Algoritmi di visita di un grafo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi di visita di un grafo"

Transcript

1 Algoritmi di isita di n grafo Ilaria Castelli Uniersità degli Stdi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Visita di n grafo, A.A. 2009/2010 1/44

2 Grafi Visita in ampiezza Visita in profondità Ordinamento topologico I. Castelli Visita di n grafo, A.A. 2009/2010 2/44

3 Scopo e tipi di isita di n grafo Visita Una isita (o attraersamento) di n grafo G permette di esaminare i nodi e gli archi di G in modo sistematico. Esistono arie tipologie di isita, con dierse proprietà. In particolare: 1 Visita in ampiezza (BFS = Breadth First Search) 2 Visita in profondità (DFS = Depth First Search) I. Castelli Visita di n grafo, A.A. 2009/2010 3/44

4 Breadth First Search Visita in ampiezza Dato n grafo G = (V, E) e n nodo s chiamato sorgente, la isita in ampiezza esplora gli archi di G per scoprire ttti i nodi raggingibili a partire da s La isita BFS calcola la distanza (nmero minimo di archi) tra s e ogni ertice da esso raggingibile La isita consente di definire n albero BFS, con radice s, contenente ttti i nodi raggingibili Nell albero BFS il cammino da s a n nodo corrisponde a n cammino minimo (contenente il nmero minimo di archi) La isita BFS si pò applicare sia ai grafi diretti che a qelli non diretti I. Castelli Visita di n grafo, A.A. 2009/2010 4/44

5 Breadth First Search La isita in ampiezza esplora i nodi del grafo partendo da qelli a distanza 1 da s. Poi isita qelli a distanza 2, e così ia. L algoritmo isita ttti i ertici ad n liello k prima di isitare qelli a liello k + 1. distanza = 3 distanza = 2 r distanza = 1 h s i t Si genera n albero Si isitano nodi ia ia più distanti dalla sorgente x y I. Castelli Visita di n grafo, A.A. 2009/2010 5/44

6 Breadth First Search Per tenere traccia del progresso della isita, l algoritmo BFS associa delle flag ai nodi. Spponiamo di poter colorare i nodi di bianco, grigio o nero. All inizio ttti i nodi sono bianchi e, sccessiamente, possono dientare grigi e, infine, neri. Un nodo iene scoperto la prima olta che iene incontrato drante la isita e, in tale istante, cessa di essere bianco. La distinzione tra nodi grigi e neri esiste affinché la isita proceda in ampiezza. In sostanza, la distinzione è la segente: Bianchi: non ancora scoperti Grigi: appena scoperti; sono la frontiera tra nodi scoperti e non. I nodi adiacenti ad n nodo grigio possono essere bianchi. Neri: scoperti. Ttti i nodi adiacenti ad n nodo nero sono stati scoperti. I. Castelli Visita di n grafo, A.A. 2009/2010 6/44

7 Algoritmo BFS - Strttre dati Le strttre dati sate dall algoritmo sono le segenti: Liste di adiacenza Adj Adj[] è la lista dei nodi adiacenti a. Array color color[] contiene il colore del nodo Array d d[] contiene la distanza di dal nodo sorgente s. Viene inizializzata a infinito. Array p p[] contiene il predecessore del nodo nell albero BFS Coda Q contiene i nodi grigi I. Castelli Visita di n grafo, A.A. 2009/2010 7/44

8 Algoritmo BFS 1 BFS(G, s ) 2 f o r o g n i nodo i n V[G] { s } / i n i z i a l i z z a z i o n e / 3 c o l o r [ ] = WHITE 4 d [ ] = i n f i n i t y 5 p [ ] = NIL 6 7 c o l o r [ s ] = GRAY / i s i t o l a s o r g e n t e / 8 d [ s ] = 0 9 p [ s ] = NIL 0 Q = { s } 1 h i l e Q!= empty 2 = head [Q] / nodo da e s p a n d e r e / 3 f o r o g n i nodo i n Adj [ ] / i s i t o i n o d i a d i a c e n t i / 4 i f c o l o r [ ] = WHITE / s e e b i a n c o i e n e s c o p e r t o / 5 then c o l o r [ ] = GRAY 6 d [ ] = d [ ] p [ ] = 8 ENQUEUE(Q, ) / i n s e r i t o n e l l a coda Q / 9 DEQUEUE(Q) / t o l t o d a l l a coda : e g i a s t a t o e spanso / 0 c o l o r [ ] = BLACK I. Castelli Visita di n grafo, A.A. 2009/2010 8/44

9 Algoritmo BFS - Esempio r s x y t y s t t x r t x y x r s r s x y t r s x y t Adj p d r s t x y NIL 0 0 s 1 1 s r 2 t x Q = {} 2 I. Castelli Visita di n grafo, A.A. 2009/2010 9/44

10 Algoritmo BFS - Albero BFS La isita BFS consente di definire n albero BFS. all inizio contiene solo s qando n nodo bianco iene scoperto, scorrendo la lista di adiacenza di n nodo, allora l arco (, ) e stesso engono agginti all albero p(r) = s p(s) = NIL p(t) = p() = t r s t r s x y p() = r p() = s p(x) = p(y) = x 2 x 2 t 2 y 3 3 I. Castelli Visita di n grafo, A.A. 2009/ /44

11 Breadth First Search - Analisi Analisi del tempo di eseczione s n grafo G = (V, E) Il tempo necessario per l inizializzazione è O( V ) Ogni nodo raggingibile iene isitato na olta Le operazioni di inserimento e rimozione dalla coda costano O(1), qindi il tempo totale necessario per le operazioni slla coda è O( V ) La lista di adiacenza di n nodo iene scorsa na sola olta, qindi in totale il tempo è O( E ) Il tempo totale richiesto dall algoritmo BFS si ottiene sommando il tempo per l inizializzazione e qello necessario per isitare i nodi: O( V + E ) I. Castelli Visita di n grafo, A.A. 2009/ /44

12 Breadth First Search - Cammini minimi Distanza minima Si definisce distanza minima δ(s, ) da s a, il nmero minimo di archi di n cammino dal nodo s al nodo δ(s, ) 0 δ(s, ) = se non è raggingibile partendo da s Cammino minimo Un cammino di lnghezza δ(s, ) da s a si dice cammino minimo. Nota: possono esistere più cammini minimi tra de nodi BFS La isita BFS calcola la distanza minima δ(s, ) di ogni nodo raggingibile da s Nell albero BFS il cammino da s ad n nodo è n cammino minimo I. Castelli Visita di n grafo, A.A. 2009/ /44

13 Breadth First Search - Proprietà Lemma Dato n grafo G = (V, E) diretto o non diretto e n nodo s V qalsiasi, allora per ogni arco (, ) E si ha δ(s, ) δ(s, ) + 1 Dimostrazione Se non è raggingibile da s, allora δ(s, ) = Se è raggingibile da s, allora anche è raggingibile. Il cammino minimo da s a non pò essere più lngo del cammino minimo da s a, più l arco (, ) I. Castelli Visita di n grafo, A.A. 2009/ /44

14 Breadth First Search - Proprietà Lemma Sia G = (V, E) n grafo diretto o non diretto e s V n nodo sorgente qalsiasi, a partire dal qale è stato esegito l algoritmo BFS. Allora per ogni nodo V si ha d[] δ(s, ) Dimostrazione Per indzione: d[s] = 0 = δ(s, s) e, per qalsiasi nodo V {s}, ale d[] = δ(s, ) Dato n nodo scoperto drante l esplorazione di n nodo, per ipotesi indttia ale d[] δ(s, ). d[] }{{} = d[] + 1 }{{} algoritmo ipotesi indttia δ(s, ) + 1 δ(s, ) }{{} lemma precedente I. Castelli Visita di n grafo, A.A. 2009/ /44

15 Breadth First Search - Proprietà Lemma Spponendo che drante l eseczione della ricerca BFS s n grafo G = (V, E), la coda Q contenga i nodi < 1,..., r >, doe 1 = head[q] e r = tail[q], allora d[ r ] d[ 1 ] + 1 e d[ i ] d[ i+1 ], i = 1,..., r 1 La differenza tra le distanze da s dei nodi presenti nella coda in n certo momento è al più 1 Un nodo iene inserito nella coda (dientando r+1 ) qando il nodo in testa, 1, iene esplorato d[ r+1 ] = d[] = d[ 1 ] + 1 d[ r ] d[ 1 ] + 1 = d[] = d[ r+1 ] I. Castelli Visita di n grafo, A.A. 2009/ /44

16 Breadth First Search - Proprietà Proposizione I nodi che entrano nella coda Q sono ttti e soli i nodi tali che δ(s, ) <, cioè ttti i nodi raggingibili da s Dimostrazione 1 entra in Q = δ(s, ) < Si procede per indzione sll i-esima iterazione dell operazione ENQUEUE se i = 0, solo s è nella coda: δ(s, s) = 0 < se i > 0, spponiamo che l ipotesi indttia sia era per ogni iterazione k < i. Al passo i si isita Adj[], con = head[q], e i nodi bianchi engono inseriti in Q. Per ipotesi indttia δ(s, ) <. Poiché esiste l arco (, ): δ(s, ) δ(s, ) + 1 < I. Castelli Visita di n grafo, A.A. 2009/ /44

17 Breadth First Search - Proprietà 2 entra in Q = δ(s, ) < Si procede per indzione s δ(s, ) = k se δ(s, ) = 0 è ero: = s se δ(s, ) = k > 0, per ipotesi indttia si ha che per ogni tale che δ(s, ) < k, è già entrato in coda. Poiché δ(s, ) <, esiste n cammino < 0,..., i 1, i > da s a, con 0 = s e i =. s 0 (i 1) δ(s, i 1 ) = k 1 e i 1 è nella coda per ipotesi indttia. Qando errà isitata Adj[ i 1 ] errà scoperto e: se è bianco entra in coda non pò essere grigio o nero, altrimenti sarebbe già entrato in coda, perché arrebbe δ(s, ) < k! I. Castelli Visita di n grafo, A.A. 2009/ /44

18 Breadth First Search - Albero BFS Albero BFS L array p definisce n sottografo dei predecessori di G. In particolare, si tratta di n albero, T p : T p = (V p, E p ) V p = { V : p[] NIL} {s} E p = {(p[], ) E : V p {s}} Una olta esegita la ricerca BFS, la segente procedra stampa il cammino minimo da s a 1 PRINT PATH(G, s, ) 2 i f = s 3 then p r i n t s 4 e l s e i f p [ ] = NIL 5 then p r i n t "non esiste n cammino da s a " 6 e l s e PRINT PATH(G, s, p [ ] ) 7 p r i n t I. Castelli Visita di n grafo, A.A. 2009/ /44

19 Depth First search Visita in profondità Dato n grafo G = (V, E) ed n nodo s, detto nodo sorgente, la isita depth first esplora il grafo andando il più possibile in profondità. Dato n nodo appena scoperto, la isita prosege a partire da si soi archi che ancora non sono stati esplorati Qando si sono esplorati ttti gli archi del nodo, si torna al nodo dal qale è stato scoperto, e si esplorano i soi lteriori archi non ancora esplorati (se ce ne sono) Si prosege finchè non engono scoperti ttti i nodi raggingibili da s Se i sono ancora dei nodi non scoperti, no di qesti iene adottato come na noa sorgente, e la isita riprende a partire da esso L algoritmo termina qando ttti i nodi sono stati scoperti I. Castelli Visita di n grafo, A.A. 2009/ /44

20 Depth First Search Per tenere traccia del progresso della isita, anche l algoritmo DFS associa delle flag ai nodi. Di noo, si sppone di colorare i nodi di bianco, grigio o nero. All inizio ttti i nodi sono bianchi e, sccessiamente, possono dientare grigi e, infine, neri. Un nodo iene scoperto la prima olta che iene incontrato drante la isita e, in tale istante, cessa di essere bianco. La distinzione tra nodi grigi e neri è necessaria affinché la isita proceda in profondità. La distinzione è la segente: Bianchi: non ancora scoperti Grigi: sono stati scoperti, ma l esplorazione della loro lista di adiacenza non è ancora terminata. Neri: l esplorazione della loro lista di adiacenza è completata. I. Castelli Visita di n grafo, A.A. 2009/ /44

21 Algoritmo DFS - Strttre dati Le strttre dati sate dall algoritmo sono le segenti: Liste di adiacenza Adj Adj[] è la lista dei nodi adiacenti a. Array color color[] contiene il colore del nodo Array p p[] contiene il predecessore del nodo nella foresta DFS Array d d[] è n timestamp che contiene il momento in ci è stato scoperto. Array f f[] è n timestamp che contiene il momento in ci si è conclsa la isita di, cioè si è finito di esaminare al sa lista di adiacenza Adj[]. I. Castelli Visita di n grafo, A.A. 2009/ /44

22 Algoritmo DFS - Strttre dati Nota: Il nodo è bianco prima di d[] grigio tra d[] e f[] nero dopo f[] Oiamente si ha d[] < f[], V I timestamp sono nmeri interi compresi tra 1 e 2 V, poiché ogni nodo iene scoperto esattamente na olta, e si finisce di esplorarlo esattamente na olta. I. Castelli Visita di n grafo, A.A. 2009/ /44

23 Algoritmo DFS 1 DFS(G, s ) 2 f o r o g n i e r t i c e i n V[G] / i n i z i a l i z z a z i o n e / 3 c o l o r [ ] = WHITE 4 p [ ] = NIL 5 time = 0 6 f o r o g n i e r t i c e i n V[G] 7 i f c o l o r [ ] = WHITE 8 then DFS VISIT ( ) / i s i t a o g n i nodo non s c o p e r t o / 1 DFS VISIT ( ) 2 c o l o r [ ] = GRAY 3 d [ ] = time / tempo d i i n i z i o i s i t a l i s t a d i a d i a c e n z a / 4 time = time f o r o g n i e r t i c e i n Adj [ ] 6 i f c o l o r [ ] = WHITE 7 then p [ ] = 8 DFS VISIT ( ) / i s i t a s b i t o n o d i non s c o p e r t i / 9 c o l o r [ ] = BLACK / f i n i t o d i i s i t a r e i n o d i a d i a c e n t i / 0 f [ ] = time 1 time = time + 1 I. Castelli Visita di n grafo, A.A. 2009/ /44

24 Algoritmo DFS - Esempio Adj x y y z x x y z y x z z I. Castelli Visita di n grafo, A.A. 2009/ /44

25 Algoritmo DFS - Esempio 1/ 1/ 2/ 1/ 2/ 3/ x y z x y z x y z 1/ 2/ 1/ 2/ 1/ 2/ B B 4/ 3/ x y z 4/ 3/ x y z 4/5 3/ x y z 1/ 2/ 1/ 2/7 1/ 2/7 B B F B 4/5 3/6 4/5 3/6 4/5 3/6 x y z x y z x y z I. Castelli Visita di n grafo, A.A. 2009/ /44

26 Algoritmo DFS - Esempio 1/8 2/7 1/8 2/7 9/ 1/8 2/7 9/ F B F B F B C 4/5 3/6 4/5 3/6 4/5 3/6 x y z x y z x y z 1/8 2/7 9/ 1/8 2/7 9/ 1/8 2/7 9/ F B C F B C F B C 4/5 3/6 10/ x y z 4/5 3/6 10/ x y z B 4/5 3/6 10/11 x y z B 1/8 2/7 9/12 F B C 4/5 3/6 10/11 x y z B I. Castelli Visita di n grafo, A.A. 2009/ /44

27 Foresta DFS Allo stesso modo della ricerca BFS, nella ricerca DFS, n nodo iene scoperto esplorando la lista di adiacenza di n nodo già scoperto. L array p tiene traccia del predecessore di ogni nodo scoperto: p[] = Foresta DFS L array p definisce n sottografo dei predecessori di G. In particolare, si tratta di na foresta, F p : F p = (V, E p ) E p = {(p[], ) : V e p[] NIL} Il sottografo dei predecessori è na foresta depth first, costitita da più alberi depth first. I. Castelli Visita di n grafo, A.A. 2009/ /44

28 Foresta DFS - Classificazione degli archi Gli archi del grafo originario engono classificati in: Tree-edge. Archi della foresta DFS. Forard-edge. Archi in aanti. Archi non appartenenti alla foresta DFS, che anno da n ertice ad n so sccessore nella foresta DFS. Qando engono percorsi drante l algoritmo DFS, collegano de nodi già scoperti. Backard-edge. Archi all indietro. Archi non appartenenti alla foresta DFS, che anno da n ertice ad n so antenato nella foresta DFS. Archi del grafo che, qando engono percorsi drante l algoritmo DFS, collegano de nodi già scoperti. Cross-edge Archi di attraersamento. Ttti gli altri archi. Collegano de nodi che non hanno na relazione di discendenza l no dall altro. I. Castelli Visita di n grafo, A.A. 2009/ /44

29 Foresta DFS p 1/8 9/12 1/8 2/7 9/12 F B C 4/5 3/6 10/11 x y z B x y z NIL NIL y F B 2/7 3/6 4/5 y x C 10/11 z B La strttra degli alberi DFS rispecchia esattamente la strttra delle chiamate ricorsie alla procedra DF S V ISIT : = p[] se e solo se DF S V ISIT () è stata chiamata drante lo scorrimento della lista di adiacenza di. Nota: gli archi scenti ed entranti sllo stesso nodo (self-loop), engono considerati backard-edge. I. Castelli Visita di n grafo, A.A. 2009/ /44

30 Algoritmo DFS - Analisi 1 Nella procedra DF S ci sono de cicli, che engono esegiti Θ( V ) 2 La procedra DF S V ISIT iene richiamata esattamente na olta per ogni nodo V 3 Drante l eseczione di DF S V ISIT (), il ciclo nelle linee 5-8 iene esegito Adj[] olte 4 Poiché Adj[] = Θ( E ) V il costo totale per l eseczione del ciclo è Θ( E ) Il tempo totale di eseczione è Θ( V + E ) I. Castelli Visita di n grafo, A.A. 2009/ /44

31 Algoritmo DFS - Proprietà Teorema delle parentesi In na isita in profondità di n grafo (diretto o non diretto) G = (V, E), per ogni coppia di nodi e, definiamo gli interalli A = [d[], f[]] B = [d[], f[]] Allora, na e na sola delle segenti condizioni è era: 1 A B = 2 L interallo A è interamente inclso nell interallo B, e è n discendente di in n albero DFS 3 L interallo B è interamente inclso nell interallo A, e è n discendente di in n albero DFS I. Castelli Visita di n grafo, A.A. 2009/ /44

32 Algoritmo DFS - Proprietà Dimostrazione 1 Caso 1. d[] < d[]. Ci sono de sottocasi: 1 d[] < f[] iene scoperto prima di Qando si scopre la isita di non è stata completata ( è grigio) Ciò ol dire che è discendente di Poiché è stato scoperto più recentemente di, la isita di dee completarsi prima di tornare a : f[] < f[] QUindi l interallo A = [d[], f[]] è completamente contento in B = [d[], f[]] d[] d[] f[] f[] I. Castelli Visita di n grafo, A.A. 2009/ /44

33 Algoritmo DFS - Proprietà 1 2 d[] > f[] dienta nero prima che enga scoperto Qindi, qando iene scoperto la isita di è già stata completata d[] < f[] e d[] < f[] Qindi gli interalli A = [d[], f[]] e B = [d[], f[]] sono disginti d[] f[] d[] f[] 2 Caso 2. d[] > d[]: è simmetrico, basta scambiare il rolo di e Corollario (consege dal teorema delle parentesi) Un nodo è n discendente di n nodo in n albero della foresta DFS per n grafo (diretto o non diretto) G se e solo se d[] < d[] < f[] < f[] I. Castelli Visita di n grafo, A.A. 2009/ /44

34 Algoritmo DFS - Proprietà 1/8 9/12 F B 2/7 3/6 y C 10/11 z B y x z 4/5 x I. Castelli Visita di n grafo, A.A. 2009/ /44

35 Algoritmo DFS - Un altro esempio y z s t 3/6 2/9 1/10 11/16 B F C B 4/5 C 7/8 C 12/13 C 14/15 x B s 1/10 C z F 2/9 C y 3/6 7/8 C t 11/16 B 12/13 14/15 C y x s z t x 4/ I. Castelli Visita di n grafo, A.A. 2009/ /44

36 Algoritmo DFS - Proprietà Teorema del cammino bianco In na foresta DFS, n nodo è discendente di se e solo se al tempo d[] (in ci la isita scopre ), il ertice è raggingibile da con n cammino contenente esclsiamente nodi bianchi. d[]/ I. Castelli Visita di n grafo, A.A. 2009/ /44

37 Algoritmo DFS - Classificazione degli archi L algoritmo DFS pò essere modificato in modo da effettare na classificazione degli archi. Ogni arco pò essere classificato in fnzione del colore del ertice che ragginge, qando iene percorso per la prima olta: Archi bianchi. Qelli appartenenti a n albero DFS. Archi grigi. Archi backard. Uniscono de nodi grigi drante la isita DFS. Archi neri. Archi forard (se d[] < d[]) oppre crossard (se d[] > d[]). Nota: in n grafo non diretto ci possono essere ambigità perché (, ) e (, ) sono lo stesso arco. In tal caso l arco iene classificato come l arco orientata (, ) oppre (, ), a seconda della direzione in ci iene percorso per la prima olta. I. Castelli Visita di n grafo, A.A. 2009/ /44

38 Algoritmo DFS - Classificazione degli archi Teorema Se G è n grafo non orientato, allora ogni arco è n tree-edge oppre n backard-edge. Dimostrazione. Sia (, ) n arco arbitrario Spponiamo d[] < d[] (senza perdita di generalità) Allora si erifica no di qesti de casi: 1 (, ) iene isitato a partire da, con grigio e bianco. In tal caso è n tree-edge. 2 (, ) iene isitato a partire da, con e entrambi grigi. In tal caso è n backard-edge. I. Castelli Visita di n grafo, A.A. 2009/ /44

39 Algoritmo DFS - Classificazione degli archi Lemma Un grafo diretto è aciclico se e solo se l algoritmo DFS non determina l esistenza di backard-edge B x y z Dimostrazione. 1 =. Se (, ) è n arco all indietro, allora è n antenato di nella foresta DFS. Qindi, esiste n cammino da a in G, e l arco backard (, ) completa il ciclo. 2 =. Si sppone che G abbia n ciclo c. Sia il primo ertice del ciclo ad essere scoperto, e sia (, ) l arco che lo precede nel ciclo. Al tempo d[] ttti i nodi da a sono bianchi ( grigio). Per il teorema dei cammini bianchi sarà n discendente di. Qindi, (, ) è necessariamente n backard-edge. I. Castelli Visita di n grafo, A.A. 2009/ /44

40 Ordinamento topologico L algoritmo DFS pò essere sato per effettare n ordinamento topologoco dei nodi di n grafo diretto aciclico (DAG - Direct Acyclic Graph). Ordinamento topologico Un ordinamento topologico di n DAG G = (V, E) è n ordinamento lineare dei soi ertici tale che, se G contiene n arco (, ), allora compare prima di nell ordinamento. Se il grafo contenesse dei cicli, n ordinamento di qesto tipo non sarebbe possibile. I. Castelli Visita di n grafo, A.A. 2009/ /44

41 Ordinamento topologico I. Castelli Visita di n grafo, A.A. 2009/ /44

42 Ordinamento topologico 1 TOPOLOGICAL SORT(G) 2 Chiama DFS(G) p e r c a l c o l a r e i tempi d i f i n e i s i t a f [ ] 3 p e r o g n i e r t i c e 4 Appena l a i s i t a d i n nodo e finita, inseriscilo 5 in testa a na lista concatenata 6 Restitisci la lista concatenata dei nodi Spponendo che s = 2 e Adj[s] = f[2] > f[1] > f[3] > f[4] Nota: l ordinamento topologico ottento aria a seconda della sorgente scelta, e dall ordine dei nodi nelle liste Adj I. Castelli Visita di n grafo, A.A. 2009/ /44

43 Ordinamento topologico Teorema T OP OLOGICAL SORT (G) prodce n ordinamento topologico di n grafo orientato aciclico G Dimostrazione. È sfficiente dimostrare che per ogni coppia di ertici, V, se esiste n arco (, ), allora f[] < f[] Poiché il grafo è aciclico, non esistono backard-edge (archi grigi). Qindi (, ) pò essere: 1 n arco bianco (tree-edge). In tal caso è bianco e dienta discendente di e, per il teorema delle parentesi, f[] < f[] 2 n arco nero (forard-edge oppre cross-edge). In tal caso è nero e f[] < f[] perché è già dientato nero prima di aer conclso la isita di. I. Castelli Visita di n grafo, A.A. 2009/ /44

44 Ordinamento topologico - Analisi DF S(G) richiede tempo Θ( V + E ) L inserimento di ognno dei V nodi nella lista richiede tempo costante. L ordinamento topologico richiede tempo Θ( V + E ) I. Castelli Visita di n grafo, A.A. 2009/ /44

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

NUMERO in SECONDA, addizioni e sottrazioni

NUMERO in SECONDA, addizioni e sottrazioni NUMERO in SECONDA, addizioni e sottrazioni Anna Dallai, Monica Falleri, Antonio Moro, 2013 Decina e abaco a scatole Se nel precedente anno non è stato introdotta la decina lavoriamo si raggrppamenti, diamo

Dettagli

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua: I NUMERI NATURALI Per cominciare impariamo a leggere alcni nmeri natrali e dopo prova a scriverli nella ta linga: NUMERI ITALIANO LA TUA LINGUA 1 UNO 2 DUE 3 TRE 4 QUATTRO 5 CINQUE 6 SEI 7 SETTE 8 OTTO

Dettagli

Algoritmi di visita di un grafo

Algoritmi di visita di un grafo Algoimi di iia di n gafo Ilaia Caelli caelli@dii.nii.i Unieià degli Sdi di Siena Dipaimeno di Ingegneia dell Infomazione A.A. 2009/2010 I. Caelli Viia di n gafo, A.A. 2009/2010 1/44 Gafi Viia in ampiezza

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie

Optima CG / Optivent CG. Soluzioni innovative a flusso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Optima CG / Optivent CG Solzioni innovative a flsso laminare per sale operatorie Applicazioni Clean Air Power Generation

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

La mia compagna di vita. il primo passo è l informazione. un racconto ARTRITE REUMATOIDE:

La mia compagna di vita. il primo passo è l informazione. un racconto ARTRITE REUMATOIDE: La mia compagna di vita n racconto ARTRITE REUMATOIDE: il primo passo è l informazione È n iniziativa parte del progetto informativo Articol-AZIONI realizzato da: Il primo passo è l informazione Gidare

Dettagli

COMUNE DI VILLAPERUCCIO

COMUNE DI VILLAPERUCCIO COMUNE DI VILLAPERUCCIO Provincia di Carbonia-Iglesias SETTORE : Responsabile: AREA TECNICA Crreli Elvio DETERMINAZIONE N. in data 109 25/03/2014 OGGETTO: Approvazione Relazione Tecnica e Impegno di Spesa

Dettagli

I NUMERI DECIMALI A. Osserva il bruco: è formato da 10 parti. Colora l intero bruco, 1 bruco.

I NUMERI DECIMALI A. Osserva il bruco: è formato da 10 parti. Colora l intero bruco, 1 bruco. I NUMERI DECIMALI A.Osserva il brco: è formato a parti. Colora l intero brco, 1 brco. Hai colorato s parti el brco, ieci ecimi el brco, cioè 1 brco. Ne poi colorare meno i no? Prova! B.Colora 2/ el brco.

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

I.12. Elementi di teoria dell urto

I.12. Elementi di teoria dell urto Corso di fisica generale a cura di Claudio Cereda rel. 5. 7 marzo 04 I.. Elementi di teoria dell urto Cos è un urto? L urto totalmente anelastico L urto elastico Il rallentamento dei neutroni Quesiti di

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

L elettrodinamica dei corpi in movimento 1 A. Einstein

L elettrodinamica dei corpi in movimento 1 A. Einstein L elettrodinamica dei corpi in moimento A Einstein È noto che l elettrodinamica di Maxwell - come la si interpreta attualmente - nella sua applicazione ai corpi in moimento porta a delle asimmetrie che

Dettagli

Autori: M. Di Ianni, A. Panepuccia

Autori: M. Di Ianni, A. Panepuccia AR Analisi di Reti 2010/2011 M.Di Ianni Assegnazioni di ruoli Autori: M. Di Ianni, A. Panepuccia In questa dispensa verrà trattato il problema dell assegnazione dei ruoli in un grafo. Tale problema è stato

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

The Directed Closure Process in Hybrid Social-Information Networks

The Directed Closure Process in Hybrid Social-Information Networks The Directed Closure Process in Hybrid Social-Information Networks with an Analysis of Link Formation on Twitter Dario Nardi Seminario Sistemi Complessi 15 Aprile 2014 Dario Nardi (CAS) 15/4/14 1 / 20

Dettagli

Hepatex CR. Il punto di riferimento nella filtrazione ULPA

Hepatex CR. Il punto di riferimento nella filtrazione ULPA Hepatex CR Il pnto di riferimento nella filtrazione ULPA Hepatex CR Il pnto di riferimento nella filtrazione ULPA Applicazioni Clean Air Power Generation Clean Room Indstrial Fatti Principali Gli Ultrafiltri

Dettagli

Ricorsione. Rosario Culmone. - p. 1/13

Ricorsione. Rosario Culmone. - p. 1/13 Ricorsione Rosario Culmone - p. 1/13 Induzione e Ricorsione Spesso utilizzeremo le definizioni induttive. Sono forme di definizione compatte che descrivono un numero infinito di elementi. I contesti di

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE

INTRODUZIONE AL RUMORE NEI CIRCUITI ELETTRONICI RAPPRESENTAZIONE DEL RUMORE INTODUZIONE A UMOE NEI CICUITI EETTONICI Se prendiao n qalsiasi circito elettronico ed andiao ad analizzare il valore di na grandezza elettrica (tensione o corrente in n pnto, vediao che non è stabile

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Claudio Tamagnini Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di

Dettagli

REPUBBLICA IT ALIANA IN NOME DEL POPOLO ITALIANO TRIBUNALE DI MILANO Sezione Lavoro

REPUBBLICA IT ALIANA IN NOME DEL POPOLO ITALIANO TRIBUNALE DI MILANO Sezione Lavoro REPUBBLICA IT ALIANA IN NOME DEL POPOLO ITALIANO TRIBUNALE DI MILANO Seione Lavoro Il dott. Nicola Di Leo in fnione di gidice del lavoro ha pronnciato la segente SENTENZA nella casa civile di I Grado iscritta

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

CAPITOLO 3 PRINCIPIO DELLE TENSIONI EFFICACI

CAPITOLO 3 PRINCIPIO DELLE TENSIONI EFFICACI CAPITOLO 3 Essendo il terreno un materiale multifase, il suo comportamento meccanico (compressibilità, resistena), in seguito all applicaione di un sistema di sollecitaioni esterne o, più in generale,

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset

come si tiene conto della limitazione d ampiezza e di velocità come si tiene conto della limitazione di frequenza come si tiene conto degli offset 8a resentazone della lezone 8 /6 Obettv come s tene conto della lmtazone d ampezza e d veloctà come s tene conto della lmtazone d reqenza come s tene conto degl oset 8a saper preved. col calcolo l nlenza

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Sistemi avanzati di gestione dei Sistemi Informativi

Sistemi avanzati di gestione dei Sistemi Informativi Esperti nella gestione dei sistemi informativi e tecnologie informatiche Sistemi avanzati di gestione dei Sistemi Informativi Docente: Email: Sito: Eduard Roccatello eduard@roccatello.it http://www.roccatello.it/teaching/gsi/

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Inter-Process Communication

Inter-Process Communication Inter-Process Communication C. Baroglio a.a. 2002-2003 1 Introduzione In Unix i processi possono essere sincronizzati utilizzando strutture dati speciali, appartenti al pacchetto IPC (inter-process communication).

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Grafi, alberi e re1: modelli su cui cercare soluzioni o;me

Grafi, alberi e re1: modelli su cui cercare soluzioni o;me Università degli Studi Roma Tre Dipar-mento di Scienze della Formazione Laboratorio di Matema-ca per la Formazione Primaria Grafi, alberi e re: modelli su cui cercare soluzioni o;me Mini corso Informa.ca

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

La scala musicale e le alterazioni

La scala musicale e le alterazioni La scala musicale e le alterazioni Unità didattica di Educazione Musicale classe seconda Obiettivi del nostro lavoro Acquisire il concetto di scala musicale e di intervallo. Conoscere la struttura della

Dettagli

Inizializzazione degli Host. BOOTP e DHCP

Inizializzazione degli Host. BOOTP e DHCP BOOTP e DHCP a.a. 2002/03 Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/~auletta/ Università degli studi di Salerno Laurea e Diploma in Informatica 1 Inizializzazione degli Host Un

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Dispense del Corso di Algoritmi e Strutture Dati

Dispense del Corso di Algoritmi e Strutture Dati Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo Edoardo Bontà Università degli Studi di Urbino Carlo Bo Facoltà di Scienze e Tecnologie Corso di Laurea in Informatica Applicata Versione

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN)

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) System Overview di Mattia Bargellini 1 CAPITOLO 1 1.1 Introduzione Il seguente progetto intende estendere

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

Sottoprogrammi: astrazione procedurale

Sottoprogrammi: astrazione procedurale Sottoprogrammi: astrazione procedurale Incapsulamento di un segmento di programma presente = false; j = 0; while ( (j

Dettagli

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI IL GIOCO DEL. OVVERO: 000$ PER SPOSTARE DUE BLOCCHETTI EMANUELE DELUCCHI, GIOVANNI GAIFFI, LUDOVICO PERNAZZA Molti fra i lettori si saranno divertiti a giocare al gioco del, uno dei più celebri fra i giochi

Dettagli

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema Sommario Ragionamento Automatico Model checking Capitolo 3 paragrafo 6 del libro di M. Huth e M. Ryan: Logic in Computer Science: Modelling and reasoning about systems (Second Edition) Cambridge University

Dettagli

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi:

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Routing (instradamento) in Internet Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Stub AS: istituzione piccola Multihomed AS: grande istituzione (nessun ( transito Transit AS: provider

Dettagli

esercizi Esercizi / problemi

esercizi Esercizi / problemi Sistemi informativi applicati (reti di calcolatori): esercizi 1 Esercizi / problemi 1. Creare un applicazione che calcoli la media aritmetica dei seguenti valori interi: 35, 117, 23 e ne visualizzi il

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Le Stringhe. Un introduzione operativa. Luigi Palopoli

Le Stringhe. Un introduzione operativa. Luigi Palopoli Le Stringhe p.1/19 Le Stringhe Un introduzione operativa Luigi Palopoli ReTiS Lab - Scuola Superiore S. Anna Viale Rinaldo Piaggio 34 Pontedera - Pisa Tel. 050-883444 Email: palopoli@sssup.it URL: http://feanor.sssup.it/

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

CAP. 5 Gli altri impianti termoelettrici

CAP. 5 Gli altri impianti termoelettrici CAP. 5 Gli altri impianti termoelettrici. Cogenerazione La cogenerazione è definita come produzione combinata di elettricità e di calore, entrambi intesi come effetti utili, con un processo in cascata.

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Capitolo 7. Circuiti magnetici

Capitolo 7. Circuiti magnetici Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,

Dettagli