Esponenziali e logaritmi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esponenziali e logaritmi"

Transcript

1 Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4

2 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali 4 Equazioni / disequazioni logaritmiche Corso di accompagnamento Esponenziali e logaritmi Lezione 4 2 / 25

3 La funzione esponenziale Dato un numero reale a > 0, si dice funzione esponenziale in base a la funzione x a x Dominio e immagine La funzione esponenziale x a x ha dominio R immagine (0,+ ) Una funzione particolare Ha un ruolo di spicco la funzione esponenziale in base e y = e x Visto che e 2, 718, la funzione esponenziale in base e ha un comportamento intermedio fra quello delle funzioni esponenziali in base 2 e in base 3. Corso di accompagnamento Esponenziali e logaritmi Lezione 4 3 / 25

4 La funzione esponenziale Dato un numero reale a > 0, si dice funzione esponenziale in base a la funzione x a x Dominio e immagine La funzione esponenziale x a x ha dominio R immagine (0,+ ) Una funzione particolare Ha un ruolo di spicco la funzione esponenziale in base e y = e x Visto che e 2, 718, la funzione esponenziale in base e ha un comportamento intermedio fra quello delle funzioni esponenziali in base 2 e in base 3. Corso di accompagnamento Esponenziali e logaritmi Lezione 4 3 / 25

5 La funzione esponenziale Dato un numero reale a > 0, si dice funzione esponenziale in base a la funzione x a x Dominio e immagine La funzione esponenziale x a x ha dominio R immagine (0,+ ) Una funzione particolare Ha un ruolo di spicco la funzione esponenziale in base e y = e x Visto che e 2, 718, la funzione esponenziale in base e ha un comportamento intermedio fra quello delle funzioni esponenziali in base 2 e in base 3. Corso di accompagnamento Esponenziali e logaritmi Lezione 4 3 / 25

6 Richiami se a = 1, si ottiene la funzione costante: 1 x = 1 per ogni a > 0 e ogni x, y R a 0 = 1 a 1 = a a 1 = 1 a a x+y = a x a y (a x ) y = a xy quindi ) x = a x ( 1 a cioè il grafico di y = a x è simmetrico al grafico di y = ( 1 a )x rispetto all asse y. Corso di accompagnamento Esponenziali e logaritmi Lezione 4 4 / 25

7 Grafico della funzione esponenziale a 1 a 1 1 x (a) esponenziale in base a > 1 1 x (b) esponenziale in base a < 1 a > 0 il grafico passa attraverso i punti (0, 1) e (1, a) se a > 1, la funzione x a x è crescente se a < 1, la funzione x a x è decrescente Corso di accompagnamento Esponenziali e logaritmi Lezione 4 5 / 25

8 Inversione Data f(x) = a x con a > 0 reale e il numero reale positivo y 0, si consideri l equazione a x = y 0 Casi a = 1 l equazione è risolta da ogni numero reale se y 0 = 1, mentre non ha soluzione per y 0 1 a 1 per ogni y 0 > 0 l equazione ha una e solo una soluzione x 0, detta il logaritmo in base a di y 0 Il secondo caso definisce,per ogni y 0 (0, ), una funzione: y 0 log a y 0 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 6 / 25

9 Inversione Data f(x) = a x con a > 0 reale e il numero reale positivo y 0, si consideri l equazione a x = y 0 Casi a = 1 l equazione è risolta da ogni numero reale se y 0 = 1, mentre non ha soluzione per y 0 1 a 1 per ogni y 0 > 0 l equazione ha una e solo una soluzione x 0, detta il logaritmo in base a di y 0 Il secondo caso definisce,per ogni y 0 (0, ), una funzione: y 0 log a y 0 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 6 / 25

10 Inversione Data f(x) = a x con a > 0 reale e il numero reale positivo y 0, si consideri l equazione a x = y 0 Casi a = 1 l equazione è risolta da ogni numero reale se y 0 = 1, mentre non ha soluzione per y 0 1 a 1 per ogni y 0 > 0 l equazione ha una e solo una soluzione x 0, detta il logaritmo in base a di y 0 Il secondo caso definisce,per ogni y 0 (0, ), una funzione: y 0 log a y 0 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 6 / 25

11 La funzione logaritmo Dato un numero reale a > 0, a 1, si dice logaritmo in base a la funzione x log a x Dominio e immagine La funzione logaritmo y = log a x ha dominio (0,+ ) immagine R Una funzione particolare Scegliendo e come base, si ha il cosidetto logaritmo naturale, che è generalmente indicato con y = ln x Corso di accompagnamento Esponenziali e logaritmi Lezione 4 7 / 25

12 La funzione logaritmo Dato un numero reale a > 0, a 1, si dice logaritmo in base a la funzione x log a x Dominio e immagine La funzione logaritmo y = log a x ha dominio (0,+ ) immagine R Una funzione particolare Scegliendo e come base, si ha il cosidetto logaritmo naturale, che è generalmente indicato con y = ln x Corso di accompagnamento Esponenziali e logaritmi Lezione 4 7 / 25

13 Grafico 1 1 a x 1 1 a x (c) logaritmo in base a > 1 (d) logaritmo in base a < 1 Il grafico passa attraverso i punti (1, 0),(a, 1), ( 1 a, 1) se a > 1, la funzione è crescentente, negativa su (0, 1), positiva su (1, ) se a < 1, la funzione è decrescente, positiva su (0, 1), negativa su (1, ) Corso di accompagnamento Esponenziali e logaritmi Lezione 4 8 / 25

14 Proprietà Si considerino numeri reali positivi a 1, x, y e sia z un altro numero reale assegnato log a xy = log a x + log a y log a x y = log a x log a y log a x z = z log a x Inoltre, se b è un numero reale positivo 1, allora vale la formula del cambiamento di base per i logaritmi: log b x = log a x log a b Corso di accompagnamento Esponenziali e logaritmi Lezione 4 9 / 25

15 Proprietà Si considerino numeri reali positivi a 1, x, y e sia z un altro numero reale assegnato log a xy = log a x + log a y log a x y = log a x log a y log a x z = z log a x Inoltre, se b è un numero reale positivo 1, allora vale la formula del cambiamento di base per i logaritmi: log b x = log a x log a b Corso di accompagnamento Esponenziali e logaritmi Lezione 4 9 / 25

16 Esponenziali e logaritmi Il grafico di y = a x and y = log a x (stessa base) sono l uno simmetrico all altro rispetto alla bisettrice del primo e terzo quadrante. Dunque, se il punto (p, q) appartiene al grafico della funzione esponenziale, allora (q, p) appartiene al grafico della funzione logaritmo. Spiegazione Il logaritmo e l esponenziale soddisfano le relazioni seguenti: a log a y 0 = y 0 y 0 (0,+ ) log a (a x 0) = x 0 x 0 R Corso di accompagnamento Esponenziali e logaritmi Lezione 4 10 / 25

17 Equazioni esponenziali I Tipo: a f(x) = k con a > 0, a 1 e k R Soluzione: se k > 0, f(x) = log a k se k 0, impossibile 8 2 x 1 2 x+1 = x 2 2 x 2 = 16 (4 2) 2 x = 16 2 x = 8 x = 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 11 / 25

18 Equazioni esponenziali I Tipo: a f(x) = k con a > 0, a 1 e k R Soluzione: se k > 0, f(x) = log a k se k 0, impossibile 8 2 x 1 2 x+1 = x 2 2 x 2 = 16 (4 2) 2 x = 16 2 x = 8 x = 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 11 / 25

19 Equazioni esponenziali I Tipo: a f(x) = k con a > 0, a 1 e k R Soluzione: se k > 0, f(x) = log a k se k 0, impossibile 8 2 x 1 2 x+1 = x 2 2 x 2 = 16 (4 2) 2 x = 16 2 x = 8 x = 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 11 / 25

20 Equazioni esponenziali II Tipo: a f(x) = a g(x) Soluzione: f(x) = g(x) 2 2x2 +x 2 x3 +2x = 0 2 2x2 +x = 2 x3 +2x x(2x + 1) = x(x 2 + 2) x( x 2 + 2x 1) = 0 ( x (x 1) 2) = 0 x = 0 o x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 12 / 25

21 Equazioni esponenziali II Tipo: a f(x) = a g(x) Soluzione: f(x) = g(x) 2 2x2 +x 2 x3 +2x = 0 2 2x2 +x = 2 x3 +2x x(2x + 1) = x(x 2 + 2) x( x 2 + 2x 1) = 0 ( x (x 1) 2) = 0 x = 0 o x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 12 / 25

22 Equazioni esponenziali II Tipo: a f(x) = a g(x) Soluzione: f(x) = g(x) 2 2x2 +x 2 x3 +2x = 0 2 2x2 +x = 2 x3 +2x x(2x + 1) = x(x 2 + 2) x( x 2 + 2x 1) = 0 ( x (x 1) 2) = 0 x = 0 o x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 12 / 25

23 Equazioni esponziali III Tipo: a f(x) = b g(x), b > 0, b 1 Soluzione: usare b g(x) = a g(x)logab, 2 x+1 = 5 1 x poi applicare log a 2 x+1 = 2 (1 x) log 2 5 x + 1 = (1 x) log 2 5 x(1+log 2 5) = log 5 1 x = log log 2 5 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 13 / 25

24 Equazioni esponziali III Tipo: a f(x) = b g(x), b > 0, b 1 Soluzione: usare b g(x) = a g(x)logab, 2 x+1 = 5 1 x poi applicare log a 2 x+1 = 2 (1 x) log 2 5 x + 1 = (1 x) log 2 5 x(1+log 2 5) = log 5 1 x = log log 2 5 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 13 / 25

25 Equazioni esponziali III Tipo: a f(x) = b g(x), b > 0, b 1 Soluzione: usare b g(x) = a g(x)logab, 2 x+1 = 5 1 x poi applicare log a 2 x+1 = 2 (1 x) log 2 5 x + 1 = (1 x) log 2 5 x(1+log 2 5) = log 5 1 x = log log 2 5 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 13 / 25

26 Equazioni esponenziali III Un altro esempio 2 x+1 5 x 1 3 x = 2 2 x+1 5 x 1 = 2 3 x ln 2 x + ln 5 x 1 = ln 3 x x ln 2+x ln 5 x ln 3 = ln 5 ln 5 x = ln 2+ln 5 ln 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 14 / 25

27 Equazioni esponenziali III Un altro esempio 2 x+1 5 x 1 3 x = 2 2 x+1 5 x 1 = 2 3 x ln 2 x + ln 5 x 1 = ln 3 x x ln 2+x ln 5 x ln 3 = ln 5 ln 5 x = ln 2+ln 5 ln 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 14 / 25

28 Equazioni esponenziali IV Tipo: f(a x ) = 0 Soluzione: porre a x = t, quindi risolvere f(t) = x 2 3 x + 2 x = x x + 2 x = 0 ( )2 x = 2 x sostituzione: t = 2 x ( )/t = t t 2 = ( ) = 8 4 = 4 = x = 2 2 2x = 2 x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 15 / 25

29 Equazioni esponenziali IV Tipo: f(a x ) = 0 Soluzione: porre a x = t, quindi risolvere f(t) = x 2 3 x + 2 x = x x + 2 x = 0 ( )2 x = 2 x sostituzione: t = 2 x ( )/t = t t 2 = ( ) = 8 4 = 4 = x = 2 2 2x = 2 x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 15 / 25

30 Equazioni esponenziali IV Tipo: f(a x ) = 0 Soluzione: porre a x = t, quindi risolvere f(t) = x 2 3 x + 2 x = x x + 2 x = 0 ( )2 x = 2 x sostituzione: t = 2 x ( )/t = t t 2 = ( ) = 8 4 = 4 = x = 2 2 2x = 2 x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 15 / 25

31 Equazioni esponenziali IV Tipo: f(a x ) = 0 Soluzione: porre a x = t, quindi risolvere f(t) = x 2 3 x + 2 x = x x + 2 x = 0 ( )2 x = 2 x sostituzione: t = 2 x ( )/t = t t 2 = ( ) = 8 4 = 4 = x = 2 2 2x = 2 x = 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 15 / 25

32 Disequazioni esponenziali Tipo: a f(x) > a g(x), a > 0, a 1 Soluzione: se a > 1, f(x) > g(x) se a < 1, f(x) < g(x) ( ( 1 ) x+1 ) x 7 > 1 49 ( ) 1 (x+1)x > ( 1 ) (x + 1)x < 2 x 2 + x 2 < 0 2 < x < 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 16 / 25

33 Disequazioni esponenziali Tipo: a f(x) > a g(x), a > 0, a 1 Soluzione: se a > 1, f(x) > g(x) se a < 1, f(x) < g(x) ( ( 1 ) x+1 ) x 7 > 1 49 ( ) 1 (x+1)x > ( 1 ) (x + 1)x < 2 x 2 + x 2 < 0 2 < x < 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 16 / 25

34 Disequazioni esponenziali Tipo: a f(x) > a g(x), a > 0, a 1 Soluzione: se a > 1, f(x) > g(x) se a < 1, f(x) < g(x) ( ( 1 ) x+1 ) x 7 > 1 49 ( ) 1 (x+1)x > ( 1 ) (x + 1)x < 2 x 2 + x 2 < 0 2 < x < 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 16 / 25

35 Disequazioni esponenziali Tipo: f(a x ) > c Soluzione: porre a x = t, quindi risolvere f(t) > c 4 x 2 2 x x 2 2 x 3 0 sostituzione t = 2 x t 2 2t t x 3 x log 2 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 17 / 25

36 Disequazioni esponenziali Tipo: f(a x ) > c Soluzione: porre a x = t, quindi risolvere f(t) > c 4 x 2 2 x x 2 2 x 3 0 sostituzione t = 2 x t 2 2t t x 3 x log 2 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 17 / 25

37 Disequazioni esponenziali Tipo: f(a x ) > c Soluzione: porre a x = t, quindi risolvere f(t) > c 4 x 2 2 x x 2 2 x 3 0 sostituzione t = 2 x t 2 2t t x 3 x log 2 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 17 / 25

38 Equazioni logaritmiche Tipo: log a f(x) = b con a > 0, a 1 e b R Soluzione: quando f(x) > 0, f(x) = a b Attenzione È sempre necessario determinare il dominio di esistenza, dato che log è definita solo quando il suo argomento è strettamente positivo 2+log 2 x = log 2 7 D = (0,+ ) log 2 x x = log = 2 log x = 7 4 (valido, perchè D) Corso di accompagnamento Esponenziali e logaritmi Lezione 4 18 / 25

39 Equazioni logaritmiche Tipo: log a f(x) = b con a > 0, a 1 e b R Soluzione: quando f(x) > 0, f(x) = a b Attenzione È sempre necessario determinare il dominio di esistenza, dato che log è definita solo quando il suo argomento è strettamente positivo 2+log 2 x = log 2 7 D = (0,+ ) log 2 x x = log = 2 log x = 7 4 (valido, perchè D) Corso di accompagnamento Esponenziali e logaritmi Lezione 4 18 / 25

40 Equazioni logaritmiche Tipo: log a f(x) = b con a > 0, a 1 e b R Soluzione: quando f(x) > 0, f(x) = a b Attenzione È sempre necessario determinare il dominio di esistenza, dato che log è definita solo quando il suo argomento è strettamente positivo 2+log 2 x = log 2 7 D = (0,+ ) log 2 x x = log = 2 log x = 7 4 (valido, perchè D) Corso di accompagnamento Esponenziali e logaritmi Lezione 4 18 / 25

41 Equazioni logaritmiche I log 4 (x + 6)+log 4 x = 2 D = (0,+ ) log 4 (x 2 + 6x) = 2 x 2 + 6x 16 = 0 { 8 (non valida) x = 2 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 19 / 25

42 Equazioni logaritmiche II Tipo: log a f(x) = log a g(x) Soluzione: quando f(x) > 0 e g(x) > 0, f(x) = g(x) log 2 x + log 1(x 1) = 3 D = (1,+ ) 2 log 2 x = log 2 (x 1)+3 2 log 2 x = 2 log 2 (x 1)+3 x = (x 1)2 3 x = 8x 8 7x = 8 x = 8 7 (ok) Corso di accompagnamento Esponenziali e logaritmi Lezione 4 20 / 25

43 Equazioni logaritmiche II Tipo: log a f(x) = log a g(x) Soluzione: quando f(x) > 0 e g(x) > 0, f(x) = g(x) log 2 x + log 1(x 1) = 3 D = (1,+ ) 2 log 2 x = log 2 (x 1)+3 2 log 2 x = 2 log 2 (x 1)+3 x = (x 1)2 3 x = 8x 8 7x = 8 x = 8 7 (ok) Corso di accompagnamento Esponenziali e logaritmi Lezione 4 20 / 25

44 Equazioni logaritmiche II Example log 2 (x + 1) = log 4 (2x + 5) D = ( 1,+ ) log 2 (x + 1) = log 2 (2x + 5) log 2 4 log 2 (x + 1) = 1 2 log 2 (2x + 5) log 2 (x + 1) = log 2 (2x + 5) 1 2 x + 1 = 2x + 5 x 2 + 2x + 1 = 2x + 5 x 2 4 = { 0 2 (non valida) x = 2 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 21 / 25

45 Equazioni logaritmiche III Tipo: f(log a x) = 0 Soluzioneution: porre log a x = t, quindi risolvere f(t) = 0 log 2 2 x 2 log 2 x 3 = 0 D = (0,+ ) log 2 2 x 2 log 2 x 3 = 0 sostituzione t = log 2 x t 2 2t 3 = 0 (t 3)(t + 1) = 0 t = 1 o 3 log 2 x = 1 o 3 x = 1/2 o x = 8 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 22 / 25

46 Equazioni logaritmiche III Tipo: f(log a x) = 0 Soluzioneution: porre log a x = t, quindi risolvere f(t) = 0 log 2 2 x 2 log 2 x 3 = 0 D = (0,+ ) log 2 2 x 2 log 2 x 3 = 0 sostituzione t = log 2 x t 2 2t 3 = 0 (t 3)(t + 1) = 0 t = 1 o 3 log 2 x = 1 o 3 x = 1/2 o x = 8 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 22 / 25

47 Diseguaglianze logaritmiche I Tipo: log a f(x) > log a g(x) Soluzione: se a > 1, if a < 1, f(x) > g(x); f(x) < g(x) log 2 x log 2 3 < log 2 (x + 2) x log 2 3 < log 2 (x + 2) x 3 < x + 2 x > 3 D = (0,+ ) e tenendo conto del dominio, la soluzione è x > 0 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 23 / 25

48 Diseguaglianze logaritmiche I Tipo: log a f(x) > log a g(x) Soluzione: se a > 1, if a < 1, f(x) > g(x); f(x) < g(x) log 2 x log 2 3 < log 2 (x + 2) x log 2 3 < log 2 (x + 2) x 3 < x + 2 x > 3 D = (0,+ ) e tenendo conto del dominio, la soluzione è x > 0 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 23 / 25

49 Diseguaglianze logaritmiche I log 2 (x 2 + 1) > log 2 (2x + 4) D = ( 2,+ ) log 2 (x 2 + 1) > log 2 (2x + 4) x > 2x + 4 x 2 2x 3 > 0 (x 3)(x + 1) > 0 x < 1 o x > 3 e tenendo conto del dominio, la soluzione è 2 < x < 1 or x > 3 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 24 / 25

50 Disequazioni logaritmiche II Tipo: f(log x) > c Soluzione: porre log x = t, quindi risolvere f(t) > c Example log 3 2 x 2 log 2 x > 0 D = (0,+ ) log 3 2 x 2 log 2 x > 0 sostituzione t = log 2 x t 3 2t > 0 t(t 2 2) > 0 t > 2 o 2 < t < 0 x > 2 2 o 2 2 < x < 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 25 / 25

51 Disequazioni logaritmiche II Tipo: f(log x) > c Soluzione: porre log x = t, quindi risolvere f(t) > c Example log 3 2 x 2 log 2 x > 0 D = (0,+ ) log 3 2 x 2 log 2 x > 0 sostituzione t = log 2 x t 3 2t > 0 t(t 2 2) > 0 t > 2 o 2 < t < 0 x > 2 2 o 2 2 < x < 1 Corso di accompagnamento Esponenziali e logaritmi Lezione 4 25 / 25

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte.

DOMINIO di FUNZIONI. PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere e fratte. Tutorial di Barberis Paola - 2009 Definizioni: FUNZIONE e DOMINIO LA FUNZIONE

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2.

Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi. ( ) x + 2. Determinare il dominio e la derivata delle seguenti funzioni e studiarne la monotonia ed eventuali massimi/minimi (1) (2) (3) (4) f (x) = log ( ) x + 2 x 1 f (x) = x exp( x 3 ) ( f (x) = arctan x ) x 1

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Disequazioni esponenziali e logaritmiche

Disequazioni esponenziali e logaritmiche Disequazioni esponenziali e logaritmiche Saranno descritte alcune principali tipologie di disequazioni esponenziali e logaritmiche, riportando un esempio per ciascuna di esse. Daniela Favaretto Università

Dettagli

Funzione logaritmo con. funzione inversa della funzione di

Funzione logaritmo con. funzione inversa della funzione di FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Scale Logaritmiche SCALA LOGARITMICA:

Scale Logaritmiche SCALA LOGARITMICA: Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad es. asse x) si rappresenta il punto di ascissa 1 = 10 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti di

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte.

DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte. DOMINIO di FUNZIONI PREREQUISITI: Grafici delle funzioni elementari. Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte. Tutorial di Barberis Paola agg 2015 FUNZIONE e DOMINIO LA FUNZIONE

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014

Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Indice 1 Esponenziali 1 1.1 Funzioni esponenziali con dominio Z.......................

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2014/2015 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015 CLASSE 4^ B SETTORE TECNOLOGICO: Costruzioni, Ambiente e Territorio Disciplina: Matematica Testi in uso: Nuova Matematica a Colori-3

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Istituto d Istruzione Superiore A Tilgher Ercolano (Na) Prof Amendola Alfonso Premessa Esponenziali e logaritmi Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento,

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Soluzione del tema d esame di matematica, A.S. 2005/2006

Soluzione del tema d esame di matematica, A.S. 2005/2006 Soluzione del tema d esame di matematica, A.S. 2005/2006 Niccolò Desenzani Sun-ra J.N. Mosconi 22 giugno 2006 Problema. Indicando con A e B i lati del rettangolo, il perimetro è 2A + 2B = λ mentre l area

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f).

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f). Liceo Scientico Paritario Ven. A. Luzzago di Brescia. Classe 5A - Anno Scolastico 2014/2015 - Prof. Simone Alghisi 1 Le funzioni (1.1) Denizione Siano A e B due insiemi. Una funzione f : A B é una legge

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

Soluzione verifica del 16/12/2014

Soluzione verifica del 16/12/2014 Soluzione verifica del 6/2/204. Determinare dominio e codominio della funzione y = f(x) il cui grafico è rappresentato nella figura seguente; successivamente valutare i seguenti iti: x x 2 + x x 2 x 2

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

MATEMATICA GENERALE Corsi di laurea EA, ELI, EMIF PROVA INTERMEDIA del 4 novembre 2010 Cognome Nome.................................................... Matricola.......................... Anno di Corso..........................................

Dettagli

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it Esempio 1 y= f (x)= x 1 x 2 9 a Dominio: D= R { 3,3} Il denominatore deve

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Perché il logaritmo è così importante?

Perché il logaritmo è così importante? Esempio 1. Perché il logaritmo è così importante? (concentrazione di ioni di idrogeno in una soluzione, il ph) Un sistema solido o liquido, costituito da due o più componenti, (sale disciolto nell'acqua),

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

4G 14/2/2000 Potenze in R

4G 14/2/2000 Potenze in R Claudio Cereda esponenziali e logaritmi luglio 2005 pag. 1 4G 14/2/2000 Potenze in R 1. Si consideri la potenza a m/n con a R + e m/n frazione assoluta ridotta ai minimi termini. a) cosa si intende con

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

FUNZIONI ESPONENZIALE E LOGARITMICA

FUNZIONI ESPONENZIALE E LOGARITMICA FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte

EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte La presente dispensa riporta la risoluzione di alcuni esercizi inerenti equazioni e disequazioni logaritmiche. N.B. In questa dispensa,

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Corso di Matematica per CTF Appello 15/12/2010

Corso di Matematica per CTF Appello 15/12/2010 Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

TEMATICA 1 - FUNZIONI ED EQUAZIONI

TEMATICA 1 - FUNZIONI ED EQUAZIONI Docente Materia Classe Cristina Frescura Matematica 4B Programmazione Preventiva Anno Scolastico 2012-2013 Data 28 novembre 2012 Obiettivi Cognitivi Nota bene: gli obiettivi minimi sono sottolineati U.D.

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

1 Principali funzioni e loro domini

1 Principali funzioni e loro domini Principali funzioni e loro domini Tipo di funzione Rappresentazione Dominio Polinomio intero p() = a n + + a n R p() Polinomio fratto q() 6= q() 2n Radici pari p f() f() 2n+ Radici dispari p f() R Moduli

Dettagli

MODULO O VALORE ASSOLUTO

MODULO O VALORE ASSOLUTO Modulo o valore assoluto F. Bonaldi C. Enrico 1 MODULO O VALORE ASSOLUTO Questo concetto risulta spesso di difficile comprensione. Per capirlo, occorre applicare rigorosamente la definizione di modulo.

Dettagli