ANALISI REALE E COMPLESSA a.a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI REALE E COMPLESSA a.a. 2007-2008"

Transcript

1 ANALISI REALE E COMPLESSA Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli (o complessi), definite in uno stesso dominio D (spesso un intervllo di R). In primo luogo dobbimo definire cos si intende per convergenz; cpiremo (ci limiteremo d un cso) che le definizioni dte sono dello stesso tipo di quelle dte per l convergenz delle successioni di numeri reli, sono cioè bste su un opportuno concetto di intorno di un funzione, o meglio su un concetto di pll, o disco, centrt in un funzione simile quello di intervllo centrto in un numero rele. Dopo le definizioni di convergenz e i reltivi esempi, psseremo studire quli proprietà si conservno l limite. Dimostreremo per esempio che sotto lcune ipotesi il limite degli integrli [risp. derivte] è l integrle [risp. derivt] del limite. Osservimo infine che un serie di funzioni è un cso prticolre di successione di funzioni gicché l successione delle ridotte è un successione di funzioni llo stesso modo in cui un serie è un cso prticolre di successione. 1.2 Definizioni di convergenz Convergenz puntule Definizione 1 Sino D un insieme non vuoto, f n : D C, n IN, e f : D C funzioni. Si dice che l successione di funzioni {f n } converge puntulmente f in D se, per ogni x D, l successione numeric {f n (x)} h per limite f(x). Si dice che l serie di funzioni n f n converge puntulmente f se l successione delle ridotte { n k=0 f k} converge putulmente f. L ggettivo puntule signific che l successione converge per ogni punto del dominio. Si potrebbe ricondurre questo tipo di convergenz llo schem generle del concetto di limite, definendo un fmigli di intorni per un funzione f; ciò esul dgli scopi del nostro corso. Esempi. 1) Si f n : R R, x n. Quest successione di funzioni non h limite puntule in R, perché per x > 1 e per x = 1, x n non converge. Invece in ] 1, 1] converge puntulmente. Inftti, come già visto, lim n xn = { 0 per x < 1 1 per x = 1. Posto f(1) = 1, f(x) = 0 per x < 1, l successione {f n } converge puntulmente f in ] 1, 1]. Osservimo che, pur essendo le f n continue per ogni n, il limite puntule f è discontinuo. 1

2 2) Ponimo e n x, x R. Non è difficile verificre che f n converge puntulmente in R ll funzione f così definit: { 0 per x 0 f(x) = 1 per x = 0. 3) Ponimo { n per 0 < x < 1/n 0 ltrove. Allor {f n } converge puntulmente in R f 0 (dimostrrlo!!). Idem per l successione di funzioni (dett doppietto ) n per 1/n < x < 0 n per 0 < x < 1/n 0 ltrove. 4) Anche l successione {n sin(x/n)} converge puntulmente in R ( cos?). 5) Si ϕ : R R un funzione derivbile. Considerimo l successione di funzioni definite d n(ϕ(x + 1 n ) ϕ(x)). È chiro che l successione (f n ) n IN è puntulmente convergente e si h lim f n(x) = dϕ n + dx (x). 6) Disegnre il grfico e studire l convergenz puntule dell successione di funzioni n 2 (x + 1/n) per 1/n < x < 0 n 2 (1/n x) per 0 < x < 1/n 0 ltrove. Esercizio. Si (f n ) n IN un successione di funzioni crescenti venti f come limite puntule. Provre che f è crescente. Uno dei principli intenti nel definire l convergenz di successioni di funzioni è quello di fre in modo che proprietà importnti verificte d tutte le funzioni dell successione sino mntenute nche dll funzione limite. Come si vede dll esercizio precedente, l monotoni viene effettivmente mntenut l limite. Quest è nche un delle pochissime proprietà rispettt dl limite puntule. Vedimo inftti il seguente esempio. Esempio. Considerimo l successione di funzioni dte d x x n 2

3 Verificre che il limite puntule dell successione (f n ) n IN è { 1 lim f per x 0 n(x) = f(x) := x 3 n + 0 x = 0. Trccire il grfico di f e delle f n e verificre che ciscun delle funzioni f n è limitt, continu, derivbile (nzi di clsse C ), integrbile in senso generlizzto su R. Invece il limite puntule non è limitto, nè continuo, nè loclmente integrbile. L esempio precedente motiv l ricerc di un definizione di limite divers d quello puntule, per un successione di funzioni. Convergenz uniforme Definizione 2 Sino D un insieme non vuoto, f n : D C, n IN, e f : D C funzioni. Si dice che l successione di funzioni (f n ) n IN converge uniformemente f (in simboli, f n f) in D se lim f(x) f n (x) = 0. sup n Si dice che l serie n f n converge uniformemente f se l successione delle ridotte converge uniformemente f. È ovvimente essenzile cpire l differenz fr convergenz puntule ed uniforme. In primo luogo è evidente che Proposizione 1 Se un successione di funzioni converge uniformemente f in D, llor converge f puntulmente in D. Inftti, f n converge puntulmente d f in D, se e solo se lim f(x) f n(x) = 0 per ogni x D ; n tuttvi, come vedremo, non necessrimente lim sup f(x) f n (x) = 0. n Più precismente, un modo per esprimere l convergenz puntule in D è il seguente: ε > 0, x D, n ε,x : n > n ε,x = f(x) f n (x) < ε ; l scrittur n ε,x evidenzi che n ε,x dipende si d ε che d x. Un modo per esprimere l convergenz uniforme, invece, è (per l definizione di limite): ε > 0, n ε : n > n ε = f(x) f n (x) < ε x D. L differenz consiste quindi nel ftto che, nel secondo cso, n ε non dipende d x, è cioè uniforme rispetto d x D. L definizione di convergenz uniforme può essere ricondott llo schem noto di limite con gli intorni. Si può definire come intorno (per l topologi 3

4 dell convergenz uniforme) di un funzione f ogni insieme che conteng, per qulche ε > 0, un insieme del tipo { g : D R : sup g(x) f(x) < ε }. Il significto geometrico dell insieme precedente è chirito dll figur seguente: di tle insieme fnno prte tutte le funzioni il cui grfico pprtiene d un tubo di semimpiezz ε, centrto nel grfico di f (v. l figur nel testo p. 12). Mostrimo come ci poss effettivmente essere convergenz puntule senz che quell uniforme bbi luogo. Esempio. L successione x n non converge uniformemente in ] 1, 1] e neppure in ] 1, 1[. Converge, invece, uniformemente 0 in [, b] per ogni coppi, b con 1 < < b < 1. Dll Proposizione 1 ricvimo che, se vi è convergenz uniforme, l funzione limite deve coincidere con il limite puntule f. Clcolimo llor sup f(x) f n (x) = sup x n = 1 per ogni n IN. x ] 1,1] x ] 1,1[ Ovvimente ciò dice che non vi è convergenz uniforme. Invece l convergenz uniforme in [, b] h luogo, perché sup x [,b] x n = ( mx{, b } ) n 0. Esercizi vri. Studire l convergenz puntule ed uniforme delle seguenti successioni di funzioni: x 1 + nx 2, g n(x) = nx 1 + nx. Svolgimento. È evidente che f n (x) 0 per ogni x R. Per controllre l convergenz uniforme, cerchimo il sup di f n (x), x R cioè il mssimo fr sup f n e inf f n. Con fcili clcoli si ottiene che il mssimo è rggiunto in 1/ n e il minimo in 1/ n. Il mssimo di f n è 1/(2 n) 0; f n converge uniformemente in R ll costnte 0. Per qunto rigurd g n, osservimo che converge puntulmente ll funzione segno, cioè 1 per x < 0 sign(x) = 0 per x = 0 1 per x > 0. Per studire l convergenz uniforme in R dobbimo quindi trovre sup g n (x) sign(x). x R Non è difficile dimostrre che tle sup è 1 (si osservi nche che il sup non è un mssimo; ciò non deve stupire, perché l funzione di cui trovre l estremo superiore non è continu, e l insieme non è limitto). L successione quindi non converge uniformemente in R. Provre che invece converge uniformemente nel complementre di ogni intervllo perto che contiene l origine. 4

5 Osservzione. Nell risoluzione degli esercizi sull convergenz uniforme, può essere utile notre che, se f : D R è un funzione, llor sup f(x) = sup = mx{sup mx{f(x), f(x)} = mx{sup f(x), inf f(x)}. f(x), sup f(x)} Proposizione 2 (Criterio per l convergenz uniforme di un successione di funzioni) Sino (f n ) n IN un successione di funzioni in D ed f il suo limite puntule. Se esiste un successione infinitesim ( n ) n IN in R tle che llor f n f in D. f n (x) f(x) n, per ogni x D, L dimostrzione del criterio è immedit e si lsci per esercizio. Vle comunque l pen di sottolinerlo perchè f notre come per provre l convergenz uniforme non si necessrio clcolre esplicitmente i sup f n (x) f(x), m si sufficiente trovrne un stim con un successione infinitesim. Esempio. Considerimo l successione (f n ) n IN ove sin (nx+x2 ) n. È chiro che lim n + 0 per ogni x R ed inoltre f n (x) 1 n, dunque l successione (f n) n IN converge uniformemente. Il clcolo esplicito di sup x R f n (x) potrebbe invece sembrre più lborioso. Un importnte ed utile criterio per l convergenz uniforme delle serie di funzioni è il seguente: Teorem 1 (Criterio di Weierstrss) Sino f n : D R (o C) funzioni e sino c n numeri reli positivi. Se, per ogni n IN vle f n (x) c n x D e l serie c n converge, llor l serie f n converge uniformemente in D. Un serie di funzioni che soddisf le ipotesi del teorem precedente si dice spesso un serie totlmente convergente. Il criterio di Weierstrss si esprime llor dicendo che l convergenz totle implic l convergenz uniforme. Dimostrzione. Per il criterio del confronto, l serie f n (x) converge ssolutmente e quindi converge, per ogni x D; chimimo f l su somm puntule e ponimo C = c n. Dobbimo mostrre che l successione delle ridotte converge uniformemente f. Si h n sup f(x) f k (x) = sup f k (x) sup k=0 k=n+1 f k (x) 5 k=n+1 k=n+1 c k = C n c k. k=0

6 L ultim espressione tende ovvimente 0 per n. L dimostrzione è conclus. Il precedente criterio h molte ppliczioni. Studimo dpprim l serie geometric. Esempio. Ricordimo che l serie z n, z C, n=0 converge puntulmente 1/(1 z) in {z C : z < 1}. In tle insieme non converge uniformemente. Inftti 1 n sup 1 z z k = sup z n+1 1 z = +. z <1 k=0 Usndo il criterio di Weierstrss si vede subito che l serie geometric converge uniformemente in {z C : z r} per ogni 0 < r < 1, perché in tle insieme z n r n, ed essendo r < 1, r n < +. Esercizi. 1) Provre che l serie esponenzile converge uniformemente in {z C : z r} per ogni r > 0. 2) Provre che per ogni α > 1 l serie converge uniformemente in R. n=1 1.3 Teoremi di pssggio l limite z <1 sin nx n α I seguenti risultti contengono condizioni sufficienti ffinché lcune proprietà dei termini di un successione di funzioni si conservino l limite; lcuni fr gli esercizi finli mostrno come, in ssenz di ipotesi, tli proprietà non sino in generle più verificte. Il primo teorem rigurd l continuità del limite uniforme di funzioni continue. Teorem 2 Sino D un sottoinsieme non vuoto di R, f n : D C, n IN, e f : D C funzioni. Se tutte le f n sono continue in x 0 D e f n f uniformemente in D, llor nche f è continu in x 0. Dimostrzione. Fissimo ε > 0. Per l convergenz uniforme, esiste n IN tle che si h, per ogni x I, f(x) f n (x) < ε/3. Per l continuità di f n, esiste δ > 0 tle che x x 0 < δ = f n (x) f n (x 0 ) < ε/3. Ne segue che, per x x 0 < δ si h f(x) f(x 0 ) f(x) f n (x) + f n (x) f n (x 0 ) + f n (x 0 ) f(x 0 ) ε/3 + ε/3 + ε/3 = ε. L dimostrzione è conclus. 6

7 Il precedente risultto può essere usto negli esercizi nche per dimostrre che un successione di funzioni continue non converge uniformemente in un certo intervllo. Ad esempio, si vede subito che l successione geometric non converge uniformemente in ] 1, 1], perché il limite puntule è discontinuo in 1. Tuttvi l continuità del limite puntule non dà nessun informzione sull convergenz uniforme negli intervlli chiusi strettmente contenuti in ] 1, 1]. Teorem 3 (Pssggio l limite sotto il segno di integrle) Si (f n ) n IN un successione di funzioni definite nell intervllo [, b] tle che f n f. Se ogni f n è integrbile secondo Riemnn in [, b], nche f è Riemnn integrbile in [, b] e si h f(x) dx = lim n + f n (x) dx. Dimostrzione. Provimo il risultto solo nel cso in cui le funzioni f n dell successione sino continue. Sppimo llor che nche il loro limite uniforme f è un funzione continu e quindi Riemnn integrbile nell intervllo chiuso e limitto [, b]. Per le proprietà dell integrle su intervlli orientti scrivimo or l stim b f(x) dx f n (x) dx = (f(x) f n (x)) dx f(x) f n (x) dx sup f(z) f n (z) dx = b sup f(x) f n (x), x [,b] z [,b] d cui segue il risultto per definizione di convergenz uniforme. Osservzione. Fccimo notre che l dimostrzione del teorem precedente verific in reltà il ftto che lim n + f(x) f n (x) dx = 0. Teorem 4 (Pssggio l limite sotto il segno di derivt) Si (f n ) n IN un successione di funzioni derivbili definite nell intervllo [, b]. Se esistono un funzione g : [, b] R, x o [, b] e λ R tli che df n dx g e lim n + f n(x o ) = λ, llor l successione (f n ) n IN converge uniformemente d un funzione f : [, b] R derivbile e tle che d dx lim f n = df n + dx = g = lim df n n + dx. Perciò f è quell primitiv f : [, b] R di g tle che f(x o ) = λ. Se in prticolre le funzioni f n sono di clsse C 1, llor g è continu e quindi f(x) = λ + x 0 g(t) dt. 7

8 Dimostrzione. Provimo il risultto solo nel cso in cui le funzioni f n dell successione sino di clsse C 1. Per il teorem fondmentle del clcolo possimo llor scrivere f n (x o ) + x o f n(t) dt, per ogni x [, b]. (1) Per il Teorem di pssggio l limite sotto il segno di integrle, ottenimo dunque il limite puntule lim f n(x) = λ + g(t) dt =: f(x), n + x o che definisce un funzione f : [, b] R, integrle indefinito di g. Poichè per il Teorem 2 l funzione g è continu, possimo llor ffermre che f è derivbile (nzi di clsse C 1 ) e si h df dx = g. Provimo infine che l convergenz dell successione (f n ) n IN è in reltà uniforme. Usndo l definizione di f, l formul (1), l disuguglinz tringolre per il modulo e le proprietà dell integrle, scrivimo l stim seguente. f n (x) f(x) f n (x o ) λ + x o x f n (x o ) λ + g(t) dt x o (t) g(t) dt df x n (t) dt dx x o df n dx f n (x o ) λ + b sup df n (z) g(z). z [,b] dx Poichè il termine ll destr delle disuguglinze non dipende d x [, b] ed è quindi mggiornte dell insieme { f n (x) f(x) : x [, b]}, concludimo llor che sup f n (x) f(x) f n (x o ) λ + b sup df n (z) g(z), x [,b] z [,b] dx dove ncor il termine destr è infinitesimo per n +, per le nostre ipotesi. Possimo llor concludere per definizione di convergenz uniforme. I teoremi di pssggio l limite per le successioni di funzioni possono essere riformulti per le serie di funzioni. Si h quindi, in prticolre, Teorem 5 Si {f n } un successione di funzioni continue d [, b] in R tle che l serie di funzioni n=1 f n converge S uniformemente in [, b]. Allor: 1) S è continu in [, b]; 2) S(x) dx = n=1 f n(x) dx. Esercizio. L funzione e x2 non h, com è noto, un primitiv esprimibile elementrmente. Clcolimone lo sviluppo in serie di McLurin. Si h e x2 = n=0 8 ( 1) n x2n n!,

9 e l serie converge uniformemente (provrlo) in ogni intervllo limitto. Si h perciò, per il teorem del pssggio l limite sotto il segno di integrle, 0 e t2 dt = = ( 1) n n=0 0 t 2n n! dt ( 1) n x 2n+1 (2n + 1)n!. n=0 1.4 Esercizi vri 1) (Tem d esme di Anlisi Mtemtic I, luglio 95) Si consideri l successione di funzioni rctn[(x + 1) n ], x R : ) se ne studi l convergenz puntule; b) si dimostri che converge uniformemente in [ 1, 1/2]; c) si clcoli 1/2 lim n 1 f n (x) dx. 2) Dimostrre che l successione x 2 + 1/n converge uniformemente in R ll funzione x. Osservre che l funzione limite non è derivbile; cioè l convergenz uniforme dell successione non è sufficiente d ssicurre l derivbilità del limite. Si consideri or l successione g n (x) = sin (n2 x) n. Se ne clcoli il limite puntule g e si provi che è uniforme. Si dic se g n converge puntulmente g. 3) Dimostrre che l successione { n per 0 < x < 1/n 0 ltrove non converge uniformemente in [0, 1]. Dimostrre che non h luogo il pssggio l limite sotto il segno di integrle; osservre, quindi, che l convergenz puntule non è sufficiente per ssicurre tle pssggio l limite. 4) Dimostrre che l successione di funzioni n log(1+x/n) converge uniformemente ( cos?) in ogni intervllo del tipo [, ], > 0. 5) Si consideri l successione di funzioni sin(nx)e nx x 0. Trovrne il limite puntule f e dimostrre che non h luogo l convergenz uniforme in [0, + [. È vero che f n f puntulmente? Si pss l limite sotto il segno di integrle in ogni intervllo del tipo [0, ]? 9

10 6) Dt l successione di funzioni f n : R \ [ 1, 0] R, dove ( ( log 1 + x)) 1 n. (i) Determinre l insieme di convergenz D R \ {0} ed il limite puntule f : D R. (ii) C è convergenz uniforme di f n d f su D? convergenz uniforme in ], ] D? o lmeno, fissto < sup D, si h 7) Si k un numero nturle fissto. Si dimostri che se α > k + 1 l serie di funzioni n=1 converge in R d un funzione di clsse C k. 8) Si pong Si(x) = sin nx n α 0 sin t t (seno integrle di x). Si di per noto lo sviluppo in serie di Mc Lurin sin t t = dt ( 1) n t 2n (2n + 1)!. n=0 Si clcoli lo sviluppo in serie di McLurin di Si( ), giustificndo tle clcolo medinte i teoremi di convergenz per le serie di funzioni. 9) (Dl compito del 16/12/2004) Si consideri l successione di funzioni f n (t) = n n χ [ n 2, n] (t), n IN. Si studi l convergenz puntule e uniforme in R di {f n (t)}. Svolgimento. Per ogni t fissto, f n (t) è definitivmente costnte ed ugule 0. Perciò f n converge puntulmente in R ll funzione null. Siccome mx t R f n (t) = n n +, non c è convergenz uniforme. 10) (Dl compito del 20/9/2005) Si {f n }, n IN, n > 0 l successione di funzioni così definit { sin x x per 1/n x n, 0 ltrimenti. Si f(x) = { sin x x per x 0, 0 ltrimenti. Stbilire se l successione f n converge f puntulmente o uniformemente in R. 11) (Adttto dl compito dell ) Si f n l successione definit d f n (t) = χ Pn (t), P n = [2, ] [3, ]... [n, n + 1 ], t R, n 2. n2 10

11 1. Disegnre il grfico di f n (ricordre che χ A ( ) indic l funzione crtteristic di un insieme A); 2. studire l convergenz puntule e uniforme dell successione f n in R; 3. studire l convergenz uniforme dell successione f n in [0, R], per ogni R > 0 fissto. 12) (Dl compito del ) Si studino l convergenz puntule ed uniforme in R dell successione di funzioni nxe n x. 13) (Dl compito del ) Si dt l successione di funzioni { f n }n 1 definit d { (tnh x) e x n se x > 0, e n se x 0, (si ricordi che tnh x = sinh x/ cosh x). 1. Si clcoli il limite puntule di { f n }n 1 per n Si verifichi se { f n }n 1 converge uniformemente in R oppure in [ 1, 1]. 11

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Sviluppi di Taylor Esercizi risolti

Sviluppi di Taylor Esercizi risolti Esercizio 1 Sviluppi di Taylor Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx ln1

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi

11. Attività svolta dall Agenzia, risorse e aspetti organizzativi 11. Attività svolt dll Agenzi, risorse e spetti orgnizztivi 11.1 Attività istituzionle svolt i sensi dell Deliberzione istitutiv In un vlutzione complessiv delle ttività svolte dll Agenzi i sensi dell

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it Ftturimo Versione 5 Mnule per l utente Active Softwre Corso Itli 149-34170 Gorizi emil info@ctiveweb.it Se questo documento ppre nell finestr del vostro browser Internet di defult, richimte il comndo Registr

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

F (x) = f(x) per ogni x I. Per esempio:

F (x) = f(x) per ogni x I. Per esempio: Funzioni Primitive (Integrali Indefiniti) (l.v.) Pur essendo un argomento che fa parte del Calcolo Differenziale, molti autori inseriscono funzioni primitive nel capitolo sul Calcolo Integrale, in quanto

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie?

ESERCITAZIONI. I. 1)Una coppia ha già due figlie. Se pianificassero di avere 6 figli, con quale probabilità avranno una famiglia di tutte figlie? ESERCITZIONI. I 1)Un coppi h già due figlie. Se pinificssero di vere 6 figli, con qule probbilità vrnno un fmigli di tutte figlie? ) 1/4 b)1/8 c)1/16 d)1/32 e)1/64 2)In un fmigli con 3 bmbini, qul e l

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni:

Domanda n. del Pensione n. cat. abitante a Prov. CAP. via n. DICHIARA, sotto la propria responsabilità, che per gli anni: Mod. RED Sede di Domnd n. del Pensione n. ct. nto il stto civile bitnte Prov. CAP vi n. DICHIARA, sotto l propri responsbilità, che per gli nni: A B (brrre l csell reltiv ll propri situzione) NON POSSIEDE

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli