Soluzione del problema Un generatore IDEALE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzione del problema Un generatore IDEALE"

Transcript

1 Esmi di Mturità Lieo Sientiio 11 mrzo 15 Soluzione del problem Un genertore IDEALE y A R B L O d Prim di ollegre l resistenz R tr i due poli A e B, nel iruito non irol orrente; l brrett è soggett ll sol orz elsti e quindi si muove di moto rmonio; indindo on l posizione dell brrett, il moto è desritto dll equzione: os(π t) on mpiezz del moto; l requenz del moto rmonio è dt dll espressione: Dovendo essere 5 Hz, si ottiene per k: k 4π m 4 π , N m Per l presenz del mpo mgnetio, il moto dell brrett gener un orz elettromotrie indott pri l lusso del mpo B tglito nell unità di tempo dll brrett stess; esso è nhe egule ll vrizione di lusso ttrverso l superiie delimitt dll guid e dll brrett. Assumendo il mpo mgnetio usente dl oglio del disegno (sse +z), il lusso Φ del mpo B ttrverso l superiie delimitt dll guid e dll brrett è:

2 Esmi di Mturità Lieo Sientiio 11 mrzo 15 Φ B L (d + ) B L (d + os(π t)) Per l legge di Frdy-Neumnn-Lenz l orz elettromotrie indott em. srà: em. dφ dt - B L d dt B L π sin(π t) Il vlore mssimo m si ottiene qundo l unzione seno ssume il vlore 1 e vrrà: m B L π 94, mv Collegndo l resistenz R, nel iruito sorre l orrente indott: i em. R L brrett subise quindi lzione di un orz mgneti dt dll espressione il ui eetto è quello di un orz rennte in qunto il verso è opposto quello dell veloità istntne; intti nell ipotesi tt per il verso di B (lungo +z), qundo v è > l orz elettromotrie rà irolre l orrente in senso orrio; l orrente nell sbrrett srà lungo y e quindi l orz F lungo, ioè in verso opposto ll veloità; poihé il modulo dell orz F è proporzionle ll veloità, si trtt di un orz di resistenz visos. L brrett si muove quindi sotto l zione dell risultnte di un orz elsti e di un orz di resistenz visos e il moto risultnte è un moto rmonio smorzto. L dierenz di potenzile tr i terminli A e B è proporzionle ll veloità v d/dt e h un ndmento temporle nlogo quest, ome mostrto in igur.

3 Esmi di Mturità Lieo Sientiio 11 mrzo 15 Dl punto di vist energetio l orz F gente sull brrett un lvoro negtivo, essendo oppost ll veloità; di onseguenz l energi ineti dell brrett diminuise nel tempo e osì nhe l veloità; di onseguenz diminuise nhe l orz elettromotrie indott e quindi l orrente indott: tempi lunghi l brrett si erm e l orz elettromotrie indott si nnull. Quntittivmente il lvoro tto dll orz F nell unità di tempo (potenz) è egule ll potenz dissipt per eetto joule dll orrente indott nell resistenz R. Intti l potenz dissipt dll orz F risult: E l potenz dissipt nell resistenz R: r r w F v ilbv w i. em ilbv Quindi il genertore di Luigi non unzion in modo idele per l produzione di orrente lternt, m si limit dissipre per eetto joule l energi inizilmente ornit ll brrett: non è quindi lun violzione del prinipio di onservzione dell energi.

4 Esme di Mturità Lieo Sientiio 11 mrzo 15 Un missione spzile: soluzione Indihimo on t e t i tempi e gli intervlli di tempo misurti d un osservtore sull terr e on t e t quelli misurti dll equipggio dell nviell. L durt dell missione è l somm dell durt del viggio di ndt t ( t ) del tempo trsorso su Sirio per eetture le rierhe t sost ( t sost ) dell durt del ritorno t r ( t r ). 8,6 Per un osservtore sull terr, il viggio di ndt h un durt pri : t 11,6 nni;,75 il tempo trsorso su Sirio per eetture le rierhe è di due nni, ioè è egule l tempo dell sost misurto dll equipggio in qunto l veloità di Sirio è trsurbile rispetto ll veloità dell lue; il viggio di ritorno h un durt pri quello di ndt; pertnto l durt omplessiv dell missione t totle è: t t + t + t 11,6 +, + 11,6 5, nni. totle sost r Per i omponenti dell equipggio, l durt del viggio di ndt e del viggio di ritorno è: t t t r t 1 β 11,6 1,75 7,67 nni; il tempo trsorso per eetture le γ rierhe t sirio, nni. Il tempo totle dell missione per i omponenti dell equipggio risult quindi: t t + t + t 7,67 +, + 7,67 17,3 nni. totle sost r Nel sistem di rierimento dell terr, l evento invio del segnle vviene nel punto, l tempo t 1, nni. Per le trsormzioni di Lorentz, nel sistem di rierimento dell nviell lo stesso evento vviene nel punto di oordinte spzio-temporli γ( vt ) γvt 1,13 nni lue e l v tempo t γ(t ) γt 1,51 nni. Per i omponenti dell equipggio il segnle luminoso rggiungerà l nviell dopo un tempo: γvt t 1 1,13 nni Il tempo totle trsorso per l equipggio srà quindi: γvt t totle t + t1 γt + γ(1 + β)t,64 nni. Per l bse terrestre il segnle giunge ll nviell l tempo t totle 4, nni dopo l inizio dell missione, intti: (t t ) vt totle t totle t v totle Impieg quindi 3, nni rggiungere l nviell. Al tempo t totle,l nviell si trov d un distnz di 3, nni lue dll Terr; per tornre indietro l rispost impieg quindi ltri 3, nni e l bse Terr rieverà l onerm dell riezione 6, nni dopo l invio del segnle. 4, nni

5 Esme di Mturità Lieo Sientiio 11 mrzo 15 A B Il grio illustr l pubblio l tempisti dell missione e dei due segnli; esso mostr l distnz stronve-terr in unzione del tempo; l pendenz dell rett è pri ll veloità dell stronve. Il segnle invito l tempo tt o si llontn dll Terr on veloità. Il segnle invito dll stronve si vviin ll Terr on veloità. I punti di inroio delle rette sono gli istnti in ui l nviell rggiunge Sirio (A) e l istnte in ui il segnle rggiunge l nviell (B) e riprte verso l terr. L preoupzione del responsbile dell siurezz è ondt, in qunto l ontrzione di Lorentz vviene nelle direzione longitudinle del moto e non in quell trsversle; il erhio del simbolo dell lott ppre più o meno deormto seond di ome esso è orientto rispetto ll veloità del moto. Intti un rggio 1 del erhio diretto ome l veloità pprirà ontrtto del ttore reltivistio γ 1, 51 mentre 1 β un rggio d esso perpendiolre pprirà non ontrtto. Per evitre l deormzione del erhio oorre he l nviell dirig il suo moto sempre verso il posto di gurdi dell rontier e he il pino he ontiene il simbolo si sempre perpendiolre ll direzione del moto dell nviell in modo he tutti i rggi del simbolo sino perpendiolri l moto e non risentno dell ontrzione di Lorentz.

Problema n. 1: Un generatore IDEALE

Problema n. 1: Un generatore IDEALE Problemi di simulzione dell second prov dell esme di mturità di Fisic 11 mrzo 15 Lo studente deve svolgere un solo problem su scelt Tempo mssimo ssegnto ll prove tre ore Problem n. 1: Un genertore IDEALE

Dettagli

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Cinematica rotazionale. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Cinemti rotzionle 8 febbrio 009 PIACENTINO - PEITE (Fisi per Sienze Motorie) 1 Moto Cirolre Uniforme Un oggetto he si muove su un ironferenz on un veloità ostntev, ompie unmotoirolreuniforme. Il modulo

Dettagli

Elettrodinamica Un toroide a sezione rettangolare porta due avvolgimenti, uno esterno di N 1. , raggio interno a 1

Elettrodinamica Un toroide a sezione rettangolare porta due avvolgimenti, uno esterno di N 1. , raggio interno a 1 Elettrodinmic Un toroide sezione rettngolre port due vvolgimenti, uno esterno di spire, ltezz h, rggio interno, rggio esterno, ed un vvolgimento interno di spire, ltezz h, rggio interno, rggio esterno

Dettagli

a a a, quindi solo per a = x 0 perché nella parentesi figura la somma di 1 con un termine non negativo. e x x

a a a, quindi solo per a = x 0 perché nella parentesi figura la somma di 1 con un termine non negativo. e x x Esme di Stto Sessione suppletiv Mtemtic-Fisic Problem () è continu per, perché composizione di unzioni continue; il limite in ornisce lim lim 4 4 4 e lim lim e L unzione è continu in solo se lim lim Segno:

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca)

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca) Prov Sritt Elettromgnetismo - 24.7.2017 (.. 2016/17, S. Gigu/F. Lv/S. Petrr) reupero primo esonero: risolvere l eserizio 1: tempo mssimo 1.5 ore. reupero seondo esonero: risolvere l eserizio 2: tempo mssimo

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

] a; b [, esiste almeno un punto x 0

] a; b [, esiste almeno un punto x 0 Anlisi Limiti notevoli sen lim = ( lim + = e Un funzione si die ontinu in qundo, + lim f( = lim f(. + sintoti vertili: se lim f ( = ± oppure lim f ( = ± sintoti orizzontli: se sintoti oliqui: l'equzione

Dettagli

Problema 1. a 2a. 1 k = = 4. DU= U P U P causata dallo spostamento di q 4 da P a P. a E E b. d V V V e F N F N

Problema 1. a 2a. 1 k = = 4. DU= U P U P causata dallo spostamento di q 4 da P a P. a E E b. d V V V e F N F N y q q P ' k = = 4 0 P q 3 9 0 9 Nm Problem onsiderimo 3 criche in figur con q = 4q, q = q, q 3 = q, q= m; = 4 cm ) lcolre le componenti lungo gli ssi, y del cmpo elettrico totle generto dlle 3 criche nel

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Principio conservazione energia meccanica. Problemi di Fisica

Principio conservazione energia meccanica. Problemi di Fisica Problemi di isic Principio conservzione energi meccnic Su un corpo di mss M0kg giscono un serie di forze 0N 5N 37N N (forz di ttrito), secondo le direzioni indicte in figur, che lo spostno di 0m. Supponendo

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

Fenomenologiche, dedotte dalle osservazioni e misure accurate di Brahe e Kepler stesso raccolte in molti anni

Fenomenologiche, dedotte dalle osservazioni e misure accurate di Brahe e Kepler stesso raccolte in molti anni eggi di Kepler: Fenomenologihe, dedotte dlle osservzioni e misure urte di Brhe e Kepler stesso rolte in molti nni i) e orbite dei pineti sono ellissi, di ui il Sole oup uno dei fuohi ii) Il rggio vettore

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Con riferimento alla figura, il punto B è determinato dalla intersezione della circonferenza γ di. x + y ay = 0 ) e della retta OB (di equazione

Con riferimento alla figura, il punto B è determinato dalla intersezione della circonferenza γ di. x + y ay = 0 ) e della retta OB (di equazione Compito di Mturità PNI ur di Pietro Romno Prolem Nel pino sono dti: il erhio γ di dimetro OA, l rett t tngente γ in A, un rett r pssnte per O, il punto B, ulteriore intersezione di r on γ, il punto C di

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2 858874 - ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M-2527 - ELETTRONICA 2 M-2529 - BIOFISICA APPLICATA M-2528 - INFORMATICA 2 Lezione n. 2i Derivt Integrle Numeri complessi Fsore Rppresentzione

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava:

ESERCIZIO 1. Fig. 1. Si ricava a = m = 14.6 mm. Ricalcolando per a/w= 14.6/50= 0.29, si ottiene Procedendo, si ricava: ESERCIZIO 1 Un pistr di lrghezz totle 100 mm e spessore 5 mm, con cricc centrle pssnte (ig. 1), è soggett d un orz di trzione P=50 kn. 1) Determinre le condizioni di cedimento dell pistr. ) Determinre

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

Sistemi di coordinate. Moto nello spazio tridimensionale. Coordinate cartesiane ortogonali: z P = P(x,y,z) x Coordinate cilindriche: z.

Sistemi di coordinate. Moto nello spazio tridimensionale. Coordinate cartesiane ortogonali: z P = P(x,y,z) x Coordinate cilindriche: z. Moto nello spio tridimensionle L loliione spio-temporle di un evento - triettori e posiione nell triettori l vrire del tempo - l posiione rispetto un PUO O DI IFEIMEO sistem di oordinte spili origine O

Dettagli

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale pint su un superfiie inlint - Centro di pint Considerimo un superfiie pin inlint di un ngolo rispetto ll orizzontle e prendimo un sistem di riferimento on intersezione sse di intersezione tr l superfiie

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Utilità dei sistemi trifase

Utilità dei sistemi trifase Sistemi trifse Intro Genertori trifse, enni tensioni stellte Tensioni equilirte: sistem diretto e sistem inverso Ciruiti trifse ( fili) Tensioni di line o ontente Correnti di line Crio equilirto stell

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017

SIMULAZIONE DELLA II PROVA SCRITTA[ 1 ] 30 maggio 2017 SIMULAZIONE DELLA II PROVA SCRITTA[ ] 0 mggio 07 Nome del cndidto _ Clsse Il cndidto risolv uno dei due problemi; il problem d correggere è il numero Problem Il direttore dello zoo di Berlino desider fr

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Lure di I Livello in Ingegneri Informtic Sede di Mntov 5.02.2004 Prolem I Nel circuito in figur, in cui i genertori funzionno in regime stzionrio, l interruttore viene chiuso nell istnte t = 0. Si determini

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x)

Soluzione. Studiamo la funzione. Dominio: la funzione è definita in tutto R; Intersezione asse ascisse: ( x) Sessione ordinri LS_ORD Soluzione di De Ros Niol Soluzione Studimo l unzione Dominio: l unzione è deinit in tutto R; ; Intersezione sse sisse: Intersezioni sse delle ordinte: y ; Prità o disprità: l unzione

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Prolem 1 Prim dell istnte t 0 i genertori operno in regime stzionrio e il circuito d considerre è il seguente: R 1 v C (0 - ) (0 - ) V 1 (0 - ) R 3 V 2 R 2 Risult evidente che e È nche utile

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

TEOREMI SULLE DERIVATE: TEOREMA DI ROLLE E DI LAGRANGE

TEOREMI SULLE DERIVATE: TEOREMA DI ROLLE E DI LAGRANGE TEOREMI SULLE DERIVTE: TEOREM DI ROLLE E DI LGRNGE ur di Ginrno Metelli IL TEOREM DI ROLLE Si un unzione deinit nell intervllo iuso [,] e soddisi le seguenti ondizioni: si ontinu nell intervllo iuso [,];

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

Misure ed incertezze di misura

Misure ed incertezze di misura Misure ed inertezze di misur Misurzione e Misur Misurre signii quntiire un grndezz isi himt misurndo trmite un proesso (misurzione) il ui risultto è detto misur. L misur deve poter essere ripetut nhe d

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Le equazioni cosmologiche. Dott. Ing.. Rossini Alessandro

Le equazioni cosmologiche. Dott. Ing.. Rossini Alessandro Le equzioni osmologihe Dott Ing Rossini Alessndro LA METRICA DI FRIEDMANN-ROBERTSON-WALKER L metri di Friedmnn-Robertson-Wlker ontiene le ipotesi di omogeneità ed isotropi per ui si prest d essere pplit

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

LEGGI DELLA DINAMICA

LEGGI DELLA DINAMICA 1) Nel SI l unità di misur dell forz è il Newton (N); 1 N è quell forz che: [A] pplict su un oggetto dell mss di 1 kg lo spost di 1m; [B] pplict su un oggetto che h l mss di 1g lo cceler di 1m/s 2 nell

Dettagli

Lo spettro di un segnale numerico

Lo spettro di un segnale numerico Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di E b /N 0 ) di un costellzione dipendono solo dll disposizione dei suoi segnli nello spzio Euclideo, non dlle forme

Dettagli

Y[cm] X[cm] Cap 20 Problema 28. DATI q=2 μc=2x10-6 C a=2.5 cm= 2.5x10-2 m A=(-5 cm,0) B=(0,+5 cm) P=(0,0) a) nel punto A.

Y[cm] X[cm] Cap 20 Problema 28. DATI q=2 μc=2x10-6 C a=2.5 cm= 2.5x10-2 m A=(-5 cm,0) B=(0,+5 cm) P=(0,0) a) nel punto A. p 0 Problem 8 DATI = μ=x10-6 =.5 cm=.5x10 - m A=(-5 cm,0) B=(0,5 cm) P=(0,0) Y[cm] 5 B 4 3 A 1 X[cm] 5 ) nel punto A E(A) = E (A) E (A) E ˆ ˆ (A) = k i E (A) k i = (3) ˆ ˆ 1 ˆ 8 E(A) = E (A) E (A) k i

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

PNI 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2

PNI 2012 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 www.mtefili.it PNI SESSIONE STRAORDINARIA - QUESITI QUESITO Alcuni ingegneri si propongono di costruire un glleri rettiline che colleghi il pese A, situto su un versnte di un collin, col pese B, che si

Dettagli

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti];

2. il modulo ed il verso della forza di attrito al contatto disco-piano [6 punti]; 1 Esercizio (trtto dl problem 7.5 del Mzzoldi ) Sul doppio pino inclinto ( = 0 o ) sono posizionti un disco di mss m 1 = 8 Kg e rggio R = 1 cm e un blocco di mss m = 4 Kg. I due oggetti sono collegti d

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4

g x ax b e g x x e g x x e g ' x e a ax b 2 2x e 2ax 2 a b x a 2b 2ax 2 a b x a 2b a b a b 2a a 2b a b a 2ab b 2a 4ab a b a b 2a f x x x f x x x ; 2 4 Esme di Stto 09 Mtemtic-Fisic Problem Derivimo l funzione d cui x x g x x b e x x xx g ' x e x b x e x b x b g ' x 0 per x b x b 0 b b b b b b b b b x che mmette soluzioni distinte 0. Per l condizione

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. orso di Lure in Mtemtic Prim prov in itinere di Fisic (Prof. E. Sntovetti) 11 ottobre 015 Nome: L rispost numeric deve essere scritt nell pposito riqudro e giustifict ccludendo i clcoli reltivi. Problem

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Calendario Boreale (EUROPA) 2014 QUESITO 1

Calendario Boreale (EUROPA) 2014 QUESITO 1 www.mtefili.it Clendrio Borele (EUROPA) 204 QUESITO Si determini, se esiste, un cono circolre retto tle che il suo volume e l su superficie totle bbino lo stesso vlore numerico. Indichimo con r il rggio

Dettagli

Trasformatori amperometrici e Shunt

Trasformatori amperometrici e Shunt Trsformtori mperometrii e Shunt L presente sezione present un vst gmm di trsformtori mperometrii T e Shunt dediti ll misur di orrente C e CC, d utilizzre in inmento i misurtori, nlizztori, onttori presentti

Dettagli

29/11/2012 M F F EJ. b 2 b 1. Instabilità elastica: carico di punta

29/11/2012 M F F EJ. b 2 b 1. Instabilità elastica: carico di punta b b 1 f 0 C1 sin C cos C1 cos C sin C1 sin C cos C C cos 1 sin 1 b b 1 f 0 C1 sen C cos per =0 =0 0 C1 sen 0 C cos0 C 0 C sen per = =0 C sen 1 0 1 C 1 0 trve non si inflette sen 0 n b b 1 f 0 C1 sen C

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Funzioni esponenziali e logaritmi

Funzioni esponenziali e logaritmi Funzioni esponenzili e ritmi L funzione esponenzile L funzione = è chimt funzione esponenzile di dove è l bse dell funzione. > 0; Condizioni di vlidità: < < ; > 0 Se > l funzione è monoton crescente ovvero

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha

m 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha 1 Esercizio (trtto dl problem 7.52 del Mzzoldi 2) Sul doppio pino inclinto di un ngolo sono posizionti un disco di mss m 1 e rggio R e un blocco di mss m 2. I due oggetti sono collegti d un filo inestensibile;

Dettagli

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5).

Prova scritta di Algebra lineare e Geometria- 22 Gennaio 2018 = L (( 3, 2, 6)) = L ( 3, 2, 6, 5). Corso di Lure in Ingegneri Informti (A-Co, J-Pr) - Ingegneri Elettroni (A-Co, J-Pr) - Ingegneri Industrile (F-O) - Ingegneri Gestionle - Ingegneri Elettri - Ingegneri Meni - Ingegneri REA Prov sritt di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli