Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Studio di funzione. Pertanto nello studio di tali funzioni si esamino:"

Transcript

1 Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono punti ngolosi n quindi non sistono sintoti orizzontli n o o quindi non sistono sintoti obliqui Prtnto nllo studio di tli funzioni si smino: ) dominio b) intrszioni con gli ssi N.B.: - l dtrminzion di punti di intrszion con l ss dll sciss può ssr vitt s il polinomio non è fcilmnt scomponibil - un funzion polinomil h l mssimo un numro di intrszioni con l ss dll sciss pri l grdo dl polinomio c)? ± d) studio di pr dtrminr gli intrvlli di crscnz di, mssimi minimi rltivi, flssi tngnt orizzontl ) studio di pr dtrminr l concvità di, flssi tngnt obliqu Funzioni rzionli frtt Crttristich: D { / R D ( ) } N ( ) D( ) i vlori ch nnullno il dnomintor sono punti di discontinuità pr l funzion, prtnto pr tli vlori vnno ricrcti gli sintoti vrticli S N() Q() sono di grdo cioè b con d-bc c d

2 l funzion è omogrfic rpprsnt un iprbol quiltr con A.V.: d A.O. : c c S o nnull contmpornmnt il numrtor il dnomintor l funzion h un discontinuità inbil prtnto dopo vr smplificto l sprssion (numrtor dnomintor) pr (- o ) si studi l nuov funzion ottnut ch è quivlnt ll dt D / (Vdi smpio N.) Prtnto nllo studio di tli funzioni si smino: Prof. Emnul ANDRISANI ) Dominio d vntuli simmtri vidnti b) intrszioni con gli ssi (ttnzion ll discontinuità inbili) c) insim di positività d) ricrc dgli sintoti vrticli ) ricrc dgli sintoti orizzontli (sistono solo s il grdo di N() è infrior o ugul l grdo di D() ) f) ricrc dgli sintoti obliqui : mq con m finito q finito f ( ) m f '( ) q [ f ( ) m] N.B.: L sintoto obliquo sist s il grdo di N() supr di il grdo di D(). Nll funzioni frtt l quzion di tl sintoto si può dtrminr in modo rpido uguglindo d il quozint tr N() D(). (Vdi smpio N.) g) studio di pr dtrminr gli intrvlli di crscnz di, mssimi minimi rltivi, flssi tngnt orizzontl h) studio di pr dtrminr l concvità di, flssi tngnt obliqu ( può ssr vitto s i clcoli sono lboriosi) Funzioni irrzionli n g( ) Crttristich: ) s n è pri D { / R g( ) } Agli strmi (cioè dov g() ) l funzion è dfinit Pr l positività dll funzion bst ossrvr il sgno ch prcd l rdic b) s n è dispri / R g() } D {, cioè il dominio dll funzion coincid con il dominio di g() L positività dll funzion dipnd dll positività dl rdicndo

3 c) S n; prim di procdr nllo studio dll funzion provr d lvr mbo i mmbri pr l indic dll rdic potrbb trttrsi di un rmo (positivo o ngtivo) di un curv notvol (circonfrnz,iprbol, lliss cc.) (Vdi smpio N.) d) Nll ricrc dgli sintoti vrticli ricordrsi ch possono ssrci A.V. A.V -. divrsi fr loro (Vdi smpi N. b ) ) S l indic dll rdic è pri, nll ricrc dgli sintoti orizzontli o obliqui, convin procdr distingundo: f ( ) f ( ) Inftti frquntmnt tli iti si prsntno nll form di indcision pr inrl potrbb ssr ncssrio portr dntro (o fuori) dl sgno di rdic l vribil (Vdi smpio N.b ) f) L drivt dll funzion irrzionl ssum l form: Prof. Emnul ANDRISANI ' n n g' ( ) g( ) n Quindi l funzion non è drivbil ni punti in cui g() (Vdi smpio N.) Funzioni in vlor ssoluto f () Crttristich: sono funzioni continu dov f() è continu i punti in cui l rgomnto dl vlor ssoluto si nnull sono punti di non drivbilità pr l funzion vlor ssoluto cioè punti ngolosi Pr lo studio di tli funzioni: ) Studir l funzion f() (cioè l funzion snz il vlor ssoluto) rpprsntrl grficmnt. b) Il grfico dll funzion in vlor ssoluto si ottin ribltndo risptto ll ss dll sciss i rmi dll ngtivi (ch si trovno l di sotto dll ss ) lscindo inltrti i rmi positivi (ch si trovno l di sopr dll ss ). (Vdi smpio N.)

4 Prof. Emnul ANDRISANI Funzioni contnnti trmini in vlor ssoluto f ( ) g( ) Crttristich: l funzion è dfinit trtti, inftti prim di procdr nllo studio di funzion bisogn splicitr il vlor ssoluto ricordndo ch R / g( ) g( ) g ( ) g( ) quindi l funzion si dcompon in du sprssioni: R / g( ) < f ( ) g( ) f ( ) g( ) R / g( ) R / g( ) < i punti in cui l rgomnto dl vlor ssoluto si nnull sono punti di non drivbilità pr l funzion vlor ssoluto cioè punti ngolosi Pr lo studio di tli funzioni: ) Si studino sprtmnt l funzioni, ciscun nll intrvllo in cui è stt itt b) Il grfico dll funzion è dto dll union di grfici dll du funzioni (Vdi smpio N.b) Funzioni sponnzili f ( ) oppur f ( ) Crttristich: il dominio dll funzion coincid con il dominio dll sponnt l funzion è smpr positiv pr qulsisi vlor dll sponnt ( ricordr ch ) n nll ricrc dgli sintoti ricordr: f ( ) s > s << ( f ) ( ( f ( ) f ( ) f ) f ) n f ( ) ( ) f f ) f ( ) ( ( ) f f ( ) f ( ) non sistono intrszioni con l ss dll sciss inftti è impossibil l drivt ssum l form ' f '( ) f ( ) bst studir il sgno di f () (Vdi smpio N.) prtnto pr studir il sgno dll drivt

5 Prof. Emnul ANDRISANI Funzioni logritmich log f ( ) oppur log f ( ) Crttristich: il dominio è rpprsntto di vlori di ch rndono positivo l rgomnto dl logritmo pr l insim di positività ricordr ch: s > log f ( ) f ( ) s << log f ( ) f ( ) nll ricrc dgli sintoti ricordr ch: s > log f ( ) ) f ( log f ( ) f ( ) s << ) f ( log f ( ) log f ( ) f ( ) nll ricrc dgli vntuli sintoti obliqui convin inr l form di indcision con l rgol di D L Hopitl Funzioni goniomtrich Crttristich: l funzioni goniomtrich sono priodich prtnto dopo vrn dtrminto il dominio si it lo studio l rpprsntzion d un solo priodo in prticolr: sin cos tn cot si itno [ ],π sfruttndo l loro simmtri nch [,π ] si itno [,π ] oppur π, π s l funzion è dt dll somm di funzioni con priodi divrsi convin studirl nll intrvllo più mpio convin dtrminr il vlor ch l funzion ssum gli strmi dll intrvllo pr lcuni vlori di intrni dsso, d s: π f ( ), f ( ), f ( π ), f ( π ) f (π ) l insim di positività si clcol solo s l sprssion dll funzion gnr smplici disquzioni goniomtrich ssndo priodich non possono vr sintoti orizzontli o obliqui nll ricrc di mssimi di minimi rltivi di flssi, s l disquzioni rltiv llo studio dl sgno dll drivt prim scond non sono di immdit soluzion, convin usr il mtodo dll drivt succssiv.(vdi smpio N.7)

6 Prof. Emnul ANDRISANI Esmpi Studio di funzion Esmpio D { DR / R } ( )( ) Esmpio D { / R } Ricrc dll'sintoto obliquo mtodo: f ( ) m m q ( f ( ) m) q- A.Ob. - mtodo A.Ob

7 Prof. Emnul ANDRISANI Esmpio D { / R } { / R } I.P.D-{, } Elvndo mbo i mmbri l qudrto con l condizion ch si h: qusto sistm rpprsnt grficmnt l smicirconfrnz positiv di cntro C(,) r Esmpio b D { / R } { / R } Elvndo mbo i mmbri l qudrto con l condizion ch si h: qusto sistm grficmnt rpprsnt l smiprbol ngtiv di vrtic V(,) ss di simmtri 7

8 Prof. Emnul ANDRISANI Esmpio Dominio D { / R } { / R < } Intrszioni A(,) B(, ) Ricrc sintoti Pr l funzion non è dfinit v ricrcto l sintoto vrticl sinistro quindi A.V -. ( ) ( ) Studio dll drivt prim quindi ' D D-{ } ( ) ( ) A.O. l funzion quindi è drivbil pr < pr > pr tli vlori l drivt è positiv quindi l funzion è crscnt. Poiché pr l funzion è dfinit m non è drivbil pr ottnr ultriori informzioni sull ndmnto dll funzion in prossimità di si può clcolr: ' ( ) ciò signific ch l funzion nl punto di sciss h tngnt prlll ll ss

9 Prof. Emnul ANDRISANI Esmpio b Dominio D { / R } { / R < } Intrszioni - A (- ) non cc. A(,) Non vnno ricrct l intrszioni con l ss dll ordint prché l funzion non è dfinit pr Ricrc sintoti Pr - l funzion non è dfinit v ricrcto l sintoto vrticl sinistro ( )( ) ( )( ) quindi - A.V -. ( ) ( ) ( ) (pr inr l form di indcision si potv nch rzionlizzr) ( )( ) ( )( ) quindi - A.V. 9

10 quindi A.O. Studio dll drivt prim ) ( ) ( ) ( ) ( ' D D-{ } ' ) )( ( f. - - < quindi m M (-., -. ) M (.,.7 ) Poiché pr l funzion è dfinit m non è drivbil pr ottnr ultriori informzioni sull ndmnto dll funzion in prossimità di si può clcolr: ( ) ' ciò signific ch l funzion nl punto di sciss h tngnt prlll ll ss Prof. Emnul ANDRISANI

11 Esmpio ( ) ( ) Esmpio b / / < < R R / / < < R R Prof. Emnul ANDRISANI

12 Esmpio Dominio D { R / } { R / } Intrszioni ) A(, Non vnno ricrct l intrszioni con l ss dll sciss prché l quzion dl tipo è impossibil. Ricrc sintoti Nll ricrc dgli sintoti vrticli convin prim studir il sgno dll sponnt, sso prmtt di stbilir con fcilità s l sponnt tnd o - pr i vlori ch nnullno il dnomintor. N D - - quindi A.V -. quindi A.V. quindi A.O. Studio dll drivt prim ( )( ) ( )( ) ( ) ( ) ( ) ' D D Prof. Emnul ANDRISANI

13 Prof. Emnul ANDRISANI ' quindi è sciss di mssimo M(, ) Poiché pr pr l funzion è sintotic rispttivmnt solo d sinistr d dstr, pr vr un grfico più prciso in prossimità di di - convin clcolr il it dll funzion drivt pr vr informzioni sull ndmnto dll tngnti in tli punti: ( ) ' ' ( ) cioè l tngnt in tli punti h cofficint nullo Esmpio 7 Dominio D { R / },π ito lo studio [ ] cos cos Clcolo di lcuni vlori π f ( ) f ( ) f ( π ) f ( π ) f ( π ) Studio di mssimi minimi flssi: mtodo ' cos sin sin sin ( cos ) D D ' in( cos ) f f Π Π -

14 quindi Π sono sciss di m M (, ) M (Π, ) mntr Π è sciss di min. C (Π,-) '' sin cos cos cos cos '' cos cos Prof. Emnul ANDRISANI cos π Π π Π - - F π, F π, mtodo ' cos sin sin sin ( cos ) D D ' sin cos Π Π ' ' sin cos cos ''() < m M (, ) ''(π ) < Π m M (Π, ) ''( π )? ' '' sin cos cos sin cos sin cos cos '''( π )? v ' sin cos cos ' v > Π min C (Π,-) π π '' sin cos cos Π π π '''( ) F, π π '''( ) F, -,,,,,,, 7,

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine.

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine. Capitolo 2 Numri rali In qusto capitolo ci occuprmo dll insim di numri rali ch indichrmo con il simbolo R: lfunzionidfinitsutaliinsimiavaloriralisonol oggttodistudiodll analisi matmatica in una variabil.

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Guida allʼesecuzione di prove con risultati qualitativi

Guida allʼesecuzione di prove con risultati qualitativi TitoloTitl Guida allʼscuzion di prov con risultati qualitativi Guid to prform tsts with qualitativ rsults SiglaRfrnc DT-07-DLDS RvisionRvision 00 DataDat 0602203 Rdazion pprovazion utorizzazion allʼmission

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO Distrtto Scolastico N 53 Nocra Infrior (SA) SCUOLA MEDIA STATALE Frsa- Pascoli Vial Europa ~ 84015 NOCERA SUPERIORE (SA) Tl. 081 933111-081 931395- fax: 081 936230 C.F.: 94041550651 Cod: Mcc.: SAMM28800N

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

Progetto I CARE Progetto CO.L.O.R.

Progetto I CARE Progetto CO.L.O.R. Attori in rt pr la mobilità di risultati dll apprndimnto Dirtta WEB, 6 dicmbr 2011 Progtto I CARE Progtto CO.L.O.R. Elmnti distintivi complmntarità Michla Vcchia Fondazion CEFASS gli obittivi Facilitar

Dettagli

LINGUAGGI'CREATIVITA 'ESPRESSIONE' '

LINGUAGGI'CREATIVITA 'ESPRESSIONE' ' LINGUAGGICREATIVITA ESPRESSIONE 3 4ANNI 5ANNI Mniplrmtrilidivritipin finlizzt. Fmilirizzrindivrtntcnil cmputr Ricnsclmntidl mnd/rtificilcglindn diffrnzprfrmmtrili Distingugliggttinturlidqulli rtificili.

Dettagli

PROGETTAZIONE DIDATTICA PER COMPETENZE

PROGETTAZIONE DIDATTICA PER COMPETENZE ISTITUTO TECNICO INDUSTRIALE STATALE G. M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO Via Montani n. 7 - Tl. 0734-622632 Fax 0734-622912 www.istitutomontani.it -mail aptf010002@istruzion.it Coc

Dettagli

CORSO. FIM Via. associazione geometri liberi professionisti. della provincia di Modena. Sede. Costi. Colleg. 2 Pia. rispettivi tecnica.

CORSO. FIM Via. associazione geometri liberi professionisti. della provincia di Modena. Sede. Costi. Colleg. 2 Pia. rispettivi tecnica. CORSO MASTER associazion gomtri libri profssionisti dlla provincia Modna novmbr, cmbr 2014 gnnaio, fbbraio PERCORSO FORMATIVO DI 48 ORE Sd Il corsoo è organizzato prsso la sala convgni dl Collg io Gomm

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Parcheggi e altre rendite aeroportuali

Parcheggi e altre rendite aeroportuali Argomnti Parchggi altr rndit aroportuali Marco Ponti Elna Scopl La rgolamntazion dl sistma aroportual italiano fino al 2007 non ha vitato la formazion di rndit ingiustificat. In particolar l attività non-aviation,

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 36 Riduzion durvol di valor dll attività Riduzion durvol di valor dll attività SOMMARIO Finalità 1 Ambito di applicazion

Dettagli

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4 Radioattività - Radioattività - - - Un prparato radioattivo ha un attività A 0 48 04 dis / s. A quanti μci (microcuri) si riduc l attività dl prparato dopo du tmpi di dimzzamnto? Sapndo ch: ch un microcuri

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albr d coprtur mnm Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt

Dettagli

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO 1. La struttura di rlazioni tra manifattura srvizi all imprs in un contsto uropo 11 1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO La quota di srvizi sul commrcio

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

MATRICI SIMILI E MATRICI DIAGONALIZZABILI

MATRICI SIMILI E MATRICI DIAGONALIZZABILI MATRICI SIMILI E MATRICI DIAGONALIZZABILI DEFINIZIONE: Due mtici qudte A e B, dello stesso odine n, si dicono simili se esiste un mtice non singole S, tle che isulti: B S A S L mtice S si chim nche mtice

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

10. Risorse umane coinvolte nella prima fase del progetto Ceis comunità.

10. Risorse umane coinvolte nella prima fase del progetto Ceis comunità. 0. Risrs uman cinvl nlla prima fas dl prg Cis cmunià. funzini n. n. r Oprari di Prg Prgazin, pianificazin dl prg O p r a ri d l p r g prari di bas prari cnici cn qualifica prfssinal prari spcializzai Op.

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

Lo strato limite PARTE 11. Indice

Lo strato limite PARTE 11. Indice PARTE 11 a11-stralim-rv1.doc Rl. /5/1 Lo strato limit Indic 1. Drivazion dll qazioni indfinit di Prandtl pr lo strato limit sottil pag. 3. Intgrazion nmrica dll qazioni indfinit di Prandtl. 11 3. Lo strato

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

( D) =,,,,, (11.1) = (11.3)

( D) =,,,,, (11.1) = (11.3) G. Ptrucci Lzioni di Cotruzion di Macchin. CRITERI DI RESISTENZA La vrifica di ritnza ha o copo di tabiir o tato tniona d mnto truttura anaizzato è ta da provocarn i cdimnto into com rottura o nrvamnto.

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco DM 10 marzo 2005 Classi di razion al fuoco pr i prodotti da costruzion da impigarsi nll opr pr l quali ' prscritto il rquisito dlla sicurzza in caso d'incndio. (GU n. 73 dl 30-3-2005) IL MINISTRO DELL'INTERNO

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di FISICA-TECNICA Ki Gllucci ki.gllucci@univq.i kgllucci@unie.i Progr del corso Dinic dei fluidi: Regii di oo; Moo szionrio di un fluido idele; Moo szionrio di un fluido rele; Il eore di Bernoulli; Perdie

Dettagli

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI Esercii dell leione di Alger di se ESERCIZI SUI PRODOTTI NOTEVOLI ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ES ES ERCIZI SURUFFINI ERCIZI SULLE SEMPLIFICAZIONI DI FRAZIONI

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

10 Progetto con modelli tirante-puntone

10 Progetto con modelli tirante-puntone 0 Progetto con modelli tirnte-puntone 0. Introduzione I modelli tirnte-puntone (S&T Strut nd Tie) sono utilizzti per l progettzione delle membrture in c.. che non possono essere schemtizzte come solidi

Dettagli

IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI

IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI IL NUOVO QUADRO LEGISLATIVO ITALIANO SULL EFFICIENZA ENERGETICA DEGLI EDIFICI D.Lgs. 192/2005 + D.Lgs. 311/2006 Vincnzo Corrado, Matto Srraino Dipartimnto di Enrgtica Politcnico Di Torino un progtto di:

Dettagli

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio *

Le spese di ricerca e sviluppo: gestione contabile ed iscrizione in bilancio * www.solmp.it Le : gestione contbile ed iscrizione in bilncio * Piero Pisoni, Fbrizio Bv, Dontell Busso e Alin Devlle ** 1. Premess Le sono esminte nei seguenti spetti: Il presente elborto è trtto d: definizione

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE nno 213 Tipologia Istituzione U - UNIT' SNIT LCLI Istituzione 9565 - SL VNZI - MSTR 12 Contratto SSN - SRVIZI SNIT NZINL Fase/Stato Rilevazione: pprovazione/ttiva Data Creazione Stampa: 19/6/215 14:15:25

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

T13 Oneri per Indennita' e Compensi Accessori

T13 Oneri per Indennita' e Compensi Accessori T13 Oneri per Indennita e Compensi Accessori Qualifiche per le Voci di Spesa di Tipo I IND. IND RZ. INDNNITÀ VACANZA STRUTT. ART. 42, D MARIA PROFSSION CONTRATTU COMP. SCLUSIVITA POSIZION POSIZION - RISULTATO

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Z>,n zorrr Reg. Gen. IL CAPO AREA AA.GG

Z>,n zorrr Reg. Gen. IL CAPO AREA AA.GG Piazza Toselli n. 1-96010 Buccheri (SR) Tel. 0931880359 - Fax 0931880559 DETERMINA DEL CAPO AREA AFFARI GENERATI DETERMINAN,/UóDEL Z>,n zorrr Reg. Gen. Oggetto: Liquidazione fatîure a ll'associazio ne

Dettagli

Poteri/ funzioni attribuiti dalla norma

Poteri/ funzioni attribuiti dalla norma Compiti funzioni attribuiti dalla tiva all nazional Lgg Art. 6, comma 5 Art. 6, comma 7, ltt.a Art. 6, comma 7, ltt.b Potri/ funzioni attribuiti dalla Vigilanza su tutti i contratti pubblici (lavori, srvizi

Dettagli

JOHANN SEBASTIAN BACH Invenzioni a due voci

JOHANN SEBASTIAN BACH Invenzioni a due voci JOH EBTI BCH Invnzon a u voc BWV 772 7 cura Lug Catal trascrzon ttuata con UP htt//ckngmuscarchvorg/ c 200 Lug Catal (lucatal@ntrrt) Ths ag s ntntonally lt ut urchtg nltung Wormt nn Lbhabrn s Clavrs, bsonrs

Dettagli

GUIDE ITALIA Un confronto sulle ultime tendenze a supporto della semplificazione e dell efficienza

GUIDE ITALIA Un confronto sulle ultime tendenze a supporto della semplificazione e dell efficienza GUIDE ITALIA Un confronto sull ultim tndnz a supporto dlla smplificazion dll fficza L voluzion dll architttur IT Sogi RELATORE: Francsco GERBINO 16 novmbr 2010 Agnda Prsntazion dlla Socità Architttur IT

Dettagli

INTERCONNESSIONE CONNETTIVITÀ

INTERCONNESSIONE CONNETTIVITÀ EMC VMA AX 10K EMC VMAX 10K fornisce e un'rchitettu ur scle-out multi-controlller Tier 1 rele e che nsolidmento ed efficienz. EMC VMAX 10 0K utilizz l stess s grntisce lle ziende con stemi VMAX 20 0K e

Dettagli

PROGETTO PON SICUREZZA 2007-2013 Gli investimenti delle mafie

PROGETTO PON SICUREZZA 2007-2013 Gli investimenti delle mafie PROGETTO PON SICUREZZA 27-213 Gli investimenti delle mafie SINTESI Progetto I beni sequestrati e confiscati alle organizzazioni criminali nelle regioni dell Obiettivo Convergenza: dalle strategie di investimento

Dettagli

I N D I C A Z I O N E D E L L E P R E S T A Z I O N I

I N D I C A Z I O N E D E L L E P R E S T A Z I O N I Srvizio Tnio i Bino Romgn S i Rimini Lvori: 11162_INTERVENTI DI MITIGAZIONE DEL DISSESTO E MESSA IN SICUREZZA DELLA STRADA PROVINCIALE SP. 84 VALPIANO MIRATOIO, IN LOCALITA CA GUIDI LA PETRA, IN COMUNE

Dettagli

INTRODUZIONE ALLA BUSINESS PROCESS MODELING NOTATION (BPMN) 1

INTRODUZIONE ALLA BUSINESS PROCESS MODELING NOTATION (BPMN) 1 ITRODUZIOE ALLA BUSIESS PROCESS MODELIG OTATIO (BPM) 1 1. Prsntazin La ntazin BPM (http://www.bpn.rg) è sviluppata dalla Businss Prcss Managnt Initiativ dall Objct Managnt Grup (http://www.g.rg), assciazini

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

COMUNICAZIONE INTERNA, SISTEMA INFORMATIVO, CONSIGLIO COMUNALE, SPORTELLO DEL CITTADINO

COMUNICAZIONE INTERNA, SISTEMA INFORMATIVO, CONSIGLIO COMUNALE, SPORTELLO DEL CITTADINO Nm prcmnt Dscrizin Fasi (dscrizin sinttica da input ad utput) Nrm rifrimnt rspnsabil istruttria Rspnsabil prcmnt mcgmmatricla richista infrmazini prcmnt incar tlf, fax pc inrizz Trmin cnclusi n prcm nt

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

chiarezza delle aspettative dell organizzazione verso l individuo e chiara esplicitazione all individuo di tali aspettative

chiarezza delle aspettative dell organizzazione verso l individuo e chiara esplicitazione all individuo di tali aspettative FORMA 3: Valutazione dei comportamenti organizzativi Nozioni di base 1. LA VALUAZION DLL COMPNZ INDIVIDUALI 1.1 L COMPNZ INDIVIDUALI In base ai recenti contributi di numerosi autori, possiamo intendere

Dettagli

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it Ftturimo Versione 5 Mnule per l utente Active Softwre Corso Itli 149-34170 Gorizi emil info@ctiveweb.it Se questo documento ppre nell finestr del vostro browser Internet di defult, richimte il comndo Registr

Dettagli

George Frideric Handel. Reduction. From the Deutsche Händelgesellschaft Edition Edited by Frideric Chrysander

George Frideric Handel. Reduction. From the Deutsche Händelgesellschaft Edition Edited by Frideric Chrysander Gorg Fdc Hndl GIULIO CESARE 1724 Rduction From th Dutsch Händlgsllschft Etion Etd by Fdc Chrysndr Copyght 2001-2008 Nis Scux. Licnsd undr th Ctiv Commons Attbution 3.0 Licns 2 3 INDICE 0-1 OUVERTURE 5

Dettagli

LA CARTOGRAFIA E LA SCALA

LA CARTOGRAFIA E LA SCALA Corso di laurea in Urbanistica e Sistemi Informativi Territoriali Laboratorio di ingresso Prof. Salvemini Arch. Valeria Mercadante A.A. 2009/2010 LA CARTOGRAFIA E LA SCALA La scala numerica La scala numerica

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

T13 Oneri per Indennita' e Compensi Accessori

T13 Oneri per Indennita' e Compensi Accessori T13 Oneri per Indennita e Compensi Accessori Qualifiche per le Voci di Spesa di Tipo I IND. IND RZ. INDNNITÀ VACANZA STRUTT. ART. 42, D MARIA PROFSSION CONTRATTU COMP. SCLUSIVITA POSIZION POSIZION - RISULTATO

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

SOMMARIO. Introduzione pag. 2. Tabella comparativa simboli D.Lgs. 81/2008 con UNI EN ISO 7010:2012 4

SOMMARIO. Introduzione pag. 2. Tabella comparativa simboli D.Lgs. 81/2008 con UNI EN ISO 7010:2012 4 SORIO Introduzione pag. 2 Tabella comparativa simboli D.Lgs. 81/2008 con UNI N ISO 7010:2012 4 Segnali di (solo simbolo) 7 Segnali di (simbolo + testo) 10 Segnali di Divieto (solo simbolo) 16 Segnali di

Dettagli

STUD FOTOVOLTAICO 16 LED 1.2W CW

STUD FOTOVOLTAICO 16 LED 1.2W CW Cod. 1879.185M STUD FOTOVOLTAICO 16 LED 1.2W CW Crtteristiche tecniche Corpo in lluminio pressofuso Portello di chiusur vno cblggio/btterie in termoindurente Riflettore in lluminio vernicito binco Diffusore

Dettagli

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015.

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015. Vrsion 5 3 Agosto Valità 2015 la Manifstazion : Campionato Italiano Rally Assoluto Campionato Italiano Rally Junior Campionato Italiano Rally Costruttori Coppa ACI-SPORT Rally CIR Equipaggi Inpndnti Coppa

Dettagli