2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:
|
|
- Gilda Silvana Visconti
- 1 anni fa
- Visualizzazioni
Transcript
1 Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo cso è ugule ed è il ritmo in bse di. L bse DEVE essere un numero POSITIVO. Pertnto un modo di clcolre il ritmo di un numero è di vederlo come operzione invers (NON è frtto ) quell di elevre esponente. Definizione. Si b un numero rele positivo (detto nche rgomento), un numero rele positivo diverso d ; si chim ritmo nell bse del numero b, l esponente d dre d per ottenere b e si scrive: b Esercizi trtti dl libro Approccio ll mtemtic, VOL. E, Minerv Itlic Es. pg.. Bsndoti sull definizione di ritmo, clcol: A) 7 vuol dire: cerc l esponente tle che 7 ) Riscrivendo come potenze di si h: ( ) ) l bse è l stess quindi confrontndo gli esponenti si h = d cui = / B) vuol dire: cerc l esponente tle che 7 7 ) Riscrivendo come potenze di si h: ( ) quindi = - d cui = -/ C) 7 7 vuol dire: cerc l esponente tle che. 8 8 ) Riscrivimo come potenze di / e /: ) Poiché si h: D) vuol dire: cerc l esponente tle che, quindi ) Poiché si h Es. pg.. Bsndoti sull definizione di ritmo, clcol: A) vuol dire: cerc l esponente tle che ) Riscrivendo come potenze di si h: B) 7 vuol dire: cerc l esponente tle che 7 ) Riscrivendo come potenze di si h: C) D) 7 quindi = - d cui = -/ (perchè = ) quindi = - d cui = -/ quindi quindi d cui = / d cui = / vuol dire: cerc l esponente tle che quindi d cui = -/ vuol dire: cerc l esponente tle che 7 7 quindi 7 7 Es. pg.. Determin l rgomento del ritmo, dto il vlore del ritmo e l bse. A) 0. Dll definizione di ritmo: 0. 0 d cui = / /
2 B). 0 Si h: C) Si h: 7 Es. pg.. Determin l rgomento del ritmo, dto il vlore del ritmo e l bse. A) B) Si h: Si h: Si h: C) Es. pg.. Determin l bse dei seguenti ritmi. 7 A) 8 7 Si h: 8 m 7 8 quindi = B) Si h: m e quindi = / C) Si h: m quindi = - = / Oppure: si elev tutto -/: ) ) ) / Es. pg.. Determin l bse dei seguenti ritmi. A) Si h: B) Si h: ) quindi 7 quindi Es. 7 pg.. Applicndo le proprietà inverse dei ritmi, trsform le seguenti espressioni in un unico ritmo, qulunque si l bse. A) y ( y) ) Si h: y y ) y y y y : Es. 77 pg.. A) b ) Si h: b 8 ) b 8b Es. 7 pg.. y y y ) Si h: y y y A) ) y y y y y Es. 80 pg.. A) ( b) c ) Si h: b c /
3 ) b c ) b ) possimo riscrivere c c c e quindi b b b c c c Es. 88 pg. 7. Ricv il vlore dell dlle seguenti uguglinze. A) b Si cerc di scrivere l espressione destr dell ugule con un unico ritmo, nell stess bse di quello dell espressione sinistr dell ugule. Poi si possono confrontre i due rgomenti. ) b ) c Quindi b b Per gli esercizi d 0 8 pg. 7: un tecnic per risolverli è utilizzre le proprietà dei ritmi. Un lterntiv è quell di riscrivere l'rgomento (del ritmo) in modo che compino solo potenze dell stess bse rispetto cui è clcolto il ritmo. Es. 0 pg. 7. Clcol il vlore delle espressioni ) Si h: A) 8 b 8 ) B) 7 Si h: Es. pg.. Clcol il vlore delle espressioni A) A ) Altro modo ) Si h: B) ) Si h: Es. pg.. Clcol il vlore delle espressioni A) ) Si h: ) A') Un ltro modo: I) /
4 B) ) Si h: Es. pg.. Clcol il vlore delle espressioni A) 8 ) Si h: B) 7 ) Si h: ) ) = 7 7 Visto che l bse è 7 e che 7 = llor Un ltro modo: ) Si h: spendo che b si h che 7 e utilizzndo questo risultto si h: b 7 ) 7 8 Es. pg.. Clcol il vlore delle espressioni 8 A) ) Si h: 8 B) 7 ) Si h: ) Es. pg.. Clcol il vlore delle espressioni A) ) Si h: B) ) Si h: Es. pg.. Clcol il vlore delle espressioni A) ) Si h: Es. 7 pg.. Clcol il vlore delle espressioni A) 8 ) Si h: 8 8 Es. 8 pg.. Clcol il vlore delle espressioni 8 A) ) Si h: / 8
5 Per gli esercizi d 00 pg. 8: L rgomento di un ritmo deve essere un numero positivo. L esercizio 00 verrà svolto fornendo nche richimi sull teori. Es.00 pg. 8. Stbilisci per quli vlori delle vribili h significto l espressione del membro di sinistr delle seguenti uguglinze e per quli vlori sono vere dette uguglinze. 0 0 ) L rgomento del ritmo, nell espressione sinistr dell ugule deve essere mggiore di zero: 0 Si trtt di vlutre il segno del rpporto e 0 0 M vlutre il segno di un rpporto è l stess cos di vlutre il segno di un prodotto. Ad esempio il segno del prodotto di tre espressioni è positivo se: tutte e tre le espressioni sono positive oppure se due su tre sono positive m nche il segno di un rpporto tr tre espressioni è positivo se: tutte e tre le espressioni sono positive oppure se due su tre sono positive Quindi: vlutre il segno di un rpporto di espressioni è l stess cos di vlutre il segno di un prodotto di espressioni. Inoltre si s vlutre il segno del prodotto: si us un tbell. Tornndo ll esercizio: - 0 ) 0 0 se sempre 0 ) Quindi i vlori dell vribile per cui h significto l espressione sinistr dell ugule sono dti dll insieme S : S : 0. ) Or occorre stbilire per quli vlori di è ver l uguglinz (dt dl testo): 0 0 Quindi per l espressione sinistr dell ugule, i vlori sono stti trovti l punto ). Per quelli destr dell ugule: ogni rgomento di ogni ritmo deve essere un numero positivo. Quindi deve vere rg omento positivo : 0 ver e deve vere rg omento positivo : 0 e 0 deve vere rg omento positivo : 0 0 Quindi deve essere ver l prim disequzione (>0) e l second (+>0) e l terz (-0>0): l e signific contempornemente e quindi si deve considerre un sistem di disequzioni Quindi le soluzioni sono dte d S : S : ) I vlori per cui è definit l equzione sono quindi quelli che rendono definite si l espressione sinistr dell ugule che quell destr e quindi sono i vlori comuni (->sistem) S e S. /
6 - 0 Quindi i vlori comuni si hnno per >0. S : S : Es.0 pg. 8. Stbilisci per quli vlori delle vribili h significto l espressione b b ) è definito se l rgomento è positivo: b 0 0 se 0 e b 0 b b che si esprime nche dicendo che, b devono essere concordi. oppure se 0 e b 0 Quindi l insieme S dei vlori per cui 0 b 0 0 b 0 è definito, è dto d: b S. b : ) Si considerno or gli rgomenti dei ritmi dell espressione destr dell ugule: è sempre definito (>0) è definito se >0 b è definito se b>0 Quindi l insieme S dei vlori per cui l espressione destr dell ugule è definit, è dto d: S. b : 0 b 0. b : 0 b 0 ) Quindi confrontndo S con S si ricv che l uguglinz è definit se Es.0 pg. 8. ) è definito se 0. M un espressione rele elevt d un esponente intero pri è sempre non negtiv. Quindi bst che si - 0 ovvero. Quindi è definit per S : ) Si considerno or gli rgomenti dei ritmi dell espressione destr dell ugule: è sempre definito (>0) ( ) è definito se ->0 quindi > Quindi l espressione destr dell ugule è definit per S : ) I vlori di che rendono definite le due espressioni sinistr e destr dell ugule, sono dti S S S : dll intersezione tr S e S (vlori comuni). Quindi: Es.0 pg. 8. ) è definito se 0. Occorre vlutre il segno del rpporto. /
7 0 0 poichè è sempre se z è sempre non negtiv. Quindi 0 Quindi è definito per tle che: S :, con Not. Il libro fornisce come risultto: e che formlmente non è corretto (non è corrett l e ) perché non può essere contempornemente minore di e mggiore di ; si indic con o ed è l stess cos di dire >/ con diverso d cioè S. ) Si considerno or gli rgomenti dei ritmi dell espressione destr dell ugule: ( ) è definito se 0 ( ) è definito se 0 e le due condizioni trovte devono essere entrmbe vere quindi: / Quindi S : ) Quindi l equzione è definit per i vlori di che pprtengono si d S (quelli per cui è definit l espressione sinistr dell ugule) che d S (quelli per cui è definit l espressione destr dell ugule): S S S, Es.0 pg ) 7 è definito se 0 7. Occorre vlutre il segno del rpporto. A ) 0 B) è sempre positivo C ) sempre ver perchè 7 è 0 7 Quindi 7 è definito per S : 7 ) Si considerno or gli rgomenti dei ritmi dell espressione destr dell ugule: è definito se 0 è sempre ver perchè è sempre 0 e sommimo 7/
8 ( 7) è definito se S Quindi l espressione destr dell ugule è definit per : 7 ) Quindi l equzione S S S 7 è definit per i vlori di pprtenenti : Es. pg. 8. ) Considerimo i termini sinistr dell ugule. è definito se 0. A) 0 Le rdici di sono dte d:, Quindi 0 S A per B) è definito se 0 Le rdici di sono dte d. S B Quindi per C) Quindi l espressione sinistr dell ugule è definit per i vlori di comuni S A e S B : S S S A B : - Quindi S ) Considerimo i termini destr dell ugule. A) è definito se 0. Quindi S A B) è definito se 0. Quindi S B C) Quindi l espressione destr dell ugule è definit per i vlori di comuni S A e S B : S S S A B ) Quindi l equzione pprtenenti : S S S - è definit per i vlori di Quindi non ci sono vlori comuni per cui S = 8/
9 Per gli esercizi d 8 pg. : L spiegzione f riferimento ll clcoltrice di Windows. Es. pg. 8. Clcol i ritmi decimli dei seguenti numeri Aprimo: StrtTutti i progrmmiaccessoriclcoltrice e impostimo VisulizzScientific. A) Per clcolre 0 : sull clcoltrice è presente il tsto che indic il ritmo nturle (ovvero in bse e) e il tsto che in questo cso indic il ritmo in bse 0 (più spesso è indicto con Log). Quindi ) Si digit l rgomento di cui clcolre il Log: ) Poi si clicc su e si ottiene: Per verific: provimo clcolre 0 elevto l numero che bbimo ottenuto. A tl fine si deve selezionre Inv e poi click su (lscindo il numero ottenuto sul disply: si riottene ). Not: controllre che l clcoltrice usi il sistem in bse 0: Esercizio (ppliczione delle proprietà dei e dell clcoltrice) Clcolre il vlore pprossimto dell esponente cui elevre per ottenere 00. ) Si trtt di clcolre: 00. Tuttvi su un clcoltrice è possibile clcolre ln oppure Log. ) Si utilizz l proprietà del cmbio di bse, che si riport di seguito: N b b N dove = l bse e o 0 cioè quell che si trov sull clcoltrice b invece è in questo cso ugule N in questo cso è 00 ) Quindi d cui (si deve esprimere 00 in funzione di 0 ), usndo l clcoltrice di Windows: , , /
10 Chirmente non è necessrio scrivere il vlore pprossimto con tutti quei decimli (es..8)..8 Verific: si clcol. ) Si scrive ) Click sul tsto ) Si scrive.8 7) Click su 8) Si ottiene Es. pg. Clcol il vlore pprossimto A) Si digit 7; poi click su. Poi si scrive e dopo click su (si st elevndo 7 ll / cioè l rdice cubic) e dopo su Click su tsto di moltipliczione e si digit 8 e poi Click su, si scrive e dopo click su e click su Click su e poi si digit (è lo stesso scrivere. ) e poi 7. Click su poi si digit e poi. Si ottiene: Es.8 pg. Problem Considerimo cellul e cos succede d ogni scissione, per stbilire cos succede ll ventesim scissione. scissione cellul divent cellule scissione cellule diventno cellule scissione cellule diventno cellule scissione 8 cellule diventno 8 cellule Cioè = - dove è il numero dell scissione corrente scissione cellule diventno cellule Quindi ci sono 0 0 cellule Es. pg. Problem Si può considerre cos succede con un ninfe qudrt (solo per comodità) per cpire cos vuol dire che le dimensioni rddoppino ogni giorno: giorno L re dell ninfe l giorno è A L L L, dove A indic l re rggiunt nel giorno 0/
11 giorno L re dell ninfe l giorno è A LL L, dove A indic l re rggiunt nel giorno Si può esprimere A in funzione di A : A L A A A L L L (L perché il lto rddoppi rispetto L) Si può esprimere A in funzione di A : giorno L re dell ninfe l giorno è A L A A A A 8L 8L L (8L perché il lto rddoppi rispetto L) Si può esprimere A in funzione di A : giorno L re dell ninfe l giorno è A L L A A A A A giorno k In bse i rgionmenti precedenti, si può esprimere A k in funzione di A : A k A k Quindi si deve intervenire l limite il giorno precedente quello in cui si h A A NINFEA LAGO Se k = llor l re ricopert dll ninfe è pri quell del lgo: A A LAGO Tenendo conto che l re dell ninfe divent volte più grnde del giorno precedente llor si deve intervenire il giorno in cui si h ANINFEA ALAGO / D cui: k k A A k /
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero
POTENZA CON ESPONENTE REALE
PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,
I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.
I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle
Esponenziali e logaritmi
Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:
COGNOME..NOME CLASSE.DATA
COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione
1 Equazioni e disequazioni di secondo grado
UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo
Esercizi svolti Limiti. Prof. Chirizzi Marco.
Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,
Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )
Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte
Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;
CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:
Esponenziali e logaritmi
Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.
Esponenziali e logaritmi
Prof Emnuele ANDRISANI Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se 0, per ogni R se 0, per tutti e soli gli R se 0, per tutti e soli gli Z Esponenzili e ritmi Sono definite:
, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:
Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri
Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le
Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:
B8. Equazioni di secondo grado
B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere
1 Espressioni polinomiali
1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono
Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b
Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non
7. Derivate Definizione 1
7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem
corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in
Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino
Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo
Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle
Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1
APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del
Teoria in pillole: logaritmi
Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del
Il calcolo letterale
Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere
Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi
Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz
Le equazioni di grado superiore al secondo
Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere
Anno 2. Potenze di un radicale e razionalizzazione
Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente
Risoluzione verifica di matematica 3C del 17/12/2013
Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse
{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }
Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri
Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.
Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,
Lezione 14. Risoluzione delle equazioni algebriche.
Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,
1 Integrale delle funzioni a scala
INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]
ESPONENZIALI E LOGARITMI
Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:
CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato
Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls
PNI SESSIONE SUPPLETIVA QUESITO 1
www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre
Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.
88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3
Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler
Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte
Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi
Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice
{ 3 x y=4. { x=2. Sistemi di equazioni
Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto
fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio
Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +
Strumenti Matematici per la Fisica
Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr
0x3 0x5 2 R. Sistemi di disequazioni. Esercizio no.1. Esercizio no.2. Esercizio no.3. Esercizio no.4. Esercizio no.5. Esercizio no.6. Esercizio no.
Edutecnic.it Sistemi di disequzioni Sistemi di disequzioni Esercizio no. Esercizio no. Esercizio no. ) ) Esercizio no. ) ) 9 ) Soluzione pg. [ ] Soluzione pg. [ ] Soluzione pg. 9 Soluzione pg. Esercizio
" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6
CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione
5. Funzioni elementari trascendenti
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite
SUGLI INSIEMI. 1.Insiemi e operazioni su di essi
SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.
Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0
Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con
Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001
Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +
Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A
Funzioni Definizione di funzione: Sino A e B due insiemi non vuoti. Un funzione f d A B è un ssegnmento di esttmente un elemento di B d ogni elemento di A Scrivimo f() = b se b è l unico elemento dell
Area del Trapezoide. f(x) A f(a) f(b) f(x)
Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.
Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA
Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin
Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.
Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione
LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO
LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici
Rapporti e proporzioni numeriche
Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire
FUNZIONI IPERBOLICHE
FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,
Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y
Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim
Lezione 1 Insiemi e numeri
Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi
Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:
Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle
Funzioni razionali fratte
Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell
Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli
Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x
Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale
Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)
Anno 1. Numeri reali: proprietà e applicazioni di uso comune
Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria
ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico
Il problema delle aree. Metodo di esaustione.
INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.
IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:
IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono
Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi
Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz
BREVE APPENDICE SULLE UNITA' LOGARITMICHE
BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione
PRODOTTI NOTEVOLI. Esempi
PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo
Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:
Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle
Matematica C3, Algebra 2
Mtemtic C Algebr Relese 0.0 www.mtemticmente.it Mrch 0 Contents Numeri reli. Di numeri nturli i numeri irrzionli................................. Numeri reli.................................................
Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata
Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si
Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO
Verific 0 LE DISEQUAZIONI DI SECONDO GRADO ESERCIZI LE DISEQUAZIONI Risolvi le seguenti disequzioni lineri numeriche. A 0 8 B 7 8 A B 8 7 8 8 9 Rppresent i seguenti intervlli (o unione di intervlli) medinte
Anno 5. Applicazione del calcolo degli integrali definiti
Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei
Esercitazione Dicembre 2014
Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25
La scomposizione in fattori dei polinomi
Progetto Mtemtic in Rete L scomposizione in fttori dei polinomi Scomporre in fttori un polinomio signific scriverlo come prodotto di polinomi di grdo inferiore. Esempio: ( )( ) Osservimo che l uguglinz,
c a (seno di alfa); (coseno di alfa); (tangente di alfa).
Sito Personle di Ettore Limoli Lezioni di Mtemtic Prof. Ettore Limoli Sommrio Elementi di trigonometri... 1 Angoli e loro misur... Funzioni e loro grfici... 4 Usre i grfici... 5 Funzioni inverse delle
si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x
Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in
2 Capitolo Logaritmi ed esponenziali
Cpitolo Logritmi ed esponenzili.1. L funzione esponenzile e l funzione logritmo In questo prgrfo voglimo generlizzre il concetto di potenz. Prtimo dll simbologi intuitiv di espressioni come, che indicno
dr Valerio Curcio Le affinità omologiche Le affinità omologiche
1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici
IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:
IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di
La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.
L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice
Integrale definito. Introduzione: il problema delle aree
Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,
TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.
TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione
U.D. N 15 Funzioni e loro rappresentazione grafica
54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le
Algebra» Appunti» Disequazioni esponenziali
MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Appunti» Disequzioni esponenzili DEFINIZIONE Si definisce disequzione esponenzile ogni disequzione nell qule l incognit è presente nell esponente di
Equazioni parametriche di primo grado
Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,
24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze
Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si
Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA
Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non
Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).
OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll
{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.
Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8
b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.
Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()
INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma
INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente
Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G
Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:
Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.
Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà
Formulario di Analisi Matematica 1
Formulrio di Anlisi Mtemtic Indice degli rgomenti Punti interni, isolti, di ccumulzione e di frontier Alcune costnti Proprietà delle potenze Proprietà degli esponenzili Proprietà dei logritmi Proprietà
26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:
ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di
UNIVERSITÀ DEGLI STUDI DI TERAMO
UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso
Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica
Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici
E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO
EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil
Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.
Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle