Algoritmi di visita di un grafo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi di visita di un grafo"

Transcript

1 Algoritmi di isita di n grafo Ilaria Castelli Uniersità degli Stdi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Visita di n grafo, A.A. 2009/2010 1/44

2 Grafi Visita in ampiezza Visita in profondità Ordinamento topologico I. Castelli Visita di n grafo, A.A. 2009/2010 2/44

3 Scopo e tipi di isita di n grafo Visita Una isita (o attraersamento) di n grafo G permette di esaminare i nodi e gli archi di G in modo sistematico. Esistono arie tipologie di isita, con dierse proprietà. In particolare: 1 Visita in ampiezza (BFS = Breadth First Search) 2 Visita in profondità (DFS = Depth First Search) I. Castelli Visita di n grafo, A.A. 2009/2010 3/44

4 Breadth First Search Visita in ampiezza Dato n grafo G = (V, E) e n nodo s chiamato sorgente, la isita in ampiezza esplora gli archi di G per scoprire ttti i nodi raggingibili a partire da s La isita BFS calcola la distanza (nmero minimo di archi) tra s e ogni ertice da esso raggingibile La isita consente di definire n albero BFS, con radice s, contenente ttti i nodi raggingibili Nell albero BFS il cammino da s a n nodo corrisponde a n cammino minimo (contenente il nmero minimo di archi) La isita BFS si pò applicare sia ai grafi diretti che a qelli non diretti I. Castelli Visita di n grafo, A.A. 2009/2010 4/44

5 Breadth First Search La isita in ampiezza esplora i nodi del grafo partendo da qelli a distanza 1 da s. Poi isita qelli a distanza 2, e così ia. L algoritmo isita ttti i ertici ad n liello k prima di isitare qelli a liello k + 1. distanza = 3 distanza = 2 r distanza = 1 h s i t Si genera n albero Si isitano nodi ia ia più distanti dalla sorgente x y I. Castelli Visita di n grafo, A.A. 2009/2010 5/44

6 Breadth First Search Per tenere traccia del progresso della isita, l algoritmo BFS associa delle flag ai nodi. Spponiamo di poter colorare i nodi di bianco, grigio o nero. All inizio ttti i nodi sono bianchi e, sccessiamente, possono dientare grigi e, infine, neri. Un nodo iene scoperto la prima olta che iene incontrato drante la isita e, in tale istante, cessa di essere bianco. La distinzione tra nodi grigi e neri esiste affinché la isita proceda in ampiezza. In sostanza, la distinzione è la segente: Bianchi: non ancora scoperti Grigi: appena scoperti; sono la frontiera tra nodi scoperti e non. I nodi adiacenti ad n nodo grigio possono essere bianchi. Neri: scoperti. Ttti i nodi adiacenti ad n nodo nero sono stati scoperti. I. Castelli Visita di n grafo, A.A. 2009/2010 6/44

7 Algoritmo BFS - Strttre dati Le strttre dati sate dall algoritmo sono le segenti: Liste di adiacenza Adj Adj[] è la lista dei nodi adiacenti a. Array color color[] contiene il colore del nodo Array d d[] contiene la distanza di dal nodo sorgente s. Viene inizializzata a infinito. Array p p[] contiene il predecessore del nodo nell albero BFS Coda Q contiene i nodi grigi I. Castelli Visita di n grafo, A.A. 2009/2010 7/44

8 Algoritmo BFS 1 BFS(G, s ) 2 f o r o g n i nodo i n V[G] { s } / i n i z i a l i z z a z i o n e / 3 c o l o r [ ] = WHITE 4 d [ ] = i n f i n i t y 5 p [ ] = NIL 6 7 c o l o r [ s ] = GRAY / i s i t o l a s o r g e n t e / 8 d [ s ] = 0 9 p [ s ] = NIL 0 Q = { s } 1 h i l e Q!= empty 2 = head [Q] / nodo da e s p a n d e r e / 3 f o r o g n i nodo i n Adj [ ] / i s i t o i n o d i a d i a c e n t i / 4 i f c o l o r [ ] = WHITE / s e e b i a n c o i e n e s c o p e r t o / 5 then c o l o r [ ] = GRAY 6 d [ ] = d [ ] p [ ] = 8 ENQUEUE(Q, ) / i n s e r i t o n e l l a coda Q / 9 DEQUEUE(Q) / t o l t o d a l l a coda : e g i a s t a t o e spanso / 0 c o l o r [ ] = BLACK I. Castelli Visita di n grafo, A.A. 2009/2010 8/44

9 Algoritmo BFS - Esempio r s x y t y s t t x r t x y x r s r s x y t r s x y t Adj p d r s t x y NIL 0 0 s 1 1 s r 2 t x Q = {} 2 I. Castelli Visita di n grafo, A.A. 2009/2010 9/44

10 Algoritmo BFS - Albero BFS La isita BFS consente di definire n albero BFS. all inizio contiene solo s qando n nodo bianco iene scoperto, scorrendo la lista di adiacenza di n nodo, allora l arco (, ) e stesso engono agginti all albero p(r) = s p(s) = NIL p(t) = p() = t r s t r s x y p() = r p() = s p(x) = p(y) = x 2 x 2 t 2 y 3 3 I. Castelli Visita di n grafo, A.A. 2009/ /44

11 Breadth First Search - Analisi Analisi del tempo di eseczione s n grafo G = (V, E) Il tempo necessario per l inizializzazione è O( V ) Ogni nodo raggingibile iene isitato na olta Le operazioni di inserimento e rimozione dalla coda costano O(1), qindi il tempo totale necessario per le operazioni slla coda è O( V ) La lista di adiacenza di n nodo iene scorsa na sola olta, qindi in totale il tempo è O( E ) Il tempo totale richiesto dall algoritmo BFS si ottiene sommando il tempo per l inizializzazione e qello necessario per isitare i nodi: O( V + E ) I. Castelli Visita di n grafo, A.A. 2009/ /44

12 Breadth First Search - Cammini minimi Distanza minima Si definisce distanza minima δ(s, ) da s a, il nmero minimo di archi di n cammino dal nodo s al nodo δ(s, ) 0 δ(s, ) = se non è raggingibile partendo da s Cammino minimo Un cammino di lnghezza δ(s, ) da s a si dice cammino minimo. Nota: possono esistere più cammini minimi tra de nodi BFS La isita BFS calcola la distanza minima δ(s, ) di ogni nodo raggingibile da s Nell albero BFS il cammino da s ad n nodo è n cammino minimo I. Castelli Visita di n grafo, A.A. 2009/ /44

13 Breadth First Search - Proprietà Lemma Dato n grafo G = (V, E) diretto o non diretto e n nodo s V qalsiasi, allora per ogni arco (, ) E si ha δ(s, ) δ(s, ) + 1 Dimostrazione Se non è raggingibile da s, allora δ(s, ) = Se è raggingibile da s, allora anche è raggingibile. Il cammino minimo da s a non pò essere più lngo del cammino minimo da s a, più l arco (, ) I. Castelli Visita di n grafo, A.A. 2009/ /44

14 Breadth First Search - Proprietà Lemma Sia G = (V, E) n grafo diretto o non diretto e s V n nodo sorgente qalsiasi, a partire dal qale è stato esegito l algoritmo BFS. Allora per ogni nodo V si ha d[] δ(s, ) Dimostrazione Per indzione: d[s] = 0 = δ(s, s) e, per qalsiasi nodo V {s}, ale d[] = δ(s, ) Dato n nodo scoperto drante l esplorazione di n nodo, per ipotesi indttia ale d[] δ(s, ). d[] }{{} = d[] + 1 }{{} algoritmo ipotesi indttia δ(s, ) + 1 δ(s, ) }{{} lemma precedente I. Castelli Visita di n grafo, A.A. 2009/ /44

15 Breadth First Search - Proprietà Lemma Spponendo che drante l eseczione della ricerca BFS s n grafo G = (V, E), la coda Q contenga i nodi < 1,..., r >, doe 1 = head[q] e r = tail[q], allora d[ r ] d[ 1 ] + 1 e d[ i ] d[ i+1 ], i = 1,..., r 1 La differenza tra le distanze da s dei nodi presenti nella coda in n certo momento è al più 1 Un nodo iene inserito nella coda (dientando r+1 ) qando il nodo in testa, 1, iene esplorato d[ r+1 ] = d[] = d[ 1 ] + 1 d[ r ] d[ 1 ] + 1 = d[] = d[ r+1 ] I. Castelli Visita di n grafo, A.A. 2009/ /44

16 Breadth First Search - Proprietà Proposizione I nodi che entrano nella coda Q sono ttti e soli i nodi tali che δ(s, ) <, cioè ttti i nodi raggingibili da s Dimostrazione 1 entra in Q = δ(s, ) < Si procede per indzione sll i-esima iterazione dell operazione ENQUEUE se i = 0, solo s è nella coda: δ(s, s) = 0 < se i > 0, spponiamo che l ipotesi indttia sia era per ogni iterazione k < i. Al passo i si isita Adj[], con = head[q], e i nodi bianchi engono inseriti in Q. Per ipotesi indttia δ(s, ) <. Poiché esiste l arco (, ): δ(s, ) δ(s, ) + 1 < I. Castelli Visita di n grafo, A.A. 2009/ /44

17 Breadth First Search - Proprietà 2 entra in Q = δ(s, ) < Si procede per indzione s δ(s, ) = k se δ(s, ) = 0 è ero: = s se δ(s, ) = k > 0, per ipotesi indttia si ha che per ogni tale che δ(s, ) < k, è già entrato in coda. Poiché δ(s, ) <, esiste n cammino < 0,..., i 1, i > da s a, con 0 = s e i =. s 0 (i 1) δ(s, i 1 ) = k 1 e i 1 è nella coda per ipotesi indttia. Qando errà isitata Adj[ i 1 ] errà scoperto e: se è bianco entra in coda non pò essere grigio o nero, altrimenti sarebbe già entrato in coda, perché arrebbe δ(s, ) < k! I. Castelli Visita di n grafo, A.A. 2009/ /44

18 Breadth First Search - Albero BFS Albero BFS L array p definisce n sottografo dei predecessori di G. In particolare, si tratta di n albero, T p : T p = (V p, E p ) V p = { V : p[] NIL} {s} E p = {(p[], ) E : V p {s}} Una olta esegita la ricerca BFS, la segente procedra stampa il cammino minimo da s a 1 PRINT PATH(G, s, ) 2 i f = s 3 then p r i n t s 4 e l s e i f p [ ] = NIL 5 then p r i n t "non esiste n cammino da s a " 6 e l s e PRINT PATH(G, s, p [ ] ) 7 p r i n t I. Castelli Visita di n grafo, A.A. 2009/ /44

19 Depth First search Visita in profondità Dato n grafo G = (V, E) ed n nodo s, detto nodo sorgente, la isita depth first esplora il grafo andando il più possibile in profondità. Dato n nodo appena scoperto, la isita prosege a partire da si soi archi che ancora non sono stati esplorati Qando si sono esplorati ttti gli archi del nodo, si torna al nodo dal qale è stato scoperto, e si esplorano i soi lteriori archi non ancora esplorati (se ce ne sono) Si prosege finchè non engono scoperti ttti i nodi raggingibili da s Se i sono ancora dei nodi non scoperti, no di qesti iene adottato come na noa sorgente, e la isita riprende a partire da esso L algoritmo termina qando ttti i nodi sono stati scoperti I. Castelli Visita di n grafo, A.A. 2009/ /44

20 Depth First Search Per tenere traccia del progresso della isita, anche l algoritmo DFS associa delle flag ai nodi. Di noo, si sppone di colorare i nodi di bianco, grigio o nero. All inizio ttti i nodi sono bianchi e, sccessiamente, possono dientare grigi e, infine, neri. Un nodo iene scoperto la prima olta che iene incontrato drante la isita e, in tale istante, cessa di essere bianco. La distinzione tra nodi grigi e neri è necessaria affinché la isita proceda in profondità. La distinzione è la segente: Bianchi: non ancora scoperti Grigi: sono stati scoperti, ma l esplorazione della loro lista di adiacenza non è ancora terminata. Neri: l esplorazione della loro lista di adiacenza è completata. I. Castelli Visita di n grafo, A.A. 2009/ /44

21 Algoritmo DFS - Strttre dati Le strttre dati sate dall algoritmo sono le segenti: Liste di adiacenza Adj Adj[] è la lista dei nodi adiacenti a. Array color color[] contiene il colore del nodo Array p p[] contiene il predecessore del nodo nella foresta DFS Array d d[] è n timestamp che contiene il momento in ci è stato scoperto. Array f f[] è n timestamp che contiene il momento in ci si è conclsa la isita di, cioè si è finito di esaminare al sa lista di adiacenza Adj[]. I. Castelli Visita di n grafo, A.A. 2009/ /44

22 Algoritmo DFS - Strttre dati Nota: Il nodo è bianco prima di d[] grigio tra d[] e f[] nero dopo f[] Oiamente si ha d[] < f[], V I timestamp sono nmeri interi compresi tra 1 e 2 V, poiché ogni nodo iene scoperto esattamente na olta, e si finisce di esplorarlo esattamente na olta. I. Castelli Visita di n grafo, A.A. 2009/ /44

23 Algoritmo DFS 1 DFS(G, s ) 2 f o r o g n i e r t i c e i n V[G] / i n i z i a l i z z a z i o n e / 3 c o l o r [ ] = WHITE 4 p [ ] = NIL 5 time = 0 6 f o r o g n i e r t i c e i n V[G] 7 i f c o l o r [ ] = WHITE 8 then DFS VISIT ( ) / i s i t a o g n i nodo non s c o p e r t o / 1 DFS VISIT ( ) 2 c o l o r [ ] = GRAY 3 d [ ] = time / tempo d i i n i z i o i s i t a l i s t a d i a d i a c e n z a / 4 time = time f o r o g n i e r t i c e i n Adj [ ] 6 i f c o l o r [ ] = WHITE 7 then p [ ] = 8 DFS VISIT ( ) / i s i t a s b i t o n o d i non s c o p e r t i / 9 c o l o r [ ] = BLACK / f i n i t o d i i s i t a r e i n o d i a d i a c e n t i / 0 f [ ] = time 1 time = time + 1 I. Castelli Visita di n grafo, A.A. 2009/ /44

24 Algoritmo DFS - Esempio Adj x y y z x x y z y x z z I. Castelli Visita di n grafo, A.A. 2009/ /44

25 Algoritmo DFS - Esempio 1/ 1/ 2/ 1/ 2/ 3/ x y z x y z x y z 1/ 2/ 1/ 2/ 1/ 2/ B B 4/ 3/ x y z 4/ 3/ x y z 4/5 3/ x y z 1/ 2/ 1/ 2/7 1/ 2/7 B B F B 4/5 3/6 4/5 3/6 4/5 3/6 x y z x y z x y z I. Castelli Visita di n grafo, A.A. 2009/ /44

26 Algoritmo DFS - Esempio 1/8 2/7 1/8 2/7 9/ 1/8 2/7 9/ F B F B F B C 4/5 3/6 4/5 3/6 4/5 3/6 x y z x y z x y z 1/8 2/7 9/ 1/8 2/7 9/ 1/8 2/7 9/ F B C F B C F B C 4/5 3/6 10/ x y z 4/5 3/6 10/ x y z B 4/5 3/6 10/11 x y z B 1/8 2/7 9/12 F B C 4/5 3/6 10/11 x y z B I. Castelli Visita di n grafo, A.A. 2009/ /44

27 Foresta DFS Allo stesso modo della ricerca BFS, nella ricerca DFS, n nodo iene scoperto esplorando la lista di adiacenza di n nodo già scoperto. L array p tiene traccia del predecessore di ogni nodo scoperto: p[] = Foresta DFS L array p definisce n sottografo dei predecessori di G. In particolare, si tratta di na foresta, F p : F p = (V, E p ) E p = {(p[], ) : V e p[] NIL} Il sottografo dei predecessori è na foresta depth first, costitita da più alberi depth first. I. Castelli Visita di n grafo, A.A. 2009/ /44

28 Foresta DFS - Classificazione degli archi Gli archi del grafo originario engono classificati in: Tree-edge. Archi della foresta DFS. Forard-edge. Archi in aanti. Archi non appartenenti alla foresta DFS, che anno da n ertice ad n so sccessore nella foresta DFS. Qando engono percorsi drante l algoritmo DFS, collegano de nodi già scoperti. Backard-edge. Archi all indietro. Archi non appartenenti alla foresta DFS, che anno da n ertice ad n so antenato nella foresta DFS. Archi del grafo che, qando engono percorsi drante l algoritmo DFS, collegano de nodi già scoperti. Cross-edge Archi di attraersamento. Ttti gli altri archi. Collegano de nodi che non hanno na relazione di discendenza l no dall altro. I. Castelli Visita di n grafo, A.A. 2009/ /44

29 Foresta DFS p 1/8 9/12 1/8 2/7 9/12 F B C 4/5 3/6 10/11 x y z B x y z NIL NIL y F B 2/7 3/6 4/5 y x C 10/11 z B La strttra degli alberi DFS rispecchia esattamente la strttra delle chiamate ricorsie alla procedra DF S V ISIT : = p[] se e solo se DF S V ISIT () è stata chiamata drante lo scorrimento della lista di adiacenza di. Nota: gli archi scenti ed entranti sllo stesso nodo (self-loop), engono considerati backard-edge. I. Castelli Visita di n grafo, A.A. 2009/ /44

30 Algoritmo DFS - Analisi 1 Nella procedra DF S ci sono de cicli, che engono esegiti Θ( V ) 2 La procedra DF S V ISIT iene richiamata esattamente na olta per ogni nodo V 3 Drante l eseczione di DF S V ISIT (), il ciclo nelle linee 5-8 iene esegito Adj[] olte 4 Poiché Adj[] = Θ( E ) V il costo totale per l eseczione del ciclo è Θ( E ) Il tempo totale di eseczione è Θ( V + E ) I. Castelli Visita di n grafo, A.A. 2009/ /44

31 Algoritmo DFS - Proprietà Teorema delle parentesi In na isita in profondità di n grafo (diretto o non diretto) G = (V, E), per ogni coppia di nodi e, definiamo gli interalli A = [d[], f[]] B = [d[], f[]] Allora, na e na sola delle segenti condizioni è era: 1 A B = 2 L interallo A è interamente inclso nell interallo B, e è n discendente di in n albero DFS 3 L interallo B è interamente inclso nell interallo A, e è n discendente di in n albero DFS I. Castelli Visita di n grafo, A.A. 2009/ /44

32 Algoritmo DFS - Proprietà Dimostrazione 1 Caso 1. d[] < d[]. Ci sono de sottocasi: 1 d[] < f[] iene scoperto prima di Qando si scopre la isita di non è stata completata ( è grigio) Ciò ol dire che è discendente di Poiché è stato scoperto più recentemente di, la isita di dee completarsi prima di tornare a : f[] < f[] QUindi l interallo A = [d[], f[]] è completamente contento in B = [d[], f[]] d[] d[] f[] f[] I. Castelli Visita di n grafo, A.A. 2009/ /44

33 Algoritmo DFS - Proprietà 1 2 d[] > f[] dienta nero prima che enga scoperto Qindi, qando iene scoperto la isita di è già stata completata d[] < f[] e d[] < f[] Qindi gli interalli A = [d[], f[]] e B = [d[], f[]] sono disginti d[] f[] d[] f[] 2 Caso 2. d[] > d[]: è simmetrico, basta scambiare il rolo di e Corollario (consege dal teorema delle parentesi) Un nodo è n discendente di n nodo in n albero della foresta DFS per n grafo (diretto o non diretto) G se e solo se d[] < d[] < f[] < f[] I. Castelli Visita di n grafo, A.A. 2009/ /44

34 Algoritmo DFS - Proprietà 1/8 9/12 F B 2/7 3/6 y C 10/11 z B y x z 4/5 x I. Castelli Visita di n grafo, A.A. 2009/ /44

35 Algoritmo DFS - Un altro esempio y z s t 3/6 2/9 1/10 11/16 B F C B 4/5 C 7/8 C 12/13 C 14/15 x B s 1/10 C z F 2/9 C y 3/6 7/8 C t 11/16 B 12/13 14/15 C y x s z t x 4/ I. Castelli Visita di n grafo, A.A. 2009/ /44

36 Algoritmo DFS - Proprietà Teorema del cammino bianco In na foresta DFS, n nodo è discendente di se e solo se al tempo d[] (in ci la isita scopre ), il ertice è raggingibile da con n cammino contenente esclsiamente nodi bianchi. d[]/ I. Castelli Visita di n grafo, A.A. 2009/ /44

37 Algoritmo DFS - Classificazione degli archi L algoritmo DFS pò essere modificato in modo da effettare na classificazione degli archi. Ogni arco pò essere classificato in fnzione del colore del ertice che ragginge, qando iene percorso per la prima olta: Archi bianchi. Qelli appartenenti a n albero DFS. Archi grigi. Archi backard. Uniscono de nodi grigi drante la isita DFS. Archi neri. Archi forard (se d[] < d[]) oppre crossard (se d[] > d[]). Nota: in n grafo non diretto ci possono essere ambigità perché (, ) e (, ) sono lo stesso arco. In tal caso l arco iene classificato come l arco orientata (, ) oppre (, ), a seconda della direzione in ci iene percorso per la prima olta. I. Castelli Visita di n grafo, A.A. 2009/ /44

38 Algoritmo DFS - Classificazione degli archi Teorema Se G è n grafo non orientato, allora ogni arco è n tree-edge oppre n backard-edge. Dimostrazione. Sia (, ) n arco arbitrario Spponiamo d[] < d[] (senza perdita di generalità) Allora si erifica no di qesti de casi: 1 (, ) iene isitato a partire da, con grigio e bianco. In tal caso è n tree-edge. 2 (, ) iene isitato a partire da, con e entrambi grigi. In tal caso è n backard-edge. I. Castelli Visita di n grafo, A.A. 2009/ /44

39 Algoritmo DFS - Classificazione degli archi Lemma Un grafo diretto è aciclico se e solo se l algoritmo DFS non determina l esistenza di backard-edge B x y z Dimostrazione. 1 =. Se (, ) è n arco all indietro, allora è n antenato di nella foresta DFS. Qindi, esiste n cammino da a in G, e l arco backard (, ) completa il ciclo. 2 =. Si sppone che G abbia n ciclo c. Sia il primo ertice del ciclo ad essere scoperto, e sia (, ) l arco che lo precede nel ciclo. Al tempo d[] ttti i nodi da a sono bianchi ( grigio). Per il teorema dei cammini bianchi sarà n discendente di. Qindi, (, ) è necessariamente n backard-edge. I. Castelli Visita di n grafo, A.A. 2009/ /44

40 Ordinamento topologico L algoritmo DFS pò essere sato per effettare n ordinamento topologoco dei nodi di n grafo diretto aciclico (DAG - Direct Acyclic Graph). Ordinamento topologico Un ordinamento topologico di n DAG G = (V, E) è n ordinamento lineare dei soi ertici tale che, se G contiene n arco (, ), allora compare prima di nell ordinamento. Se il grafo contenesse dei cicli, n ordinamento di qesto tipo non sarebbe possibile. I. Castelli Visita di n grafo, A.A. 2009/ /44

41 Ordinamento topologico I. Castelli Visita di n grafo, A.A. 2009/ /44

42 Ordinamento topologico 1 TOPOLOGICAL SORT(G) 2 Chiama DFS(G) p e r c a l c o l a r e i tempi d i f i n e i s i t a f [ ] 3 p e r o g n i e r t i c e 4 Appena l a i s i t a d i n nodo e finita, inseriscilo 5 in testa a na lista concatenata 6 Restitisci la lista concatenata dei nodi Spponendo che s = 2 e Adj[s] = f[2] > f[1] > f[3] > f[4] Nota: l ordinamento topologico ottento aria a seconda della sorgente scelta, e dall ordine dei nodi nelle liste Adj I. Castelli Visita di n grafo, A.A. 2009/ /44

43 Ordinamento topologico Teorema T OP OLOGICAL SORT (G) prodce n ordinamento topologico di n grafo orientato aciclico G Dimostrazione. È sfficiente dimostrare che per ogni coppia di ertici, V, se esiste n arco (, ), allora f[] < f[] Poiché il grafo è aciclico, non esistono backard-edge (archi grigi). Qindi (, ) pò essere: 1 n arco bianco (tree-edge). In tal caso è bianco e dienta discendente di e, per il teorema delle parentesi, f[] < f[] 2 n arco nero (forard-edge oppre cross-edge). In tal caso è nero e f[] < f[] perché è già dientato nero prima di aer conclso la isita di. I. Castelli Visita di n grafo, A.A. 2009/ /44

44 Ordinamento topologico - Analisi DF S(G) richiede tempo Θ( V + E ) L inserimento di ognno dei V nodi nella lista richiede tempo costante. L ordinamento topologico richiede tempo Θ( V + E ) I. Castelli Visita di n grafo, A.A. 2009/ /44

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Introduzione. Algoritmi Link-State. Principi. Adiacenze OSPF (2) Adiacenze OSPF (1) Open Shortest Path First Protocol (OSPF)

Introduzione. Algoritmi Link-State. Principi. Adiacenze OSPF (2) Adiacenze OSPF (1) Open Shortest Path First Protocol (OSPF) Introdzione Open Shortest Path First Protocol (OSPF) Svilppo inizia nel 987 OSPF Working Grop (parte di IETF) OSPFv2 emanato nel 99 OSPFv2 aggiornato nel RFC 278 Principi OSPF è n protocollo di roting

Dettagli

Dialog 4106 Basic/Dialog 4147 Medium. Manuale d'uso. Telefoni analogici per il sistema di comunicazione MD110

Dialog 4106 Basic/Dialog 4147 Medium. Manuale d'uso. Telefoni analogici per il sistema di comunicazione MD110 Dialog 4106 Basic/Dialog 4147 Medim Telefoni analogici per il sistema di comnicazione MD110 Manale d'so Cover Page Graphic (Grafica di copertina) Place the graphic directly on the page, do not care abot

Dettagli

NUMERO in SECONDA, addizioni e sottrazioni

NUMERO in SECONDA, addizioni e sottrazioni NUMERO in SECONDA, addizioni e sottrazioni Anna Dallai, Monica Falleri, Antonio Moro, 2013 Decina e abaco a scatole Se nel precedente anno non è stato introdotta la decina lavoriamo si raggrppamenti, diamo

Dettagli

A VVISI E DICHIARAZIONI DI LEGGE

A VVISI E DICHIARAZIONI DI LEGGE A VVISI E DICHIARAZIONI DI LEGGE Copyright 2002 by ScanSoft, Inc. Ttti i diritti riservati. Nessna parte di qesta pbblicazione pò essere trasmessa, trascritta, riprodotta, memorizzata in alcn sistema compterizzato

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Sistemi Interconnessi

Sistemi Interconnessi Corso di Fondamenti di Atomatica Università di Roma La Sapienza Sistemi Interconnessi L. Lanari Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Roma, Ital Ultima modifica Ma 29,

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Teoria normativa della politica economica

Teoria normativa della politica economica Teoria normativa della politica economica La teoria normativa si occpa di indicare il metodo e, di consegenza, le scelte che n atorità pbblica (policy maker) razionale dovrebbe assmere per persegire il

Dettagli

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua:

I NUMERI NATURALI. Per cominciare impariamo a leggere alcuni numeri naturali e dopo prova a scriverli nella tua lingua: I NUMERI NATURALI Per cominciare impariamo a leggere alcni nmeri natrali e dopo prova a scriverli nella ta linga: NUMERI ITALIANO LA TUA LINGUA 1 UNO 2 DUE 3 TRE 4 QUATTRO 5 CINQUE 6 SEI 7 SETTE 8 OTTO

Dettagli

Algoritmi di visita di un grafo

Algoritmi di visita di un grafo Algoimi di iia di n gafo Ilaia Caelli caelli@dii.nii.i Unieià degli Sdi di Siena Dipaimeno di Ingegneia dell Infomazione A.A. 2009/2010 I. Caelli Viia di n gafo, A.A. 2009/2010 1/44 Gafi Viia in ampiezza

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

VRM Video Recording Manager

VRM Video Recording Manager Video VRM Video Recording Manager VRM Video Recording Manager www.boschsecrity.it Memorizzazione distribita e bilanciamento del carico configrabile Failover del disk array iscsi per n'affidabilità estrema

Dettagli

EMC BACKUP AND RECOVERY FOR VSPEX FOR VIRTUALIZED MICROSOFT EXCHANGE 2013

EMC BACKUP AND RECOVERY FOR VSPEX FOR VIRTUALIZED MICROSOFT EXCHANGE 2013 EMC BACKUP AND RECOVERY FOR VSPEX FOR VIRTUALIZED MICROSOFT EXCHANGE 2013 Versione 1.3 Gida alla progettazione e all'implementazione H12306.3 Copyright 2013-2014 EMC Corporation. Ttti i diritti riservati.

Dettagli

Qualità e Internet mobile

Qualità e Internet mobile IQUADERNIDI Qalità e Internet Le verità nascoste? 2 A cra di Gido Riva L accesso ad Internet in mobilità ha sbìto negli ltimi mesi n esplosione raggardevole; se escldiamo i primi tempi della loro diffsione,

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2 EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2 Versione 1.3 Gida alla progettazione e H12347.3 Copyright 2013-2014 EMC Corporation. Ttti i diritti riservati. Pbblicato Maggio, 2014

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici CPU a singolo ciclo assimiliano Giacomin Schema del processore (e memoria) Unità di controllo Condizioni SEGNALI DI CONTROLLO PC emoria indirizzo IR dato letto UNITA DI ELABORAZIONE

Dettagli

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 00144 Roma www.isprambiente.gov.it

ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 00144 Roma www.isprambiente.gov.it Informazioni legali L istitto Speriore per la Protezione e la Ricerca Ambientale (ISPRA) e le persone che agiscono per conto dell Istitto non sono responsabili per l so che pò essere fatto delle informazioni

Dettagli

M A C C H I N E A F L U I D O

M A C C H I N E A F L U I D O 1 M A C C I N E A F L U I D O MACCINA: è n sistea di organi fissi e obili vincolati gli ni agli altri da legai definiti cineaticaente e disposti in odo tale da copiere, ovendosi sotto l azione di forze

Dettagli

MultiMath. Matematica finanziaria CONTENUTI INTEGRATIVI ZONA MATEMATICA

MultiMath. Matematica finanziaria CONTENUTI INTEGRATIVI ZONA MATEMATICA Paolo Baroncini Roberto Manfredi MltiMath Matematica finanziaria LIBRO MISTO E-BOOK CONTENUTI INTEGRATIVI ZONA MATEMATICA MltiMath Matematica finanziaria Ambiente edcativo Digitale Libro digitale sfogliabile

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Rendite vitalizie. Matematica finanziaria seconda parte Prof. Massimo Angrisani a.a. 2012/2013

Rendite vitalizie. Matematica finanziaria seconda parte Prof. Massimo Angrisani a.a. 2012/2013 Rendite italizie Mateatica finanziaria seconda parte Prof. Massio Angrisani a.a. 2012/2013 1 Cos è na rendita italizia 2 Un indiido di età x si assicra, a partire da tale età, il pagaento di n iporto (rata)

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX FOR VIRTUALIZED MICROSOFT SQL SERVER 2012

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX FOR VIRTUALIZED MICROSOFT SQL SERVER 2012 EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX FOR VIRTUALIZED MICROSOFT SQL SERVER 2012 Versione 1.3 Gida alla progettazione e all'implementazione H12307.3 Copyright 2013-2014 EMC Corporation. Ttti i diritti

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

EMC BACKUP AND RECOVERY FOR VSPEX FOR VIRTUALIZED MICROSOFT SHAREPOINT 2013

EMC BACKUP AND RECOVERY FOR VSPEX FOR VIRTUALIZED MICROSOFT SHAREPOINT 2013 EMC BACKUP AND RECOVERY FOR VSPEX FOR VIRTUALIZED MICROSOFT SHAREPOINT 2013 Versione 1.3 Gida alla progettazione e all'implementazione H12308.3 Copyright 2013-2014 EMC Corporation. Ttti i diritti riservati.

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

elettronico. Questo risulta particolarmente semplice nel caso in questione dato che c è un solo elettrone.

elettronico. Questo risulta particolarmente semplice nel caso in questione dato che c è un solo elettrone. 68 3. 6 MOLECOLA IONE IDOGENO + La molecola dello ione idroeno molecolare, +, è la più semplice fra le molecole. Essa è infatti composta da nclei di idroeno ( protoni) ed n solo elettrone. Anche nello

Dettagli

Pompe peristaltiche industriali

Pompe peristaltiche industriali Pompe peristaltiche indstriali Manale operativo Dra 5, 7, 10, 15, 25, 35 Versione 5.1v-02/2015 Stampa n. 01 Versione 5.1v-02/2015 Stampa n. 01 Dra 5, 7, 10, 15, 25, 35 Le informazioni contente in qesto

Dettagli

L attenzione verso le cose del passato è sempre più

L attenzione verso le cose del passato è sempre più La gestione della geometria tridimensionale di n oggetto È fondamentale per ogni simlazione nmerica Antonio Giogoli Agiotech Le capacità odierne dell ingegneria inversa aprono novi confini all analista

Dettagli

L ENERGIA EOLICA CAPITOLO 2

L ENERGIA EOLICA CAPITOLO 2 CAPITOLO L ENERGIA EOLICA Come noto, l tilizzo dell energia eolica nella sa forma attale rappresenta il perfezionamento di na tecnologia di prodzione energetica già impiegata dall omo nel corso di molti

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR Ambienti più realistici Ricerca online Maria Simi a.a. 2011/2012 Gli agenti risolutori di problemi classici assumono: Ambienti completamente osservabili e deterministici il piano generato può essere generato

Dettagli

Simulazione di una Rete di Interconnessione di una Compagnia Aerea

Simulazione di una Rete di Interconnessione di una Compagnia Aerea Simulazione di una Rete di Interconnessione di una Compagnia Aerea Progetto del corso di Algoritmi e Strutture Dati a.a. 2011/2012 December 4, 2011 1 Introduzione Il progetto consiste nella realizzazione

Dettagli

TRASMISSIONE DELLA POTENZA

TRASMISSIONE DELLA POTENZA TRASMISSIOE DELLA POTEZA (Distillazione verticale) Conoscenza del principio di fnzionaento dei principali sistei di trasissione e trasforazione del oto. Sapere effettare calcoli si principali sistei di

Dettagli

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX PRIVATE CLOUDS

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX PRIVATE CLOUDS EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX PRIVATE CLOUDS Versione 1.3 Gida alla progettazione e H12387.3 Copyright 2013-2014 EMC Corporation. Ttti i diritti riservati. Pbblicato Maggio, 2014 EMC ritiene

Dettagli

bintec RV Robusti router LTE per applicazioni a banda larga sui veicoli

bintec RV Robusti router LTE per applicazioni a banda larga sui veicoli bintec RV Robsti roter LTE per applicazioni a banda larga si veicoli Networking mobile per veicoli di ttti i tipi La connessione permanente ad Internet è diventata oggi na ovvietà. Sia nel privato, che

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Alberi Binari di Ricerca (BST) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Alberi Binari di Ricerca (Binary Search Trees BST)

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA DIPARTIMENTO DI INGEGNERIA ECONOMICO-GESTIONALE Dottorato di Ricerca in Ingegneria Economico-Gestionale XVIII Ciclo TESI DI DOTTORATO

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

AUTODOME IP 4000 HD. Video AUTODOME IP 4000 HD. www.boschsecurity.it

AUTODOME IP 4000 HD. Video AUTODOME IP 4000 HD. www.boschsecurity.it Video www.boschsecrity.it Perfetta combinazione di stile e tecnologia per installazioni per interno che richiedono imaging di alta qalità in n alloggiamento di dome che assicra compattezza ed estetica

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

La garanzia del miglior prezzo

La garanzia del miglior prezzo white paper settembre.2015 La garanzia del miglior prezzo Come arginare la crescita della pressione promozionale nel grocery e contrastare lo show rooming nell elettronica di consmo - Gianpiero Lgli -

Dettagli

DSA E-Series 4TB (E2700)

DSA E-Series 4TB (E2700) Video DSA E-Series 4TB (E2700) DSA E-Series 4TB (E2700) www.boschsecrity.it Solzione di archiviazione in rete a scalabilità verticale: nità di controllo dotata di 12 dischi rigidi interni, con n massimo

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Struttura elettronica delle molecole. Teoria quantistica del legame chimico

Struttura elettronica delle molecole. Teoria quantistica del legame chimico Strttra elettronica delle molecole. Teoria qantistica del legame chimico Lo ione idrogeno molecolare H 2 + Eq. Schroedinger singolo elettrone La fnzione d onda φ b soddisfa na eqazione analoga. Gli atovalori

Dettagli

Gestione delle Scorte

Gestione delle Scorte Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Gestione delle Scorte Renato Bruni bruni@dis.uniroma.it Il materiale presentato è derivato da quello dei proff.

Dettagli

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima Project Management Tecniche Reticolari Metodologie per risolvere problemi di pianificazione di progetti Progetto insieme di attività A i di durata d i, (=,...,n) insieme di relazioni di precedenza tra

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

FPA 5000 con moduli funzionali

FPA 5000 con moduli funzionali Sistemi di rivelazione incendio FPA 5000 con modli fnzionali FPA 5000 con modli fnzionali www.boschsecrity.it Configrazione modlare per n facile ampliamento nterconnessione di massimo 32 nità di controllo

Dettagli

Una nuova generazione di sportelli automatici

Una nuova generazione di sportelli automatici IQUADERNIDI Una nova generazione di sportelli atomatici accessibili e sabili da ttti A cra di Raffaele Nicolssi Il problema delle barriere tecnologiche è stato affrontato spesso anche slle pagine di Telèma

Dettagli

Figura 6.2.1: Andamento della solubilità in funzione della temperatura

Figura 6.2.1: Andamento della solubilità in funzione della temperatura 6.2 CRISTALLIZZAZIONE DA SOLUZIONE La cristallizzazione è l'operazione attraverso ci si ottiene na fase solida cristallina a partire da na fase liqida, costitita da na solzione o da n fso. Qesta operazione

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Intelligenza Artificiale. Metodi di ricerca

Intelligenza Artificiale. Metodi di ricerca Intelligenza Artificiale Metodi di ricerca Marco Piastra Metodi di ricerca - 1 Ricerca nello spazio degli stati (disegno di J.C. Latombe) I nodi rappresentano uno stato Gli archi (orientati) una transizione

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Qualità e Internet mobile

Qualità e Internet mobile IQUADERNIDI Qalità e Internet mobile Le verità nascoste? A cra di Gido Riva La Qalità di Servizio (Qality of Service - QoS) è diventa negli ltimi anni n tema di primaria importanza, e non solo nel settore

Dettagli

Unità di controllo CCS 1000 D

Unità di controllo CCS 1000 D Sistemi di comnicazione Unità di controllo CCS 1000 D Unità di controllo CCS 1000 D www.boschsecrity.it Fnzionalità plg-and-play per la connessione semplice e rapida di n massimo di 80 Dispositivi per

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

2.3.4 Pianificazione di progetti

2.3.4 Pianificazione di progetti .. Pianificazione di progetti Un progetto è costituito da un insieme di attività i, con i =,..., m, ciascuna di durata d i. stima Tra alcune coppie di attività esistono relazioni di precedenza del tipo

Dettagli

Esempio di Integrazione 1

Esempio di Integrazione 1 Esempio di Integrazione Spponiamo di voler integrare la fnzione fx_,_: x Sl dominio x 3x x 3x && 3 x x RegionPlot && x 3 x && x 5 x, x,, 5,,, 3 3 5 Il dominio deve essere opportnamente sddiviso epr poter

Dettagli

Software di Bosch Recording Station 8.10

Software di Bosch Recording Station 8.10 Video Software di Bosch Recording Station 8.10 Software di Bosch Recording Station 8.10 www.boschsecrity.it Software di e gestione per video IP Collegamento di n massimo di 64 sorgenti video per stazione

Dettagli

I.T.A. EMILIO SERENI ROMA Programma svolto Anno Scolastico 2014/2015

I.T.A. EMILIO SERENI ROMA Programma svolto Anno Scolastico 2014/2015 I.T.A. EMILIO SERENI ROMA Programma svolto Anno Scolastico 2014/2015 Disciplina: TECNOLOGIE INFORMATICHE Classe:1 D Docenti: Prof. Silvio Mastrantoni Prof. Pietro Mndo MODULO I :FONDAMENTI DIINFORMATICA

Dettagli

execute reject delay

execute reject delay Scheduler Lo scheduler stabilisce l ordine di esecuzione delle operazioni. Le azioni che svolge sono: execute: l operazione può essere eseguita immediatamente, per cui viene passata al data manager reject:

Dettagli

P. Apostoli 1, G. Bazzini 2, E. Sala 1, M. Imbriani 3. 1. Premessa

P. Apostoli 1, G. Bazzini 2, E. Sala 1, M. Imbriani 3. 1. Premessa G Ital Med Lav Erg 2002; 24:1, 3-25 PI-ME, Pavia 2002 P. Apostoli 1, G. Bazzini 2, E. Sala 1, M. Imbriani 3 La versione italiana OREGE (Otil de Repérage et d Evalation des Gestes) dell INRS (Institt national

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

STRUTTURATO APP BTICINO CATALOGHI

STRUTTURATO APP BTICINO CATALOGHI APP BTICINO CATALOGHI SISTEMA di cablaggio STRUTTURATO Indice Il cablaggio strttrato Introdzione e logiche del cablaggio strttrato 14 Strttra del cablaggio 14 Prestazioni del cablaggio: classi e categorie

Dettagli

Fondamenti di routing (pag.34)

Fondamenti di routing (pag.34) Fondamenti di routing (pag.34) UdA2L1 Il livello di rete (Network layer) è il livello 3 della pila ISO/OSI. Questo livello riceve datagrammi (pacchetti) dal livello di trasporto e forma pacchetti che vengono

Dettagli

Partnership di canale

Partnership di canale white paper gennaio.2015 Partnership di canale Il trst mediator e n novo concetto di filiera corta iteam:lorena Cottone e x c e l l e n c e i n e x e c t i o n white paper 2 exective smmary introdzione

Dettagli

Officium ASSICURAZIONE SU MISURA PER GLI UFFICI E GLI STUDI PROFESSIONALI. C o n d i z i o n i G e n e r a l i d i A s s i c u r a z i o n e.

Officium ASSICURAZIONE SU MISURA PER GLI UFFICI E GLI STUDI PROFESSIONALI. C o n d i z i o n i G e n e r a l i d i A s s i c u r a z i o n e. A r e a P r o t e z i o n e P r o f e s s i o n e Officim ASSICURAZIONE SU MISURA PER GLI UFFICI E GLI STUDI PROFESSIONALI C o n d i z i o n i G e n e r a l i d i A s s i c r a z i o n e Parte B Indice

Dettagli

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2)

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2) Algoritmi per la visualizzazione DISEGNO DI GRAFI: ALCUNI CASI PARTICOLARI Disegno 2D ortogonale Disegno ortogonale 2D () Disegno ortogonale 2D (2) Punto di vista umano: primo criterio per giudicare la

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

Problemi sul parallelogramma con le incognite

Problemi sul parallelogramma con le incognite Problemi sl parallelogramma con le incognite Qante altezze ha n parallelogramma Il concetto di altezza rimanda direttamente a qello della distanza di in pnto da na retta La distanza di n pnto da na retta

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Ulteriori applicazioni del Massimo Flusso 1. Connettività di grafi. Selezione di progetti 3. Trasporto in reti 4. Eliminazione in tornei Università degli Studi di Salerno Corso di

Dettagli

VA. Vettori applicati

VA. Vettori applicati VA. Vettori applicati I ettori, considerati da un punto di ista matematico, engono tutti riferiti all origine degli assi, in quanto si considerano equialenti tutti i segmenti orientati di uguale direzione,

Dettagli

LotusLive. LotusLive Engage e LotusLive Connections Guida per l'utente

LotusLive. LotusLive Engage e LotusLive Connections Guida per l'utente LotusLie LotusLie Engage e LotusLie Connections Guida per l'utente LotusLie LotusLie Engage e LotusLie Connections Guida per l'utente Nota Prima di utilizzare queste informazioni e il prodotto che le

Dettagli

Il Sistema Idro-Meteo-Mare e le reti di monitoraggio marino dell APAT

Il Sistema Idro-Meteo-Mare e le reti di monitoraggio marino dell APAT Il Sistema Idro-Meteo-Mare e le reti di monitoraggio marino dell APAT C. Accadia*, G. Arena**, A. Barbano, N. Bencienga**, M. Casaioli*, A. Colagrossi*, S. Corsini, R. Inghilesi, S. Mariani*, G. Monacelli,

Dettagli

http://users.dimi.uniud.it/~massimo.franceschet/te... Who Shall Survive? Misure di centralità su reti sociali

http://users.dimi.uniud.it/~massimo.franceschet/te... Who Shall Survive? Misure di centralità su reti sociali Who Shall Survive? Misure di centralità su reti sociali Una rete sociale (social network) è una struttura fatta di persone e relazioni tra le persone. I sociologi chiamano attori (actors) le persone della

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

PANDORA: IQUADERNIDI. l ICT per il Crisis Management

PANDORA: IQUADERNIDI. l ICT per il Crisis Management IQUADERNIDI PANDORA: l ICT per il Crisis Management A cra di Michele Cornacchia, Chiara Rossetti Il Crisis Management è n approccio sistematico adottato nelle sitazioni di emergenza, essenzialmente per

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Anatomia del neutrone

Anatomia del neutrone Timothy Pal Smith è assistant research professor di fisica al Dartmoth College di Hanover, negli Stati Uniti. Ha diretto lo svilppo dei programmi informatici per BLAST, esperimento in ci è ancora coinvolto

Dettagli

&2013. Tutti i giorni al tuo fianco! GUIDA AI SERVIZI CONVENZIONI

&2013. Tutti i giorni al tuo fianco! GUIDA AI SERVIZI CONVENZIONI Spplemento al nmero odierno de L Insegna Poste Italiane s.p.a. Spedizione in Abbonamento Postale D.L. 353/2003 (conv. in L. 27/02/2004 n 46) art. 1, comma 1, DCB Firenze 1 GUIDA AI SERVIZI CONVENZIONI

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

DIVAR IP 7000 2U. Video DIVAR IP 7000 2U. www.boschsecurity.it

DIVAR IP 7000 2U. Video DIVAR IP 7000 2U. www.boschsecurity.it Video DIVAR IP 7000 2U DIVAR IP 7000 2U www.boschsecrity.it Solzione di gestione video completa, all-in-one, con protezione RAID-5, per n massimo di 128 canali Solzione di gestione video IP pronta all'so,

Dettagli

CAPITOLO VII APPLICAZIONI DEI TRANSISTORI BIPOLARI A GIUNZIONE. (G. Lullo, S. Riva Sanseverino)

CAPITOLO VII APPLICAZIONI DEI TRANSISTORI BIPOLARI A GIUNZIONE. (G. Lullo, S. Riva Sanseverino) APOLO APPLAZON D RANSSOR POLAR A GUNZON (G. Lullo, S. Ria Sanseerino) n questo capitolo erranno esaminate, per i transistori bipolari a giunzione (ipolar Junction ransistors - J), sia le reti di polarizzazione

Dettagli

PER UNA CENA TRA AMICI NON RISPARMIO ENERGIE. LO FA GIà LA MIA LAVASTOVIGLIE DA RECORD.

PER UNA CENA TRA AMICI NON RISPARMIO ENERGIE. LO FA GIà LA MIA LAVASTOVIGLIE DA RECORD. 142 PER UNA CENA TRA AMICI NON RISPARMIO ENERGIE. LO FA GIà LA MIA LAVASTOVIGLIE DA RECORD. 143 UN IDEA SEMPLICE ED EFFICACE, HO SCOPERTO ENERGIC SPEED WATER. ECOLOGICO CON Neff. Tecnologia sostenibile

Dettagli

FLEXIDOME IP panoramic 5000 MP

FLEXIDOME IP panoramic 5000 MP Video FLEXIDOME IP panoramic 5000 MP FLEXIDOME IP panoramic 5000 MP www.boschsecrity.it Sensore da 5 MP a 15 fps per l'acqisizione dei più piccoli dettagli con movimenti flidi Basso profilo, linee essenziali,

Dettagli

EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW

EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW EMC BACKUP AND RECOVERY FOR VSPEX FOR END USER COMPUTING WITH VMWARE HORIZON VIEW Versione 1.2 Gida alla progettazione e all'implementazione H12388.2 Copyright 2013-2014 EMC Corporation. Ttti i diritti

Dettagli