La Funzione Caratteristica di una Variabile Aleatoria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La Funzione Caratteristica di una Variabile Aleatoria"

Transcript

1 La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1

2 La Funzione Caratteristica di una Variabile Aleatoria Φ ( ω ) = E e jω = = E cos ω + jsin ω = = E cos ω + je sin ω Per v.a. discrete la funzione caratteristica è: Φ ω = p xi i= 1 e jωx i

3 La Φ Proprietà della Funzione Caratteristica ω è in generale una funzione complessa Φ ( ω) Φ ( 0) = 1 Infatti Φ ω = + jωx f x e dx + + jωx f x e dx = f x dx = 1 + Φ 0 = f x dx= 1 3

4 Proprietà della Funzione Caratteristica Date due v.a. ed Y legate tra di loro come: Allora: Y Y = a + b jbω e ( a ) Φ ω = Φ ω jωy jω a+ b Φ ω = E e = E e = Y = e jωb E e jaω = e jbω Φ aω 4

5 Proprietà della Funzione Caratteristica Relazione inversa: 1 + ω j x f x = Φ ω e dω π 5

6 Funzione Caratteristica e calcolo dei Momenti d Φ ω d + = f ( x) e jωx dx = dω ponendo 0 + dω jωx = j x f x e dx ω= : dφ ( ω ) =Φ ( 0) = je[ ] dω ω= 0 1 [ ] = Φ E 0 j 6

7 Funzione Caratteristica e calcolo dei Momenti Generalizzando si ha: d per ω= 0 : quindi d Φ ω = + jωx ω d dω Φ ω j x f x e dx ω= 0 = j E 1 d Φ ω E = j dω ω= 0 7

8 Sviluppo in serie della Funzione Caratteristica Se esistono i momenti di qualsiasi ordine della v.a., allora la funzione caratteristica di può essere espressa come una serie di Mac Laurin: E Φ ω = 1+ jω! = 1 8

9 La Funzione Generatrice dei Momenti + G s = f x e dx sx s = α+ jω La funzione dei momenti, valutata sull'asse immaginario (ove essa esiste, cioè l integrale converge), coincide con la funzione caratteristica, cioè: G ( jω ) =Φ( ω ) 9

10 La Funzione Generatrice dei Momenti Per una variabile discreta le cui masse di probabilità sono nei punti x, i = 1,,..., la funzione generatrice dei momenti diviene: i G s = P xi e sx i i= 1 10

11 Teorema dei Momenti Il calcolo dei momenti della variabile aleatoria è possibile anche mediante la funzione dei momenti: Infatti: dgs ds dgs E = d s s= 0 = x f sx x e dx calcolata per s = 0, fornisce il momento -esimo. + 11

12 Sviluppo in serie della Funzione Generatrice Se esistono i momenti di qualsiasi ordine della v.a., allora per la funzione dei momenti si ha (Mac Laurin) E G( s ) = s! = 0 1

13 La a Funzione Caratteristica + ln ln f x e dx jωx ψ ω = Φ ω = La a Funzione dei Momenti + ψ ( s ) = lng( s) = ln f ( x ) e sx dx Legame tra le seconde funzioni: ψ( ω ) =ψ ( jω ) 13

14 Cumulanti di ordine n di una variabile aleatoria La s λ = n d n ψ ds n s s= 0 ψ è anche detta funzione generatrice dei cumulanti. In serie di Mac Laurin: λ n n ψ s = s n!, 0 n= 1 ψ 0 =λ = 0 La a funzione caratteristica può essere scritta come: ψ ω = n ( jω) n n= 1 λ n! 14

15 Cumulanti e Momenti I cumulanti d ordine 1 e di una v.a. risultano: Infatti poiché λ [ ] 1 = E, λ [ ] = Var G s e ψ = s derivando (si indica con l apostrofo la derivata) si ha: ' ' s =ψ G s s e ψ ( s) '' '' ψ ' ψ =ψ + ψ G s s e s e ( s) 15

16 Cumulanti e Momenti Ricordando che: ψ 0 = 0 [ ] ' ( 0) 1 E = G' 0 =ψ ' 0 e = =ψ =λ ψ 0 16

17 Cumulanti e Momenti Per la varianza: '' '' { ' } ( 0) =ψ + '' 0 ( 0) { } [ ] Var = E E[ ] = = G 0 G 0 = 0 e ψ ' ' ψ ' +ψ 0 ψ 0 e ψ 0 = =ψ =λ 17

18 Funzione dei Momenti per v.a. discrete Se è una v.a. discreta: i p = P = x = i i i G s p e Se in particolare assume solamente valori interi: i sx = n = n G z E Z p z 1 n n 18

19 La Funzione Caratteristica per Coppie di v.a. Data la coppia di v.a., Y: { } Φ ω, ω = E exp jω + jω Y = = exp jω x + jω y f x, y dxdy 1 Y Teorema dei momenti: r 1 Φω 1, ω r r j + ω1 ω ω= 0; ω= 0 = 1 m r 19

20 La Funzione Caratteristica per Coppie di v.a. (segue) { } Φ ω = E exp jω =Φ ω, { } Φ ω = E exp jω Y =Φ 0, ω Y Se e Y sono variabili aleatorie indipendenti: sono indipendenti. = ( ω ) g exp j = ( ω ) h Y exp j Y 1 0

21 La Funzione Caratteristica per Coppie di v.a. (segue) (, ) Φ ω ω = 1 { } 1 Y { } = E exp jω E exp jω Y = =Φ ω Φ ω 1 quindi (non solo la densità congiunta ma anche) la funzione caratteristica congiunta si fattorizza nel prodotto delle marginali. 1

22 Funzione Caratteristica N-dimensionale La funzione caratteristica (congiunta) di un sistema di N variabili aleatorie i, i = 1,,...,N, è data da: (,..., ) Φ ω ω = 1 N { } = E exp jω + jω jω 1 1 n N Se le N variabili aleatorie i sono indipendenti, allora la funzione caratteristica congiunta si fattorizza nel prodotto delle N funzioni caratteristiche marginali.

23 Per Variabili indipendenti si ha: Funzione Caratteristica N-dimensionale (,..., ) Φ ω ω = 1 N = E exp jω... E exp jω = 1 1 N N... =Φ ω Φ ω 1 N 3

24 Somma di variabili aleatorie indipendenti La densità della somma Z = + Y di due v.a. indipendenti è la convoluzione delle rispettive densità: f z = f z y f y dy = f z f z = f z f z Z Y Y Y Per le funzioni caratteristiche: Φ Z ( ω) = Φ ( ω) Φ ( ω) La ripetuta applicazione porta alla conclusione che la densità della somma di N v.a. indipendenti i : Z = N Y 4

25 Somma di variabili aleatorie indipendenti è pari alla convoluzione delle rispettive densità f i ( x ) : f Z = f Z f Z... f Z Z i N Dall'indipendenza delle v.a. exp ( jω i ) segue inoltre che: E exp jω Z = E exp jω = 1 N = E exp jω... E exp jω 1 N Φ ω =Φ ω... Φ ω Z 1 N con Φ i ( ω ) funzione caratteristica di i. 5

26 Somma di variabili aleatorie indipendenti Se 1,,..., N sono indipendenti ed identicamente distribuite (i.i.d.): essendo ΦZ ( ω ) = Φ( ω) N Φ ω la funzione caratteristica a loro comune. Esempio: La somma di N v.a. esponenziali indipendenti f x = cexp cx U x è pari alla densità di Erlang: N-1 N z fz z = c cz U z N 1! exp 6

27 Esempio: (segue) Infatti, la funzione caratteristica di una variabile a densità esponenziale è pari a: Pertanto: c Φ i ω = c j ω N i Φ ( ω ) =Φ ( ω ) = z c c N jω N coincide con la distribuzione Gamma per b = N (numero intero), ovvero alla densità di probabilità di Erlang. 7

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

STATISTICA PER L INNOVAZIONE

STATISTICA PER L INNOVAZIONE UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 TRASFORMAZIONI DI VARIABILI ALEATORIE TVE: Gumel dei valori minimi

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Valori caratteristici di distribuzioni

Valori caratteristici di distribuzioni Capitolo 3 Valori caratteristici di distribuzioni 3. Valori attesi di variabili e vettori aleatori In molti casi è possibile descrivere adeguatamente una distribuzione di probabilità con pochi valori di

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/2013)

VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/2013) VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/213) Daniela De Canditiis modulo di CdP di teoria dei segnali - Ingegneria dell informazione - (Sapienza - Latina) VARIABILI ALEATORIE MULTIVARIATE Molto spesso

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21 Contenuto Integrali doppi. Teorema di Fubini Cambio di variabili: coordinate polari. Cambio di variabili: caso generale. Coordinate sferiche. Federico Lastaria. Analisi e Geometria 2. Integrali multipli.

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 5 maggio 007 Varabili aleatorie continue, distribuzioni continue e funzione generatrice di momenti. Esercizio Dimostrare la mancanza di memoria della

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

1 Modelli di variabili aleatorie continue

1 Modelli di variabili aleatorie continue Modelli di variabili aleatorie continue. Variabili aleatorie continue uniformi (o rettangolari) Una v.a. X è detta uniforme (o rettangolare) sull intervallo [a, b] se la sua densità è data da se x [a,

Dettagli

Stefano Invernizzi Anno accademico 2010-2011

Stefano Invernizzi Anno accademico 2010-2011 POLITECNICO DI MILANO Statistica Appunti Stefano Invernizzi Anno accademico 2010-2011 Corso della prof. Ilenia Epifani Sommario Introduzione al corso... 5 La statistica... 5 Schema tipico di raccolta

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Coppie di variabili aleatorie. In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia.

Coppie di variabili aleatorie. In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia. Capitolo 6 Coppie di variabili aleatorie In questo capitolo il concetto di variabile aleatoria viene generalizzato al caso di una coppia di variabili aleatorie: si mostra in particolare che in questo caso

Dettagli

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN

Determinare estremo superiore ed estremo inferiore dell insieme ( 1) n A = n + 1 : n IN Prima prova di verifica in itinere di ANALISI MATEMATICA Gennaio 00 Determinare estremo superiore ed estremo inferiore dell insieme { } ( ) n A = n + : n IN specificando se si tratta rispettivamente di

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

MEDIA CONDIZIONATA E. DI NARDO

MEDIA CONDIZIONATA E. DI NARDO MEDI CONDIZIONT E. DI NDO 1. Media condizionata da un evento ssumiamo di avere una informazione parziale circa l esito ω di un esperimento casuale. Questa informazione parziale potrebbe essere rappresentata

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA?

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Crenca & Associati CORPORATE CONSULTING SERVICES RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Ufficio Studi Milano, 3 aprile 2008 Introduzione al Risk Management

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

LA VARIABILE ESPONENZIALE

LA VARIABILE ESPONENZIALE LA VARIABILE ESPONENZIALE E. DI NARDO 1. Analogia con la v.a. geometria In una successione di prove ripetute di Bernoulli, la v.a. geometrica restituisce il numero di prove necessarie per avere il primo

Dettagli

SOLUZIONI COMPITO del 16/01/2009 ANALISI 1 - MECCANICA + ELETTRICA 9 CFU CALCOLO DIFF. e INT. I+II - MECCANICA 11 CFU TEMA A

SOLUZIONI COMPITO del 16/01/2009 ANALISI 1 - MECCANICA + ELETTRICA 9 CFU CALCOLO DIFF. e INT. I+II - MECCANICA 11 CFU TEMA A SOLUZIONI COMPITO del 6//9 ANALISI - MECCANICA + ELETTRICA 9 CFU CALCOLO DIFF e INT I+II - MECCANICA CFU TEMA A Esercizio Chiaramente la serie proposta è una serie a termini positivi per ogni α R Osserviamo,

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici

Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Alcune applicazioni delle equazioni differenziali ordinarie alla teoria dei circuiti elettrici Attilio Piana, Andrea Ziggioto 1 egime variabile in un circuito elettrico. Circuito C. 1.1 Carica del condensatore

Dettagli

LP. Lavoro e potenziale

LP. Lavoro e potenziale Lavoro e potenziale LP. Lavoro e potenziale Forza In questa sezione dobbiamo introdurre un nuovo concetto che assumiamo come primitivo dalla fisica: è il concetto di forza. Ci occuperemo anzitutto di una

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

Esercitazione 5 Soluzioni

Esercitazione 5 Soluzioni Esercitazione 5 Soluzioni. (Esercizio 5. del Ross) Sia X una variabile aleatoria la cui densità è c( 2 ) < < 0 altrimenti. (a) Qual è il valore di c? (b) Scrivere la funzione di ripartizione di X. 2. (Esercizio

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A Novembre 2011 A f (x) = ( 6 + 8 x ) x + 4. (2) Sia f definita in [0,5] come segue (x 2) 2 + 1 se 0 x x + 5 se < x 5 (c) Enunciate il teorema di Weierstrass. () Sia f (x) = log(2 + e x 4 ). (a) Calcolate

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Esercizi di probabilità discreta

Esercizi di probabilità discreta Di seguito, potete trovare i testi (con risposta) degli esercizi svolti (o proposti) nel corso di esercitazioni dell insegnamento di Matematica applicata. 1 Esercizi di probabilità discreta Algebra degli

Dettagli

Prelazione. Lista delle Figure. Lista delle Tabelle

Prelazione. Lista delle Figure. Lista delle Tabelle Indice Prelazione Indice Lista delle Figure Lista delle Tabelle VI IX XV XVI 1 Nozioni Introduttive 1 1.1 Inferenza Statistica 1 1.2 Campionamento 5 1.3 Statistica e Probabilità 7 1.4 Alcuni Problemi e

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 6 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, nere, 8 bianche. Si estrae una pallina; calcolare la

Dettagli

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI

CRITERI DI CONVERGENZA PER LE SERIE. lim a n = 0. (1) s n+1 = s n + a n+1. (2) CRITERI PER LE SERIE A TERMINI NON NEGATIVI Il criterio più semplice è il seguente. CRITERI DI CONVERGENZA PER LE SERIE Teorema(condizione necessaria per la convergenza). Sia a 0, a 1, a 2,... una successione di numeri reali. Se la serie a k è convergente,

Dettagli

Soluzioni classiche dell'equazione di Laplace e di Poisson

Soluzioni classiche dell'equazione di Laplace e di Poisson Soluzioni classiche dell'equazione di Laplace e di Poisson Antonio Paradies Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli studi di Napoli Federico II Napoli, 25 Febbraio

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

Il Processo Stocastico Martingala e sue Applicazioni in Finanza

Il Processo Stocastico Martingala e sue Applicazioni in Finanza Il Processo Stocastico Martingala e sue Applicazioni in Finanza Rosa Maria Mininni a.a. 2014-2015 1 Introduzione Scopo principale della presente dispensa é quello di illustrare i concetti matematici fondamentali

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

Esercizi: i rendimenti finanziari

Esercizi: i rendimenti finanziari Esercizi: i rendimenti finanziari Operazioni algebriche elementari Distribuzione e dipendenza Teoria di probabilità Selezione portafoglio p. 1/25 Esercizio I Nella tabella sottostante relativa all indice

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

Modelli Stocastici per la Finanza e le Assicurazioni

Modelli Stocastici per la Finanza e le Assicurazioni Modelli Stocastici per la Finanza e le Assicurazioni CORSO DI LAUREA SPECIALISTICA IN METODI QUANTITATIVI PER LA FINANZA A.A. 2007/2008 DOCENTE: Marco Minozzo CREDITI (CFU): 10 PROGRAMMA (definitivo) Spazi

Dettagli

Corso di Probabilità e Statistica

Corso di Probabilità e Statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe sara.poffe@stat.unipd.it A.A.

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

Analisi complessa EDOARDO SERNESI

Analisi complessa EDOARDO SERNESI Analisi complessa EDOARDO SERNESI Contents 1 Funzioni analitiche 3 1.1 Funzioni olomorfe...................... 3 1.2 Serie formali......................... 5 1.3 Serie convergenti......................

Dettagli

Energia potenziale L. P. Maggio 2007. 1. Campo di forze

Energia potenziale L. P. Maggio 2007. 1. Campo di forze Energia potenziale L. P. Maggio 2007 1. Campo di forze Consideriamo un punto materiale di massa m che si muove in una certa regione dello spazio. Si dice che esso è soggetto a un campo di forze, se ad

Dettagli

CAMPI E LORO PROPRIETÀ

CAMPI E LORO PROPRIETÀ CMPI E LORO PROPRIETÀ 1.1 Introduzione ia una regione nello spazio in cui, in ogni suo punto, sia definita una grandezza g. La regione si dice allora soggetta ad un campo. Un campo può essere scalare,

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Scienza della Produzione e Trasformazione del Latte Note di Calcolo delle Probabilità e Statistica STEFANO FERRARI Analisi Statistica dei Dati Note di Calcolo

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0. Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco

Dettagli

1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1).

1.5. ISTOGRAMMA 17. Figura 1.3: Istogramma ottenuto mediante campionamento da VA Gaussiana (η x =0, σ 2 X =1). .5. ISTOGRAMMA 7.5 Istogramma A partire dalle considerazioni svolte nel paragrafo precedente, posto x m = min(x,,x N e x M = max(x,,x N, possiamo ottenere una stima della densità di probabilità p (x suddividendo

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli