamol'erosionediAdapartediB(dettaanchedierenzadiMinkowski)nelmodoseguente: dovebhrappresentalatraslazionedell'immaginebsulpuntoh2a: A B=fh2EjBhAg; EROSIONE. (Fig.5);essapuoessereespressaancheinunaltromodo: Essarappresental'insiemedeipuntihpercuiB,centratoinh,einteramentecontenutoinA Bh=fb+hjb2Bg: L'erosioneeunoperatoreinvarianterispettoallatraslazione, (Ah A B=\ B)=[A b2ba?b; nonlocontengonointeramente. Inpratical'elementostrutturantescorresuognipuntodell'immagineeliminandoglielementiche edinoltretaleche: XY)X AY B]h; A: FIG.5.a)Binarizzazione;b)Erosione;c)Doppiaerosione. 5

9 Nell'implementazioneFORTRAN90siefattousodelladirettivaimplicita alpuntodiriferimento;sutalipianivieneapplicatol'operatorelogico.and.chepermette,punto perpunto,diindividuareglielementidell'insiemeintersezione. traslandoipianid'immaginelungoleottodirezioniindividuatedall'elementostrutturanteattorno SUBROUTINEErosion(BinImage,nx,ny,OutImage) CSHIFT(array;shift;dim); cminkowski'ssubtrationalmorphologicaloperator cusingunitarycircleasstructuringelement cforbinarizedimages!hpf$distribute(block,block) c********************************************************************** CHARACTER,DIMENSION(0:nx-1,0:ny-1),INTENT(OUT)::OutImage CHARACTER,DIMENSION(0:nx-1,0:ny-1),INTENT(IN)::BinImage INTEGER, LOGICAL,DIMENSION(0:nx-1,0:ny-1) INTENT(IN)::nx, ::BinImage, ::LogImage, TmpImage1, OutImage!HPF$DISTRIBUTE(block,block) c********************************************************************** & CHARACTER,PARAMETER ::LogImage, ::black=char(0), ny white=char(255) WRITE(*,*)'Eroding...' LogImage=MERGE(.TRUE.,.FALSE.,BinImage.EQ.black) TmpImage1=TmpImage1.AND.cshift(LogImage,shift=-1,dim=1) cshift(logimage,shift=1,dim=1) TmpImage1, c********************************************************************* TmpImage=TmpImage1.AND.cshift(TmpImage1,shift=1,dim=2) TmpImage=TmpImage.AND.cshift(TmpImage1,shift=-1,dim=2) TmpImage=TmpImage.AND.LogImage OutImage=MERGE(black,white,TmpImage) ENDSUBROUTINEErosion 6

10 strutturantesiainvarianterispettoallariessione(br=b)avremopiusemplicemente: avendodenitobr=f?bjb2bg,riessionedibrispettoall'origine;nelcasoincuil'elemento DeniamodilatazioneosommadiMinkowski: AB=fh2EjBrh\A6=;g; DILATAZIONE modoseguente: cioeabel'insiemedituttiipuntidiposizioneh,percuibhedahannoalmenounpunto incomune.ancheladilatazionerisultainvarianteallatraslazioneedinoltrepuoesprimersinel AB=fh2EjBh\A6=;g; unpuntoincomunecona: dilatazionediadapartedib.inpratical'elementostrutturantebscorresull'immaginedi riferimentoaestendendoildominiodiquest'ultimaalleporzionid'immaginechehannoalmeno AB=[ b2bab; strutturantecircolareunitario. Nelcasoinesameladilatazioneestataeseguitaalmassimoduevolteconsecutiveconelemento FIG.6.a)Binarizzazione;b)Dilatazione;c)Doppiadilatazione. 7

11 d'immaginiel'implementazionedell'algoritmosonoriportatinelseguito. attornoalpuntodiriferimento;sutalipianivieneapplicatol'operatorelogico.or.chepermette, cminkowski'sadditionalmorphologicaloperator puntoperpunto,diindividuareglielementidell'insiemeunione.ladichiarazionedegliarrays dim),traslandoipianid'immaginelungoleottodirezioniindividuatedall'elementostrutturante Nell'implementazioneFORTRAN90siefattousodelladirettivaimplicitaCSHIFT(array,shift, cusingunitarycircleasstructuringelement cforbinarizedimages SUBROUTINEDilation(BinImage,nx,ny,OutImage)!HPF$DISTRIBUTE(block,block) c************************************************************************* CHARACTER,DIMENSION(0:nx-1,0:ny-1),INTENT(IN)::BinImage CHARACTER,DIMENSION(0:nx-1,0:ny-1),INTENT(OUT)::OutImage LOGICAL,DIMENSION(0:nx-1,0:ny-1) ::BinImage, ::LogImage, OutImage INTEGER, INTENT(IN)::nx, TmpImage1,!HPF$DISTRIBUTE(block,block) CHARACTER,PARAMETER ::black=char(0), c************************************************************************* & ::LogImage, ny write(*,*)'dilating...' LogImage=MERGE(.TRUE.,.FALSE.,BinImage.EQ.black) white=char(255) TmpImage1=TmpImage1.OR.cshift(LogImage,shift=-1,dim=1) cshift(logimage,shift=1,dim=1) TmpImage1, TmpImage=TmpImage1.OR.cshift(TmpImage1,shift=1,dim=2) c********************************************************************* TmpImage=TmpImage.OR.cshift(TmpImage1,shift=-1,dim=2) TmpImage=TmpImage.OR.LogImage OutImage=MERGE(black,white,TmpImage) ENDSUBROUTINEDilation 8

12 avendoindicatoconacilcomplementaredia: Dilatazioneederosionesonooperatorinegativinelsensoche: partedell'elementostrutturanteriesso).ilcomportamentodualepuoessereespressoanchein Ciosignicacheladilatazionedell'immaginehalostessoeettodell'erosionedellosfondo(da (AB)c=Ac Ac=fa2Eja=2Ag: (Br)c: Esistonodelleprecisecondizionidireversibilitachenonvengonoquiriportate.Ebenemetterein unaltrosenso: evidenzacomel'erosioneeladilatazionediunoggettobinarioqualsiasisianoottenibilimediante manipolazionenumericadellesequenzedicifredelcodicedelcontorno. chelareversibilitaomenoditalitrasformazionidipendeesclusivamentedallaformadell'oggetto. Siponeilproblemadellareversibilitadelletrasformazionidierosioneedilatazioneesiverica perognicoppiadiimmaginix;ye. YBX,YX B; cona,bnumeriedx,yarray,consentedicostruireglistencilsimmetricibidimensionaliin Cennosull'ottimizzazionedeiCSHIFT. Lasempliceosservazionechel'operatoreCSHIFTeunoperatorelineare: manieraottimizzata,minimizzandolesommeelecomunicazionitraiprocessori. Adesempioperungenericostencilsimmetrico33,matematicamenteesprimibilecome: f(x;y)=a00g(x;y) +a01[g(x+1;y)+g(x?1;y)] CSHIFT(aX+bY)=aCSHIFT(X)+bCSHIFT(Y) alpostodellaimplementazioneimmediata, cheimplica12cshift,8sommee4moltiplicazioni,epossibilediminuireilnumerodeicshift f=a00g+a01[cshift(g;dim=1;shift=1)+cshift(g;dim=1;shift=?1)]+ +a11[g(x+1;y+1)+g(x?1;y?1)+g(x+1;y?1)+g(x?1;y+1)] +a10[g(x;y+1)+g(x;y?1)] utilizzandosolo4cshift,5sommee4moltiplicazioni. utilizzandodegliarraytemporanei,nelseguentemodo: f=f+cshift(t;dim=1;shift=?1)+cshift(t;dim=1;shift=1) f=a00g+a10t t=a01g+a11t t=cshift(g;dim=2;shift=1)+cshift(g;dim=2;shift=?1) 9

13 diremoinvecechefalliscea(missesa)se:bh\a=;: DiremocheBhcolpisceA(hitsA)se:Bh\A6=;; HITORMISS L'operatoreHitorMissvienedenitoapartiredaunelementostrutturanteBscomponibilein nellaterminologiapropriadell'elaborazionedelleimmaginidiremocheacelosfondo duesottoelementib1eb2talicheb=b1[b2: cona;be;ovvero:a(b1;b2)=fh2ejb1ha;b2hacg; dell'immaginea.risultaevidentechepera\b6=;l'immaginerisultantedall'applicazione dell'operatorehitormissevuota.l'operatorehitormisspuoessereespressoinaltritermini B1\B2=; ecoicideconl'erosioneperb2=;: comesegue: A(B1;B2)=(A B1)\(Ac B2); FIG.7.a)Binarizzazione;b)HitorMiss;c)DoppioHitorMiss; 10

14 seguente: conb=b1[b2edinoltreb1\b2=;,cioeottenibilescegliendoibi,adesempio,nelmodo LaroutineinFORTRAN90estataottenutaapplicandol'espressioneseguente: H=AB=A(B1;B2)=(A B1)\(AB2)c dell'operatorebooleanoornelmodoseguente: inmodochel'unionetragliinsiemidipuntiimmaginepossanoessererealizzatitramitel'utilizzo B=B1:OR:B2: 0101A deglioperatoridilatazioneederosionenelmodoseguente: Questaesolounatralesceltepossibilipercostruireilnostrooperatore. Glioperatoridiapertura(Opening)echiusura(Closing)siottengonodallasemplicecombinazione Apertura: APERTURAECHIUSURA inquantosiappoggiaalleprecedenti: nonsonoreversibili.l'implementazionefortran90deidueoperatorieestremamentesemplice Leparentesievidenzianolasuccessionedelleoperazioni,vistocheerosioneedilatazioneingenere Chiusura: AB=(A AB=(AB) B)B Apertura B CALLDilation(BinImage,nx,ny,TempImage) CALLErosion(TempImage,nx,ny,OutImage) Chiusura CALLErosion(BinImage,nx,ny,TempImage) Analogamente,avremo: CALLDilation(TempImage,nx,ny,OutImage) Glioperatoridiapertura(Fig.8)edichiusura(Fig.9)sonoapplicazioniidempotenti,nelsenso cheun'applicazioneripetutadell'operatorenonintroducecambiamentinell'output. 11

15 FIG.8.Apertura. FIG.9.Chiusura. 12

16 siapiugrandediunpuntoedinparticolareciriferiremoalcerchiodiraggiounitariodenito precedentemente. faremounapanoramicadelleproprietapiuinteressantiassumendochel'elementostrutturante Glioperatorimorfologicielementaripossiedonoungrandenumerodiproprietache,sfruttate opportunamente,permettonodiestrarrecaratteristiched'interessedaun'immagine.nelseguito PROPRIETADEGLIOPERATORIMORFOLOGICIAPPLICATI ALLEIMMAGINIBINARIE Ladilatazioneecommutativamanonloel'erosione: Ciononeunproblemaperchenellapraticahasensosoloerodereunoggettopiugrandeconuno piupiccolo. AB=BA;A BC!A BA B6=B C A: (2) (1) dell'immaginecomplementareeugualealcomplementodell'erosionedell'immagineoriginaleeil ottenutecomplementandomembroamembro(ac[a=e);cioequivaleadirecheladilatazione complementodell'erosionedelcomplementodiaeugualealladilatazionedia. AcB=(A A BAAB: B)c;AB=(Ac B)c; (4) (3) Nelseguitoindicheremoconl'esponente(n)l'n-ripetione(iterazione)diunoperatoremorfologico: conm<n.erosioneedilatazionesonotrasformazionimonotone: (AB)(n)(AB)(m); B)(n)(A B)(m); (6) (5) Ciopuoesprimersiinaltriterminidicendochelarelazionetraoggettieinvarianterispetto chiusura. all'erosione,alladilatazione,eallesequenzeditalioperazioni,comeadesempiol'aperturaela A1A2!A1BA2B B (7) (A1\A2)B(A1B)\(A2 (9) (8) segnodiuguaglianza. Se(A1\A2B)einvertibile,l'ordinedelleoperazionididilatazioneediintersezionetrainsiemi noninuiscesulrisultato,cioequivaleadirechetraimembridell'espressioneprecedentevaleil 13

17 AvremocheAi equivaleafh2aj(bha1)\(bh2)g. B=fh2AjBhAg,coni=1;2eh2(Ai (A1[A2) (A1\A2) B(A1 B)[(A2 B)\(A2 B) B).Indenitivah2(A1\A2) (10) avremo,infatti,cheaib=fh:bh\ai6=0gconi=1;2eh2(aib). (A1[A2)B=(A1B)[(A2B) (11) Ledueproprietaseguentisonodigrandeimportanzapraticapoichesudiessesibasanodegli algoritmivelociperlarealizzazionedioperatorimorfologicineisistemicommerciali. A(B1[B2)=(AB1)[(AB2) (12) eequivalenteafhj(b1ha)\((b2ha). conseguenteallaproprietadicommutativitadelladilatazione. essendoa B=fh2AjBihAgconi=1;2eh2(A A B1)[(A Bi;ciosignicacheh2A B2) (B1[B2) (13) susseguentioperazionilogichetratalipianid'immaginepuntoperpunto. Inbaseaquesteproprieta,dilatazioneederosionepossonoessererealizzatemediantetraslazione dell'immagine(fig.10),nelledirezioniimpostedallageometriadell'elementostrutturante,e (14) puntib=b1[b2[b3;avremochel'erosionea direzionei=1;2;::;8econsideriamo,peresemplicare,l'elementostrutturantecostituitodatre AedAichesiottiene,traslandoAnelledirezionii,ovvero: modernisistemidielaborazione.indichiamoconailatraslazionedell'oggettoadiunpuntoin Letraslazionidelleimmaginieleoperazionilogichesudiessesonoestremamenteecientinei FIG.10.Traslazionidiagonale,lateraleeverticale. A B=A\A1\A2\A3 Biecostituitadaipuntidiintersezionetra 14 (15)

18 originale.analogamenteavremo:ab=a[a1[a2[a3 Nellalogicabooleanaciosignicaapplicarel'operatoreANDtraimmaginitraslateedimmagine adirechel'elementostrutturanteedeltipo: el'operatorebooleanocorrispondenteall'unionerisultaesserel'or. Neinostriesempidiimplementazioneabbiamoutilizzatodeicerchidiraggiounitario,cioequivale (16) nellaqualebirappresentailpuntoi-esimodell'elementostrutturanteb. B=8[i=1Bi; edelladilatazione: Un'altraproprietadegnadinotaelacosidettaregoladiconcatenamento(chainrule)dell'erosione FIG.11.Elementostrutturante. turantebidimensionaleb,puoessererealizzatamedianteunasequenzadeglistessioperatori utilizzandoelementistrutturantimonodimensionalib1;b2:::bkchesoddisfanolacondizione: Inbaseaquestaproprietal'erosioneeladilatazionediun'immagine,tramiteunelementostrut- (AB1)B2=A(B1B2) B2=A (B1B2) (17) B=B1B2:::Bk: (18) taggi: Questoequivaleadesplorarel'immagineperrigheepercolonneecomportadeglievidentivan- Esistonosistemihardwarechepermettonounaccessoaidatid'immagineablocchi,per Ilpesocomputazionalecresceinragionedi2LanzichediL2,doveLelalunghezzadel l'implementazioneoltrechepotenziarel'ecacia. cerchiostrutturante; righeopercolonne(cioetipicodellearchitettureparallele),equestofacilitanotevolmente 15 B B1 B5 B2 B3 B4 B6 B7 B8

19 valgonoleseguentiproprietadiaperturaedichiusura: Considerando,comedaipotesipreliminare,unelementostrutturantediversodaunpuntoisolato, ABA ABA (19) (Fig.12)realizzatotramitedierenzadiimmagini: valoridigrigionegativi.unesempioequellorelativoadunestrattoredicontornomorfologico possanoesseresottratte,puntoperpunto,l'unaall'altra,senzachel'immaginerisultanteassuma inqualicasidelleimmaginidiverse,ottenutemediantel'applicazionedioperatorimorfologici, Questedueproprietadevonolaloroimportanzaalfattochepossonoessereutilizzateperstabilire EC=(AB)?(A B); (21) (20) chiaramente,ledimensionidell'elementostrutturantedeterminanolospessoredeicontorniestratti. Altreproprietainteressantisono:AB=(AB)B FIG.12.Estrazionemorfologicadeicontorni. AB=(AB)B (22) Diremocheun'immagineAen-erosaseestataottenutadallaiterazionedinoperazionidi erosionepossonoesserecombinatitraloroedapplicatiripetutamenteall'immaginedaanalizzare. eettodiunasingolaaperturaochiusura.echiarocheglioperatorielementarididilatazioneedi unaaperturaereversibilmenteerodibile;ovverounasequenzadiapertureodichiusurehalostesso erosioneescriveremoa(?n);analogamentediremocheun'immagineaen-dilatataseestata Ciopuoesprimersidicendocheilrisultatodiunachiusuraereversibilmentedilatabileequellodi (23) ottenutadallaiterazionedinoperazionididilatazioneelaindicheremocona(n). 16

20 Valgonoleproprieta: A(?n)A(?m) A(n)A(m) (24) pern>m. Regolandoilnumerodiiterazionisipossonoottenerediversieettidiltraggio.Inparticolaresi Inoltrerisulta: (A(n))(?m)A(?n)(m) (26) (25) cheproduceun'immaginepiugrossolana(particolarimenodeniti);l'eettopassaaltosiottiene ottieneuneettopassabassoconunasequenzadeltipo: con: HPF=A?A(?r)(r) LPF=A(r)(?r) (27) semprepern>m. chefornisceun'immaginecheconservailsolodettaglioagranane;innel'eettopassabanda siottienenelmodoseguente:bpf=(a(n))(?n)?(a(m))(?m) (29) (28) 17

21 FIG.13.Passabassomorfologicodirangodue. FIG.14.Passaaltomorfologicodirangounitario. 18

22 ConsideriamoilcasodiunafunzionebidimensionalediscretaaNlivellidigrigio,esezioniamola conunpianoortogonalealpiano(n;m)inmododaridurreilproblemaalcasomonodimensionale(adesempioconsiderandounasolarigaocolonnaanzichel'immaginecomplessiva);quindi sezioniamoorizzontalmente(parallelamentealpianodell'immagine),incorrispondenzadiogni ESTENSIONEA256LIVELLIDIGRIGIO livellodigrigio.ognisezionesi,allivellodigrigioi,con(i=1;2;:::;n),generaun'immagine binariaai.l'immaginecomplessivaadnlivellipuovedersicomerisultantediun'operazione dellastrisciad'immagine,avremo:a=a\a?1\:::\a1 cherappresental'immagineanlivellidigrigio.consideriamo,comeinprecedenza,b logicaassimilabileadun\and"(vericadell'esistenzadeilivellisottostanti)tralostratoal un'elementostrutturantecircolarediraggiounitario,chesezionato(casomonodimensionale) denitivadetta(x)(1n)lafunzionecheassociailivellidigrigioalleposizioniall'interno livellopiualtoeilivellisottostantisemprepresenti;inrealtasitrattadicontareilnumerodi risultaun\cerchio"unitariodi3x1punti,avremocheognisingolaimmaginebinariaaiverra stratibinarisovrappostiedassociare,perognipunto,talevaloreallivellodigrigioeettivo.in componedistratidiimmaginibinarieerose: erosadab,dandoluogoaa(?1) i.conseguentementel'immagineatonidigrigioa(?1)erosasi Procedendoinmodoanalogoperladilatazione,avremo: Ciocorrispondeadeseguireunaoperazionediminimoinunanestradidimensionipariaquelle dell'elementostrutturanteb. A(?1)=A(?1) A(?1)=minx2BA(x) \A(?1)?1\:::\A(?1) 1 puntosupianitraslati. L'usodeglioperatoridimaxheminh(conh2A)estatosuggeritoperlaprimavoltada Glistessiconcettibasesonoestendibiliaglioperatoricompostiequindidalpuntodivistaimplementativodovremorealizzaredelleroutinechedeterminanoilmassimoedilminimopuntoper NakagawaedaRosenfeld(1978);talioperatorisonobasatisullalogicafuzzyesullateoriadegli insiemidaessaispirata.glioperatoriequivalentiall'intersezione(\)eall'unione([),nellalogica A(1)=maxx2BA(x): fuzzysonorappresentatipropriodamaxheminh.datedueimmagini,aeb,atonidigrigio: A[B()maxh(A;B): A\B()minh(A;B) 19

23 Ciochesiottieneeriportatonellegureseguenti: Operatorecappelloacilindro.Riveladettaglistrutturalichiariescuri,comeadesempio lineeoppureoggettididimensioniinferioriadunlimitepressatoedilcuicontrastosuperaun Nelseguitoverrannoricordati,brevemente,alcunitraipiunotiesemplici. datovaloredisoglia.scriveremoun'espressionedeltipo: merevoledioperatoricomposti,dicomplessitavariabile,cherisolvonoproblematicheparticolari. Accantoaglioperatorimorfologicielementarioperantisuilivellidigrigioabbiamounaserieinnu- FIG.15.Dilatazione,erosione,aperturaechiusuradiimmaginia256livellidigrigio dallavariazionedeilivellidigrigio.l'operatoreestraequelleporzionidellafunzionedeilivellidi direchexdcontieneisolidettaglichiarididimensioniminimeminoridid,inquantoall'immagine originariainingressovienesottrattalasuaapertura.l'altezzahelasoglia.analogamente grigiocheperforanoilcappellomentrelasuabasescivolasullafunzione.indenitiva,possiamo nellaqualed=2r+1,conrraggiodelcerchiounitario.possiamoimmaginareunafunzionea formadicappelloacilindrotophat(d,h)didiametrodedaltezzah,chescorresulrilievocostituito Xdh=Xd=A?[A(?r)](r)seXd>h potremoscrivere: altrimenti chemiraadestrarredettagliscuri. Xdh=Xd=[A(r)](?r)?AseXd>h 0 20 altrimenti

24 espressione: mentodell'elementostrutturanteconsiderato,ipuntiscurisieliminanoutilizzandolaseguente operatoridimassimoeminimoconvenzionaliinquantotrascuranol'eettodelvalorediriferi- piuchiariepiuscuri(rumoreimpulsivo).talipuntivengonoforzatiadassumereilvaloredi alivellidigrigioepossibilecostruiredeisemplicialgoritmiperl'eliminazionedeipuntiisolati grigiopiuprossimoaquellodeivicini.denendoglioperatorimaxbeminb,dierentidagli Eliminazionedipuntiisolati.Apartiredall'erosioneedalladilatazioneapplicateadimmagini nellequalimaxp(a1;a2)rappresentailmassimovaloredeipuntidimedesimaposizionedelledue immaginia1eda2. Analogamenteperipuntiisolatiscuri: Ah=minp[A;maxB(A)]: Unasemplicesequenzadipassidielaborazioneperrealizzarel'estrazioneedilcolormappingdei contornidiun'immagineemostratainfig.16efig.17. Ad=maxp[A;minB(A)]; IMMAGINE IN INPUT BINARIZZATORE RIDGE-VALLEY DILATAZIONE EROSIONE grigio,basatasuoperatorimorfologicielementari.21 FIG.16.Sequenzadipassiperrealizzarel'evidenziazionedelcontornosuun'immaginea256livellidi Estrazione del = Dilatazione - Erosione MAPPA DEI COLORI

25 _ D + dell'evidenziazionedelcontornosuun'immaginea256livellidigrigio,basatasuoperatorimorfologici elementari. FIG.17.Sequenzadiimmaginiinuscitaadognipassodellacatenadielaborazioneperlarealizzazione 22

26 disparatiambitiapplicativi.ciopermettediavvalersidelleconoscenzeedell'esperienzamaturata pochiconcettidibasechelideniscono,epossibilericavareunavarietadioperatoriutilineipiu inunqualunquesettorepersvilupparesoluzionieuristicheaproblemilegatiall'estrazionedi caratteristichedaun'immagine.inparticolare,epossibileotteneredeglialgoritmiversatilie velocichebensiadattanosiaadunprimoapprocciodianalisidelleimmagini,cheall'estensione L'utilizzodeglioperatorimorfologicielementaririsultadigrandeinteresseinquanto,apartiredai CONCLUSIONI. aproblematichedicrescentecomplessita.laversatilitadeglialgoritmimorfologicipermettedi Lavelocitadeglialgoritmiedovutaall'utilizzodell'algebrabooleana(nelcasobinario)oalla descrivereunampiospettrodiproblemi,aspesedellacomplessitadelladescrizionetopologica. soluzioneaiproblemidiestrazionedellecaratteristichechedivoltainvoltadevonoessereaffrontati.sitrattadicostruireunsetdifunzionicheoperanoabassolivello(suisingolipixel)banoesseresviluppatideglistrumentidibase(lowlevelvision),capacidicooperare,perfornire edecace. Ciocheemergeconchiarezzael'esistenzadiunastrettadipendenzadellestrategieutilizzabili dall'obiettivod'interesseedaimezziadisposizione.taledipendenzaportaapensarechedeb- esaminare,eadaccorgimentidivariogenerechepossonoessereimplementatiinmodosemplice determinazionidimassimieminimi(nelcasoanllivellidigrigio)nellecongurazionidipixelda l'utilizzodialgoritmifastfouriertrasform),l'utilizzodioperatorilocaliperl'estrazionedei prendono,oltreall'analisimorfologica,letecnichediltraggiospazialeefrequenziale(tramite dipendenza)econsentireilriconoscimentodiformesudominibidimensionalietridimensionali. contorni,l'analisidellatessituratramiteletecnichestatisticheclassiche,lamodellizzazionedelle Lestategieutilizzatenell'ambitodell'elaborazionedigitaledelleimmaginidibassolivellocom- all'usodellatrasformatadihoughoingenereall'analisidispaziparametriciderivati,costituiscono immaginimediantel'utilizzodiwavelet.tuttequestetecnicheinsiemeadaltre,qualiquellelegate perrenderepossibileunaanalisialivellointermedio(insiemidipixelaggregatidaunaqualche l'ambitopiugeneralenelqualecisidevemuoverenellafasepreliminaredianalisidelleimmagini. 23

27 Nelseguitovengonodescrittiiprocessidiquantizzazionedelledirezioniedisogliaturache Illtrodenominatoridge-valleyeunbinarizzatoremoltoeciente,originariamenteutilizzato, insistemiaparallelismomassiccioperlaclassicazionedelleimprontedigitali,dall'fbi(federal istichetramiteunltrolocaleesuunaclassicazionetramitetrasformatadikerounen-loevea mezzodiretineurali,progettatodallanist(nationalinstituteofstandardtechnology). BeurauofInvestigation).Talesistemadiriconoscimentoebasatosullaestrazionedellecaratter- APPENDICE:BINARIZZAZIONERIDGE-VALLEY. dell'algoritmoinfortran90-hpf.perciascunpixel(p)dell'immaginevengonocalcolatele concorronoallabinarizzazione,enellepaginesucessivevienepropostaun'implemantazione deipixelindicaticoni: sommelungoledirezionitrasversalisi,coni=0;1;:::;7,dovesirappresentelasommadeivalori sogliaturalocaleeconfrontodellesommetrasversali. unaformaaccettabileinbiancoenero.essa,nelcasoinesame,sibasasuuncompromessotra 5050P SogliaLocale.Vienecalcolatalasoglialocaleedinbaseadessailpixeld'uscitavieneposto Sogliatura.Labinarizazzionedell'immaginediinputsiproponediridurreilivellidigrigioad biancoseilsuovaloredigrigioesuperioreaquellomediocalcolatosulleottodirezionitrasversali: Confrontoconlesommetrasverse.Ipixelsd'uscitavienepostobiancoselamediadella massimaedellaminimasommatrasversaepiugrandedellamediaditutteledirezionitrasverse: Smax+Smin>14Xisi 4S>18Xisi (2) (1) Soluzionedicompromesso.StockeSwongerrealizzandouncompromessotraiduemodidi procedereappenavisti,hannoricavato,peripixeldioutput,laseguenteformula: analogosipuoapplicareadunpixelpostoinunpromontorioscuro. mentevallichiareepromontoriscuririportandosommeinferioriallaprecedente.ragionamento mentetalevalle,mentrelealtresettedirezionitaglierannotalezonaattraversandoalternativa- chiara,alloraunadellesueottosommetrasversesaramassimainquantoattraverseracompleta- Ilmotivodiquestomododiprocederevaricercatonelfattoche,seunpixelsitrovainunavalle bianchi(inunavalle)abbianoladirezionedellamassimatraleottosommeindicate.indenitiva, aciascunpixelvieneassociataunadirezionequantizzatainottolivelli(i=0;:::;7). dellaminimasommatraquelleappartenentiall'insiemedellesommetrasverseeciascunodeipixel dall'fbi)cherisultaessereun'estensionedelbinarizzatoreridge-valley.aseguitodellabinarizzazione(fig.3),possiamoassumerecheognipixelnero(suunpromontorio)abbialadirezione 4S+Smax+Smin>38Xisi (3) Possiamoindicarequestoltrocomeuncercatoredidirezioni(moltosimileaquelloutilizzato 24

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Palermo Facoltà di Scienze MM. FF. NN. Corso di Laurea Specialistica in Matematica Codici bifissi ed insiemi Sturmiani Francesco Dolce 26 Marzo 2012 Outline 1. Parole e insiemi

Dettagli

Principali test di analisi sensoriale

Principali test di analisi sensoriale Principali test di analisi sensoriale Le informazioni riguardanti le caratteristiche sensoriali dei prodotti alimentari vengono ottenute mediante specifiche metodologie (test). Nella classificazione dei

Dettagli

Cos è un Calcolatore?

Cos è un Calcolatore? Cos è un Calcolatore? Definizione A computer is a machine that manipulates data according to a (well-ordered) collection of instructions. 24/105 Riassumendo... Un problema è una qualsiasi situazione per

Dettagli

Morfologia e Image Processing

Morfologia e Image Processing Morfologia e Image Processing Multimedia Prof. Battiato Morfologia Matematica Nell ambito dell image processing il termine morfologia matematica denota lo studio della struttura geometrica dell immagine.

Dettagli

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 23.02.2005 della seconda parte vers. A valutazioni

Dettagli

Morphological Image processing

Morphological Image processing Morphological Image processing Morfologia matematica La parola morfologia comunemente denota una parte della biologia che tratta con la forma e la struttura di organismi In analogia al termine biologico

Dettagli

CALCOLO COMBIN I A N T A O T RIO

CALCOLO COMBIN I A N T A O T RIO CALCOLO COMBINATORIO Disposizioni Si dicono disposizioni di N elementi di classe k tutti quei gruppi che si possono formare prendendo ogni volta k degli N elementi e cambiando ogni volta un elemento o

Dettagli

AEROPORTO DI MILANO MALPENSA

AEROPORTO DI MILANO MALPENSA ENTE NAZIONALE PER L'AVIAZIONE CIVILE AEROPORTO DI MILANO MALPENSA MAPPE DI VINCOLO LIMITAZIONI RELATIVE AGLI OSTACOLI E AI PERICOLI PER LA NAVIGAZIONE AEREA (Art. 707 commi 1, 2, 3, 4 del Codice della

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE

DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE DAL PROBLEMA AL CODICE: ATTRAVERSO LO PSEUDOCODICE Il problema Un computer è usato per risolvere dei problemi Prenotazione di un viaggio Compilazione e stampa di un certificato in un ufficio comunale Preparazione

Dettagli

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S

Dettagli

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 25.01.2005 del secondo compitino vers. D valutazioni

Dettagli

Il formato BITMAP. Introduzione. Il formato BITMAP

Il formato BITMAP. Introduzione. Il formato BITMAP Il formato BITMAP Introduzione Il Bitmap è il formato di visualizzazione delle immagini dei sistema operativo Windows e, anche se è uno dei formati più vecchi, è ancora molto utilizzato e soprattutto è

Dettagli

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base:

Prof. Giuseppe Chiumeo. Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto tre strutture di base: LA STRUTTURA DI RIPETIZIONE La ripetizione POST-condizionale La ripetizione PRE-condizionale INTRODUZIONE (1/3) Avete già studiato che qualsiasi algoritmo appropriato può essere scritto utilizzando soltanto

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di

Dettagli

Da PADOVA a VENEZIA (per Malcontenta) Linea 53. From PADUA to VENICE (by Malcontenta) Number 53

Da PADOVA a VENEZIA (per Malcontenta) Linea 53. From PADUA to VENICE (by Malcontenta) Number 53 Da PADOVA a VENEZIA (per Malcontenta) Linea 53 From PADUA to VENICE (by Malcontenta) Number 53 LINEA 53 PADOVA - PONTE DI BRENTA - BUSA DI VIGONZA - PERAROLO - STRA - FIESSO D'ARTICO - DOLO - MIRA - ORIAGO

Dettagli

/1/ 22 9379"#98++9"3999389",&&.&

/1/ 22 9379#98++93999389,&&.& !!!"#" $%'())#)*+"#",* *()-.$ $/'(**(*(./0#) /1/ 22 *)(+3"++*4 *))#)*+"#"(5,*,**(*.).**!,,.,4 *(/*66(+77"78+"(5,.)!*.4 *(/*66(+)73"38"(5,.)!*.(*4 *(/*66(,73"##"(,) ').4 *()*.7)*"++"(5.9+9" 9379"#98++9"3999389",.

Dettagli

./#0 +,11,.&, ! " #$ % & ''() ' '*+"&,'*$() -$$!*) $'# ''() ' '*+

./#0 +,11,.&, !  #$ % & ''() ' '*+&,'*$() -$$!*) $'# ''() ' '*+ ! #$ % & ''() ' '*+&,'*$() -$$!*) $'# ''() ' '*+.+*(./#0 +,11,.&, ! # $ % & ''() ' '*+&,'*$() -$$!*) $'# ''() ' '*+.+*(./#0+,11,.&, ,21#3,,/1./#0+,11,.&, 3 5 21 22 2 25 26 27 28 30 30 30 31 39 1 1 57

Dettagli

!"! #"$%! & % '( ' )! * +!,-%./'%! ,-%./'%! ,* 0/! ,-., )! ,12 3./ 4% 2(,/'3%' ', / ',/', / ' 2. 3. !" # $ %#&%#&" '() * & (+,--). $" % /% & ( 0 4 ( %3 ' % 3! 5 +, /! 3 % ' $ -. 4 )! 4 % %, /) 1% * 3(!

Dettagli

Differenza in punti percentuali 25,0 20,0 15,0 10,0 5,0 0,0 -5,0 -10,0 -15,0 -20,0. B3_a. A5_f. B3_d. B3_b. A5_i. A5_a. A5_e. A5_h. A5_d. A5_b.

Differenza in punti percentuali 25,0 20,0 15,0 10,0 5,0 0,0 -5,0 -10,0 -15,0 -20,0. B3_a. A5_f. B3_d. B3_b. A5_i. A5_a. A5_e. A5_h. A5_d. A5_b. A1 A2 A3 A4 A5_a A5_b A5_c A5_d A5_e A5_f A5_g A5_h A5_i B1 B2 B3_a B3_b B3_c B3_d B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 C1 C2 C3 C4 C5 C6 Differenza in punti percentuali Media punteggi classe per ambito

Dettagli

A-9. Località: Tramuschio Via Statale nord, 137, 139, 141. Toponimo: Corte dell Acqua SCHEDA

A-9. Località: Tramuschio Via Statale nord, 137, 139, 141. Toponimo: Corte dell Acqua SCHEDA Località: Tramuschio Via Statale nord, 137, 139, 141 Toponimo: Corte dell Acqua Dati catastali: Foglio 13; Particelle 16. 17, 20, 22 Vincoli e tutele: Vincolo ministeriale D. Lgs. 42/2004: no Interesse

Dettagli

Macrovoce e voce di spesa (Valori in EURO)

Macrovoce e voce di spesa (Valori in EURO) Allegato IV - Conto economico preventivo Cod. B. Macrovoce e voce di spesa (Valori in EURO) COSTI DIRETTI DELL'OPERAZIONE O DEL PROGETTO Contributo pubblico Cofinanz. privato Totale B.1 PREPARAZIONE 0,00

Dettagli

Quesiti da svolgere esclusivamente su carta (15 punti)

Quesiti da svolgere esclusivamente su carta (15 punti) Quesiti da svolgere esclusivamente su carta (15 punti) Quesiti da svolgere esclusivamente su carta (15 punti) Il labirinto di frecce (4 punti) Un piccolo robot si muove sulla scacchiera che vedete, seguendo

Dettagli

Macro-categoria Macro-Obiettivi 440/97 Priorità per la destinazione dei fondi (Direttive ministeriali)

Macro-categoria Macro-Obiettivi 440/97 Priorità per la destinazione dei fondi (Direttive ministeriali) 1 A1 05 aa Attuazione dei progetti contenuti nel POF A1 05 ab Progetti nazionali in coerenza con il processo di riforma A1 06 aa Attuazione dei progetti contenuti nel POF A1 06 ab Progetti nazionali in

Dettagli

I SISTEMI TRIFASE SIMMETRICI ED EQUILIBRATI E MISURA DI POTENZA DI UN SISTEMA TRIFASE SIMMETRICO ED EQUILIBRATO CON IL METODO ARON

I SISTEMI TRIFASE SIMMETRICI ED EQUILIBRATI E MISURA DI POTENZA DI UN SISTEMA TRIFASE SIMMETRICO ED EQUILIBRATO CON IL METODO ARON "#$%##$&'$#'$ '# $%##$ &'$ # $ ( A.A. 2008/2009 Indirizzo Tecnologico Classe di abilitazione: A035 TESI DI SPECIALIZZAZIONE I SISTEMI TRIFASE SIMMETRICI ED EQUILIBRATI E MISURA DI POTENZA DI UN SISTEMA

Dettagli

Banchi ortogonali 5. Trasformata a blocchi: analisi. Trasformata a blocchi: analisi (3) Banchi ortogonali. Trasformata a blocchi.

Banchi ortogonali 5. Trasformata a blocchi: analisi. Trasformata a blocchi: analisi (3) Banchi ortogonali. Trasformata a blocchi. Trasformata a blocchi: analisi Banchi ortogonali Divido il segnale di ingresso in blocchi (Nn) u k = (Nn + 1). u k,l = (Nn + l), l = 0,...,N 1 (Nn+N 1) Trasformo ogni blocco v k = T v k, N 1 v k,m = T

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Applicazioni con EXCEL alle decisioni finanziarie

Applicazioni con EXCEL alle decisioni finanziarie Applicazioni con EXCEL alle decisioni finanziarie Appunti per il corso di Metodi decisionali per l'azienda B Corso di laurea in statistica e informatica per la gestione delle imprese a.a. 2001-2002 Stefania

Dettagli

B.1 PREPARAZIONE 0,00 B.1.1 Progettazione dell'intervento (b.1.1.a+b.1.1.b+b.1.1.c) 0,00 B.1.1.a Personale dipendente costo medio orario n.

B.1 PREPARAZIONE 0,00 B.1.1 Progettazione dell'intervento (b.1.1.a+b.1.1.b+b.1.1.c) 0,00 B.1.1.a Personale dipendente costo medio orario n. Unione pea Fondo Sociale peo A. Contributo pubblico 0,00 B. COSTI DIRETTI DELL'OPERAZIONE O DEL PROGETTO B.1 PREPARAZIONE 0,00 B.1.1 Progettazione dell'intervento (b.1.1.a+b.1.1.b+b.1.1.c) 0,00 B.1.1.a

Dettagli

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa Piani di investimento Un finanziere ha due piani di investimento A e B disponibili all inizio di ciascuno dei prossimi cinque anni. Ogni euro investito in A all inizio di ogni anno garantisce, due anni

Dettagli

""#" " $" " " "#" "#"

#  $   # # ! ""#" " $" " " "#" "#"! ! "!#$%&'#$%!"$#%($%% $ )! """#!$ % #""#!&!#"# $'! (!# ( ")(' $$*($(' ' #!!$# +""#!# # #&& #"# #( +, + (' # #,'(,#,,#,'(, %# -#+'&+'&& #('!! # #(' (# #&.$/ %("!$ ( "# (&($ 0 "&

Dettagli

LA RICLASSIFICAZIONE DEL BILANCIO:

LA RICLASSIFICAZIONE DEL BILANCIO: LA RICLASSIFICAZIONE DEL BILANCIO: STATO PATRIMONIALE ATTIVO: + ATTIVO IMMOBILIZZATO: Investimenti che si trasformeranno in denaro in un periodo superiore ad un anno + ATTIVO CIRCOLANTE: Investimenti che

Dettagli

EV-GREEN FUND FONDO EUROPEO DI GARANZIA

EV-GREEN FUND FONDO EUROPEO DI GARANZIA EV-GREEN FUND FONDO EUROPEO DI GARANZIA Strategia t per repentino sviluppo autotrazione t elettrica in Europa (comprensiva di strategia di produzione energia da fonti rinnovabili) ROAD-MAP 2014-20302030

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Calendario Corsi di Recupero Estivo - A.S. 2014/2015

Calendario Corsi di Recupero Estivo - A.S. 2014/2015 LINGUA E LETTERE ITALIANO 3B+4A CAT ABATE MARCELLA GEO. EC. ESTIMO 3B+4B CAT TURCONI ADEGLIO GEO. EC. ESTIMO 3A+4A CAT ALBE' RAFFAELE INGLESE 1A+B+C TURISTICO ALBERTALLI NICOLETTA mercoledì 24 giugno 2015

Dettagli

BM FORD - INFINITY. Adeguamento Estrattore Data Input 2015

BM FORD - INFINITY. Adeguamento Estrattore Data Input 2015 BM FORD - INFINITY Adeguamento Estrattore Data Input 2015 1. Introduzione... 3 2. Nuovi modelli Edge e Mustang... 3 2.1 Creazione Darts Model... 3 3. Nuove versioni Mondeo-Vignale e S-Max-Vignale... 5

Dettagli

PIANO ANNUALE A.S.2014/15 agg. 5/9/2014 1 lunedì collegio docenti 8.15 10.15

PIANO ANNUALE A.S.2014/15 agg. 5/9/2014 1 lunedì collegio docenti 8.15 10.15 PIANO ANNUALE A.S.2014/15 agg. 5/9/2014 1 lunedì collegio docenti 8.15 10.15 adempimenti di inizio anno 15 lunedì C.di C. 3AG 13.30 14.15 programmazione - visite studio - varie solo docenti 15 lunedì C.di

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

Servizio ISEE Invio comandi alla carta

Servizio ISEE Invio comandi alla carta Servizio ISEE Invio comandi alla carta Versione 1.1 04/12/2012 RTI Funzione Nome Redazione Approvazione Capo progetto RTI (Aruba) Esperto di dominio (Actalis) Capo progetto CMS (Engineering) Esperto architetture

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

Modelli con vincoli di tipo logico

Modelli con vincoli di tipo logico Modelli con vincoli di tipo logico Le variabili decisionali possono essere soggette a vincoli di tipo logico, più o meno espliciti. Ad esempio: vincoli di incompatibilità tra varie alternative: se localizziamo

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria.

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. Capitolo 7 - Operatori Morfologici per Immagini Binarie INTRODUZIONE Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. L immagine binaria, I, viene

Dettagli

SEZIONE OTTAVA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI ART. 1

SEZIONE OTTAVA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI ART. 1 SEZIONE OTTAVA FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI ART. 1 Alla Facoltà di Scienze matematiche, fisiche e naturali afferiscono i seguenti corsi di laurea: a) corso di laurea quadriennale

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli

Dettagli

SERVIZIO NOVITA MONDIALE

SERVIZIO NOVITA MONDIALE BW - 29 ottobre 2014 Il bellissimo album jjjhhhhhhhhhhhhhhhhhhhh ad anelli, idoneo per il diretto inserimento dei fogli a 22 fori che accolgono le più importanti emissioni ufficiali dedicate a Jorge Mario

Dettagli

C.A.V. S.p.A. Concessioni Autostradali Venete SERVIZIO DI PULIZIA AUTOSTRADALE E GESTIONE RIFIUTI - PROGRAMMA 2015 MESE MESE DI GENNAIO MESE DI FEBBRAIO SETTIMANA 1 2 3 4 5 6 7 8 9 v s d l ma me g v s

Dettagli

Mutui e conti correnti in corso e tassi di interesse usurari. Torna in auge la vexata questio dellўїusurarietё sopravvenuta!

Mutui e conti correnti in corso e tassi di interesse usurari. Torna in auge la vexata questio dellўїusurarietё sopravvenuta! 1 3ISSN 1127-8579 Pubblicato dal 27/02/2013 All'indirizzo http://www.diritto.it/docs/34690-mutui-e-conti-correnti-in-corso-e-tassi-diinteresse-usurari-torna-in-auge-la-vexata-questio-dell-usurariet-sopravvenuta

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

Posateria Alpacca Argentata

Posateria Alpacca Argentata Posaterie Cutlery Posateria Alpacca Argentata GENZIANA alpacca spessore mm 3, argentatura 24 micron genziana nikel silver plated 24 micron 6 Cucchiaio tavola 4au01 tavola 4au02 4az94 bistecca 4az95 Cucchiaio

Dettagli

AVVISO PUBBLICO PER L ATTUAZIONE DEL PIANO ANNUALE DI FORMAZIONE PROFESSIONALE ANNUALITA 2011-2012

AVVISO PUBBLICO PER L ATTUAZIONE DEL PIANO ANNUALE DI FORMAZIONE PROFESSIONALE ANNUALITA 2011-2012 PROVINCIA DI CAGLIARI PROVINCIA DE CASTEDDU SETTORE PUBBLICA ISTRUZIONE E FORMAZIONE PROFESSIONALE AVVISO PUBBLICO PER L ATTUAZIONE DEL PIANO ANNUALE DI FORMAZIONE PROFESSIONALE ANNUALITA 2011-2012 Allegato

Dettagli

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

Qualche approfondimento sul quartiere San Donato

Qualche approfondimento sul quartiere San Donato Qualche approfondimento sul quartiere San Donato Nelle pagine successive - Inquadramento generale del Quartiere San Donato - Qualche cenno sulla storia della pianificazione del Quartiere - Tra memoria

Dettagli

Olimpiadi di Problem Solving GARA 2 - gen. 2014 Scuola Primaria

Olimpiadi di Problem Solving GARA 2 - gen. 2014 Scuola Primaria ESERCIZIO 1 Per risolvere dei problemi semplici spesso esistono delle regole che, dai dati del problema, permettono di calcolare o dedurre la soluzione. Questa situazione si può descrivere col termine

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

Droghe, proibizionismo e prevenzione in kantonappenzell ausserrhoden

Droghe, proibizionismo e prevenzione in kantonappenzell ausserrhoden 1 3ISSN 1127-8579 Pubblicato dal 25/02/2013 All'indirizzo http://xn--leggedistabilit2013-kub.diritto.it/docs/34677-droghe-proibizionismoe-prevenzione-in-kantonappenzell-ausserrhoden Autore: Baiguera Altieri

Dettagli

Misure forestali e sistemazioni idraulico-forestali Legge regionale 7 febbraio 2000 n. 7, artt. 24 e 25

Misure forestali e sistemazioni idraulico-forestali Legge regionale 7 febbraio 2000 n. 7, artt. 24 e 25 Misure forestali e sistemazioni idraulico-forestali Legge regionale 7 febbraio 2000 n. 7, artt. 24 e 25 PREMESSA La Regione Lombardia, con deliberazione di Giunta regionale del 28 novembre 2003 n. 7/15276,

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

per l affidamento in concessione del Servizio di Tesoreria

per l affidamento in concessione del Servizio di Tesoreria Spett.le Comune di Prato Piazza del Comune, 2 59100 Prato Marca da bollo Procedura aperta per l affidamento in concessione del Servizio di Tesoreria - Gara n. 548. Mod. 4 (modello per la presentazione

Dettagli

AUTOPARCO TOSCANA ENERGIA ATTUALE CLASSE DI MERITO/TARIFFA ANNO 1 IMM

AUTOPARCO TOSCANA ENERGIA ATTUALE CLASSE DI MERITO/TARIFFA ANNO 1 IMM ATTUALE I A ag 914 zr 2680 benzina autocarro t/cose 1995 Tariffa Fissa Tariffa Fissa max. bg 995 gp 3500 gasolio autocarro t/cose 1999 Tariffa Fissa Tariffa Fissa ap 061 cw 3225 gasolio autocarro t/cose

Dettagli

M. Cerini - R. Fiamenghi - D. Giallongo. Quaderno operativo. Trevisini Editore

M. Cerini - R. Fiamenghi - D. Giallongo. Quaderno operativo. Trevisini Editore M. Cerini - R. Fiamenghi - D. Giallongo Quaderno operativo Trevisini Editore La pubblicazione di un libro è un operazione complessa, che richiede numerosi controlli: sul testo, sulle immagini e sulle relazioni

Dettagli

BILANCIO PREVENTIVO ECONOMICO 2015 SCHEMI ECONOMICI Ex Dlg.s 118/2011 CE secondo DM 20/03/2013 Delibera n. 184 del 14/7/2015 Azienda USL di Ferrara Previsione economica 2015 CONTO ECONOMICO Importi Euro

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

! '"##)+*%#,%% '"##,%,**&-

! '##)+*%#,%% '##,%,**&- ! "##$%&""%#% '"##(($!()*! '"##)+*%#,%% %**, '"##,%,**&- &&*(%&.//01.//2 0 3 **(4%%*,,*),4%* *%*#!,,**(4%%!*5&!#!##%& 6 #-%,!77*,,**(4%% *'!4%%*,,**(4%% #7*##%*%&#&%(**&(7*#%**,,**(4%% #&%,%444%**,,**(4%%

Dettagli

Corso di Laurea in Tecniche di Neurofisiopatologia Appunti di Analisi Matematica

Corso di Laurea in Tecniche di Neurofisiopatologia Appunti di Analisi Matematica 1 Corso di Laurea in Tecniche di Neurofisiopatologia Appunti di Analisi Matematica Anno Accademico 2014-2015 2 Numero Numeri Naturali La classe dei numeri naturali è indicata col simbolo N. Essa contiene

Dettagli

Serie Mediterranea RG 42-35 Finestre a battente Persiane fisse ed orientabili Ante ad apertura esterna TABELLA VETRI - GUARNIZIONI - FERMAVETRI UP 2 UP 3/4 UP 5/6 B=2 C=3/4 D=5/6 SPESSORE VETRI GUARNIZIONI

Dettagli

- GENERATORI DI CALORE

- GENERATORI DI CALORE SCHEDA TECNICA DI INTERVENTO - GENERATORI DI CALORE Il sottoscritto _ titolare della ditta/studio in qualità di (barrare la casella corrispondente) installatore progettista DICHIARA che il richiedente

Dettagli

La costruzione dell universo delle istituzioni e del personale nel settore dell istruzione pubblica

La costruzione dell universo delle istituzioni e del personale nel settore dell istruzione pubblica La costruzione dell universo delle istituzioni e del personale nel settore dell istruzione pubblica Vincenzo Spinelli 17 Febbraio 2015 Fonte: wikipedia.it Indice 1. Introduzione 2. Le scuole nell indagine

Dettagli

METODOLOGIA PER LA MISURAZIONE E LA VALUTAZIONE DELLA PERFORMANCE DEI DIPENDENTI E DEI TITOLARI DI POSIZIONE ORGANIZZATIVA

METODOLOGIA PER LA MISURAZIONE E LA VALUTAZIONE DELLA PERFORMANCE DEI DIPENDENTI E DEI TITOLARI DI POSIZIONE ORGANIZZATIVA MTODOLOGIA PR LA MISURAZION LA VALUTAZION DLLA PRFORMANC DI DIPNDNTI DI TITOLARI DI POSIZION ORGANIZZATIVA Approvato con determinazione del Direttore Generale n 55 del 20/10/2011 1 INDIC PART I DISPOSIZIONI

Dettagli

LICEO STATALE - "M.L. KING" FAVARA (AG) Titolario

LICEO STATALE - M.L. KING FAVARA (AG) Titolario A - AFFARI GENERALI A-1 PIANO OFFERTA FORMATIVA - P.O.F. A-1-a CONTRATTO INTEGRATIVO ISTITUTO - DELEGAZIONE TRATTANTE - PIANO DELLE ATTIVITA' A-11 SCARTO ATTI DI ARCHIVIO A-12 Ispezioni amministrative

Dettagli

Preconsuntivo al Preventivo al. 31/12/2014 Variazione. Preconsuntivo al. Preventivo al. 31/12/2014 Variazione 31/12/2014.

Preconsuntivo al Preventivo al. 31/12/2014 Variazione. Preconsuntivo al. Preventivo al. 31/12/2014 Variazione 31/12/2014. Conto Economico (D.Lgs. 23/6/211 n. 118) Anno: 214 Nome dell'azienda 98 A.O. DELLA VALTELLINA E DELLA VALCHIAVENNA Dati in /1. Anno: 214 Preventivo Codice SCHEMA DI CONTO ECONOMICO PreConsuntivo Totale

Dettagli

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia Definizione 1.1 Relazione. Dati due insiemi A e B un sottoisieme R A B è detto una relazione binaria tra A e B. Se A = B allora

Dettagli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli Sommario Sintesi di reti logiche multilivello M. Favalli Engineering Department in Ferrara 1 2 3 Aspetti tecnologici Sommario Analisi e sintesi dei circuiti digitali 1 / Motivazioni Analisi e sintesi dei

Dettagli

AEROPORTO DI MILANO MALPENSA

AEROPORTO DI MILANO MALPENSA ENTE NAZIONALE PER L'AVIAZIONE CIVILE AEROPORTO DI MILANO MALPENSA MAPPE DI VINCOLO LIMITAZIONI RELATIVE AGLI OSTACOLI E AI PERICOLI PER LA NAVIGAZIONE AEREA (Art. 707 commi 1, 2, 3, 4 del Codice della

Dettagli

Esercizi su Foglio Elettronico. Esercizio 1

Esercizi su Foglio Elettronico. Esercizio 1 Esercizi su Foglio Elettronico CALCOLO INTERESSE N. fattura Importo Tasso Esercizio 1 Tempo (in giorni) Interesse Totale 23 1300000 9 60 45 2678950 9 45 67 1890000 10 90 71 4340000 10 120 TALE: 1) Formattare

Dettagli

Listino Prezzi Dati Camerali in vigore dal 1 Agosto 2012*

Listino Prezzi Dati Camerali in vigore dal 1 Agosto 2012* Listino Prezzi Dati Camerali in vigore dal 1 Agosto 2012* E possibile accedere al pricing riportato nel presente documento sia attraverso il sito sia attraverso gli ambienti Leanus Corporate dedicati al

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli

SPECIFICHE E LIMITI DI EXCEL

SPECIFICHE E LIMITI DI EXCEL SPECIFICHE E LIMITI DI EXCEL Un "FOGLIO DI CALCOLO" è un oggetto di un programma per computer costituito da un insieme di celle, organizzate in righe e colonne, atte a memorizzare dati ed effettuare operazioni

Dettagli

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree

MODULO DI MATEMATICA. di accesso al triennio. Potenze. Proporzioni. Figure piane. Calcolo di aree MODULO DI MATEMATICA di accesso al triennio Abilità interessate Utilizzare terminologia specifica. Essere consapevoli della necessità di un linguaggio condiviso. Utilizzare il disegno geometrico, per assimilare

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

BILANCIO D ESERCIZIO 2014 dell Azienda USL della Romagna. Bilancio d esercizio aziendale. Stato Patrimoniale e Conto Economico

BILANCIO D ESERCIZIO 2014 dell Azienda USL della Romagna. Bilancio d esercizio aziendale. Stato Patrimoniale e Conto Economico BILANCIO D ESERCIZIO 2014 dell Azienda USL della Romagna Bilancio d esercizio aziendale Stato Patrimoniale e Conto Economico Allegato A alla Deliberazione n. 379 del 30/04/2015 Ausl della Romagna Bilancio

Dettagli

1. Elementi di Calcolo Combinatorio.

1. Elementi di Calcolo Combinatorio. . Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n

Dettagli

Organizer Mind - Guida per l utilizzatore

Organizer Mind - Guida per l utilizzatore !"# $! $%! $ & ' ( (& )*+,-.*,+/01+23456*.,/.53.*213*5*.78,1+91..25,271+)55,:,5;78..*73+555,.27/.+-..*,3/,78. +*5,73

Dettagli

Elaborazione delle immagini e Pattern Recognition. Giovanni Scavello

Elaborazione delle immagini e Pattern Recognition. Giovanni Scavello Elaborazione delle immagini e Pattern Recognition Giovanni Scavello Programma dei seminari Nozioni di base del trattamento delle immagini Descrizione matematica Spazi colore Operazioni comuni Filtraggio

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Misure forestali e sistemazioni idraulico-forestali Legge regionale 7 febbraio 2000 n. 7, artt. 24 e 25

Misure forestali e sistemazioni idraulico-forestali Legge regionale 7 febbraio 2000 n. 7, artt. 24 e 25 Misure forestali e sistemazioni idraulico-forestali Legge regionale 7 febbraio 000 n. 7, artt. 4 e 5 PREMESSA La Regione Lombardia, con deliberazione di Giunta regionale del 30 luglio 004 n. 7/8396 ha

Dettagli

LEAF Leasing & Factoring S.p.A VIALE GIULIO RICHARD N. 7 20143 MILANO MI P.I. 05058150961 - C.F. 05058150961

LEAF Leasing & Factoring S.p.A VIALE GIULIO RICHARD N. 7 20143 MILANO MI P.I. 05058150961 - C.F. 05058150961 A LEAF Leasing & Factoring S.p.A STATO PATRIMONIALE ATTIVO A10 CASSA E DISPONIBILITA' 1010100001 CASSA CONTANTI 1010100002 CASSA ASSEGNI 1010100003 CASSA VALORI BOLLATI 1010100004 CONTO INCASSI TOTALE

Dettagli

PLANISFERI - MAPS. Cod. 71 125x83 cm. - img. 98x65 - BT Cod. 71/A - AW. Cod. 72 83x70 cm. - img. 57x50 - BL Cod. 72/A - AP

PLANISFERI - MAPS. Cod. 71 125x83 cm. - img. 98x65 - BT Cod. 71/A - AW. Cod. 72 83x70 cm. - img. 57x50 - BL Cod. 72/A - AP PLANISFERI - MAPS 1 Cod. 71 125x83 cm. - img. 98x65 - BT Cod. 71/A - AW Cod. 70 62x48 cm. - img. 42x36 - AT Cod. 70/A - AE Cod. 82 41x35 cm. - img. 22x20 - AJ Cod. 82/A - AE Cod. 83 31x23 cm. - img. 15x10

Dettagli

CONCORSO 2016 - CLASSI DI CONCORSO NUOVE O NON INDETTE NEL CONCORSO 2012

CONCORSO 2016 - CLASSI DI CONCORSO NUOVE O NON INDETTE NEL CONCORSO 2012 AA56 (ex A077) - Strumento musicale nella scuola secondaria di I grado (Arpa) AB56 (ex A077) - Strumento musicale nella scuola secondaria di I grado (Chitarra) AC56 (ex A077) - Strumento musicale nella

Dettagli

TIPO VEICOLO TARGA HP/Q/Posti Aliment KW Data Immatr. INC. FURTO VALORE TARIFFA B/M

TIPO VEICOLO TARGA HP/Q/Posti Aliment KW Data Immatr. INC. FURTO VALORE TARIFFA B/M AUTOCARRO FIAT COMASCO 200B1-900T RE 308383 15 Q.li BENZINA 35 CV 1978 FISSA AUTOCARRO IVECO AY 228 BR 35 Q.li Rimorch. 28 Q.li DIESEL 76 24/09/1998 FISSA AUTOCARRO IVECO AY 229 BR 35 Q.li Rimorch. 28

Dettagli

Scaletta. Estensioni UML per il Web. Applicazioni web - 2. Applicazioni web. WAE: Web Application Extension for UML. «Client page»

Scaletta. Estensioni UML per il Web. Applicazioni web - 2. Applicazioni web. WAE: Web Application Extension for UML. «Client page» Scaletta Estensioni UML per il Web Michele Zennaro 14-05-2004 Le applicazioni web Scopo di un estensione UML per il web Due punti di vista Uno più astratto Uno più vicino ai file fisici conclusivo Commenti

Dettagli

Fondamenti di informatica per la sicurezza

Fondamenti di informatica per la sicurezza Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2007 2008 docente: tefano Ferrari 19.01.2008 oluzione del econdo compitino versione

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo i dati nel file esercizio10_dati.xls.

Dettagli

ISSN 1127-8579. Pubblicato dal 27/12/2013

ISSN 1127-8579. Pubblicato dal 27/12/2013 ISSN 1127-8579 Pubblicato dal 27/12/2013 All'indirizzo http://www.diritto.it/docs/35807-profili-essenziali-delle-intercettazionitelematiche-dalla-tutela-costituzionale-della-segretezza-ed-inviolabilit-di-qualasisi-formadi-comunicazione-alla-disciplina-ex-art-266-bis-c-p-p

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli