La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione"

Transcript

1 RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L insieme B è etto insieme i rrivo. Per inire he un elemento è in relzione on un elemento trmite l relzione R si srive:. L elemento è etto immgine i. L elemento è etto ontroimmgine i. Il ominio o insieme i efinizione i un relzione, è il sottoinsieme ell insieme i prtenz formto tutti gli elementi i he hnno lmeno un immgine. In simoli ={ / }. Il oominio o insieme immgine i un relzione, è il sottoinsieme C ell insieme i rrivo ostituito tutti gli elementi y B he sono immgini i lmeno un elemento. In simoli ={ / }. A D B C Figur o Nell relzione : x è l metà i y fr gli insiemi ={1,2,3,4} e ={1,2,3,4,5,6} il Dominio è l insieme ={ 1,2,3 }, mentre il Coominio è l insieme ={ 2,4,6 } Relzione invers Dt un relzione tr l insieme e l insieme, l relzione invers è l relzione tr l insieme B e l insieme A. Ess si riv inverteno l orine elle oppie orinte seono l relzione irett. o Consierno l relzione ={ 1;2, 2; 4, 3;6 }, l relzione invers è ={ 2;1, 4; 2, 6;3 }. Note Un relzione tr ue insiemi e è un sottoinsieme el prootto rtesino. L relzione fr ue insiemi e è ett vuot se nessun elemento i è ssoito qulhe elemento i. L relzione Ientità su un insieme A, è l relzione ={ ; / }. L relzione Totle su un insieme A, è l relzione ={ ; /, }. Mtemti 1

2 Rppresentzione i un relzione Un relzione può essere rppresentt trmite: Rppresentzione per elenzione L rppresentzione per elenzione onsiste nell elenre tutte le oppie orinte he verifino l relzione ={ 1;2, 2; 4, 3;6 } Rppresentzione sgittle o igrmm free L rppresentzione trmite igrmm free onsiste nel ollegre on elle free gli elementi ei ue insiemi he verifino l relzione A B Rppresentzione trmite igrmm rtesino L rppresentzione trmite igrmm rtesino onsiste nel rppresentre i punti le ui oorinte sono le oppie i elementi he sono in relzione. Rppresentzione trmite tell oppi entrt L rppresentzione trmite tell oppi entrt onsiste nel ostruire un tell vente l prim olonn formt gli elementi ell insieme i prtenz e l prim rig formt gli elementi ell insieme i rrivo, e nell inserire elle roette nelle elle orrisponenti lle oppie he sono in relzione. A\B X 2 X 3 X 4 Relzioni efinite in un insieme Un relzione in ui l insieme i prtenz e l insieme i rrivo oiniono on uno stesso insieme A, è ett relzione in A. In un relzione efinit in un insieme A, l rppresentzione sgittle ssume un ltr form grfi ett grfo. Un grfo è ostituito punti, etti noi, ollegti tr loro free, etti spigoli. I noi sono gli elementi ell insieme in ui è efinit l relzione e le free ollegno gli elementi in relzione. Tipo i relzione Grfo o x è in relzione on y Si ollegno i ue noi on un frei orientt x verso y x y x è in relzione on se stesso Si isegn un ppio intorno l noo x x x è in relzione on y e y è in relzione on x Si ollegno i ue noi on un frei ue punte x y Mtemti 2

3 Proprietà riflessiv Un relzione,, efinit in un insieme non vuoto, è riflessiv se ogni elemento i A è in relzione on se stesso. In simoli:,. L relzione R: x h l stess età i y è riflessiv. L relzione R: x è figlio i y non è riflessiv. Grfo Grfii ell relzione riflessiv Tell oppi entrt Digrmm rtesino A\B X X X X X X Ogni noo h un ppio In tutte le selle ell igonle priniple è un roett Tutti i punti ell isettrie sono ontrssegnti Proprietà ntiriflessiv Un relzione,, efinit in un insieme non vuoto, è ntiriflessiv se ogni elemento i A non è in relzione on se stesso. In simoli:, R/. L relzione R: x è figlio i y è ntiriflessiv. L relzione R: x è ivisore i y non è ntiriflessiv. Grfo Grfii ell relzione ntiriflessiv Tell oppi entrt Digrmm rtesino A\B X X X X Non è lun ppio i noi In tutte le selle ell igonle priniple non è l roett Non sono ontrssegnti i punti ell isettrie Proprietà non riflessiv e non ntiriflessiv Un relzione non riflessiv non è onseguentemente ntiriflessiv. L relzione lto non è né riflessiv né ntiriflessiv. Mtemti 3

4 Proprietà simmetri Un relzione,, efinit in un insieme non vuoto, è simmetri se per ogni oppi i elementi, e he, se x è in relzione on y llor nhe y è in relzione on x. In simoli:,,. L relzione R: x è frtello i y è simmetri. L relzione R: x è figlio i y non è simmetri. Grfii ell relzione simmetri Grfo Tell oppi entrt Digrmm rtesino A\B X X X X X X Ogni frei è ott i ue punte Per ogni ell ontrssegnt, risult ontrssegnt l ell ess simmetri rispetto ll igonle p. Per ogni punto ontrssegnto, risult nhe ontrssegnto il suo simmetrio rispetto ll isettrie Proprietà ntisimmetri Un relzione,, efinit in un insieme non vuoto, è ntisimmetri se per ogni oppi i elementi iversi, e he, se x è in relzione on y llor y non è in relzione on x. In simoli:,,. L relzione R: x è figlio i y è ntisimmetri. L relzione R: x è frtello i y non è ntisimmetri. Grfii ell relzione ntisimmetri Grfo Tell oppi entrt Digrmm rtesino A\B X X X X X Ogni frei è ott i un sol punt Per ogni ell ontrssegnt non risult ontrssegnt l ell ess simmetri rispetto ll igonle p. Per ogni punto ontrssegnto, non risult ontrssegnto il suo simmetrio rispetto ll isettrie Proprietà non simmetri e non ntisimmetri Un relzione non simmetri non è onseguentemente ntisimmetri. L relzione lto non è né simmetri né ntisimmetri. o: m e m ; m m non m. Mtemti 4

5 Proprietà trnsitiv Un relzione, efinit in un insieme non vuoto, è trnsitiv se per ogni tern i elementi,, e he, se x è in relzione on y e y è in relzione on z, llor nhe x è in relzione on z. In simoli:,,,. L relzione R: x è frtello i y è trnsitiv. L relzione R: x è figlio i y non è trnsitiv. L uni rppresentzione he informzioni evienti sull trnsitività i un relzione è il grfo. Grfo ell proprietà trnsitiv Un relzione è trnsitiv se il suo grfo soisf le seguenti onizioni: 1. ogni qulvolt he un noo prte un frei irett verso un noo e quest ultimo prte un ltr frei irett verso un noo, llor eve esistere un frei he prte l primo noo irett verso il terzo noo 2. ogni qulvolt i sono ue noi ollegti un frei ue punte, entrmi i noi evono essere otti i ppio. Relzioni trnsitive e Relzioni non trnsitive L relzione non è trnsitiv perhé: e m Inftti l frei non è irett l noo verso il noo L relzione non è trnsitiv perhé: e m e Proprietà i onnessione Un relzione, efinit in un insieme non vuoto, è onness se omunque selti ue elementi istinti,, e he o oppure he. In simoli:,,. Mtemti 5

6 Relzione i equivlenz Un relzione efinit in un insieme non vuoto, è un relzione i equivlenz se goe elle proprietà riflessiv, simmetri e trnsitiv. o L relzione : lo stuente x pprtiene ll stess lsse ello stuente y è un relzione i equivlenz. Prtizione Dto un insieme, si ie prtizione i, e si ini on, l suivisione ell insieme A in sottoinsiemi osì efinit : 1. nessuno ei sottoinsiemi i A è vuoto; 2. tutti i sottoinsiemi i A sono, ue ue, isgiunti; 3. l unione i tutti i sottoinsiemi i A l insieme A. Clsse i equivlenz In un insieme in ui è ssegnt un relzione i equivlenz, si ie lsse i equivlenz ogni sottoinsieme non vuoto i he goe elle seguenti proprietà : 1. gli elementi i S sono tutti tr loro equivlenti (rispetto ll relzione ); 2. ogni elemento i he non pprtiene S non è equivlente lun elemento i S. Teorem A ogni relzione i equivlenz efinit nell insieme, orrispone un prtizione i in lssi i equivlenz. Insieme quoziente Si him insieme quoziente i un insieme, rispetto un relzione i equivlenz, e si ini on / l insieme he h per elementi le lssi i equivlenz i, rispetto ll relzione. Mtemti 6

7 Relzioni orine Un relzione in un insieme è i orine lrgo se è: riflessiv ntisimmetri trnsitiv Orine przile lrgo Un relzione in un insieme è i orine stretto se è: ntiriflessiv ntisimmetri trnsitiv Orine przile stretto Un relzione in un insieme è i orine totle se, omunque selti ue elementi istinti e nell insieme, risult sempre he è in relzione on oppure he è in relzione on. Orine totle né stretto né lrgo Un relzione he non è i orine totle è ett i orine przile. Un relzione è i orine przile se esiste lmeno un oppi i elementi istinti e nell insieme non onfrontili seono l relzione. Orine przile né stretto né lrgo Not Se un relzione è orine totle, gli elementi ell insieme in ui è efinit possono essere messi in fil lungo un rett, orinnoli in senso resente. Ciò non è possiile per le relzioni orine przile. Orine totle lrgo Orine totle stretto L relzione R: x è frtello i y non è un relzione orine perhé non vle l proprietà ntisimmetri. L relzione R: x è figlio i y non è un relzione orine perhé non vle l proprietà trnsitiv. L relzione R: x è il qurto i y non è un relzione orine perhé non vle l proprietà trnsitiv. L relzione R: x è ivisore i y è un relzione orine przile lrgo nell insieme ={1,2,3,4} perhé i sono oppie i elementi non onfrontili (3 non è ivisore i 4 e 4 non è ivisore i 3). L relzione R: x è ivisore i y è un relzione orine totle lrgo nell insieme ={1,2,4,8}. L relzione R: x è più giovne i y è un relzione orine przile stretto perhé può sueere he ue persone iverse ino l stess ètà, e he quini non si vero he x si più giovne i y né he y si più giovne i x. L relzione R: x è minore i y è un relzione orine totle stretto nell insieme ei numeri nturli. L relzione R: x è minore o ugule y è un relzione orine totle lrgo nell insieme ei numeri nturli. Mtemti 7

8 i riepilogo Relzione Dominio Riflessiv Simmetri Antisimmetri Trnsitiv Conness y = x + 3 N Z Q R No No Si No No y è triplo i x N No No Si No No x è pre i y Cittini i un ittà No No Si No No x = y N Si Si Si Si No x ivie y Z Si No No (*) Si No x è multiplo i y Z Si No No (*) Si No x ivie y N Si No Si (*) Si No x è multiplo i y N Si No Si (*) Si No x è simile y Pino Eulieo Si Si No Si No x è prllel y Pino Eulieo Si Si No Si No Xè iniente y Pino Eulieo No Si No No No x è perpeniolre y Pino Eulieo No Si No No No x y N - Z - Q R No Si No Si No x < y N Z Q R No No Si Si Si x y N Z Q R Si No Si Si Si x y P (A) Si No Si Si No x y P (A) No No Si Si No x y x y ={ } ={, } ={ } ={, } Si No Si Si Si No No Si Si Si x è primo on y N No Si No Si No x + y è pri N Si Si No Si No Ientità Si Si Si Si No Totle Si Si No Si Si Vuot No Si Si Si Si Not (*) Nell insieme Z ( x ivie y e y ivie x ) non impli he ( x = y ). Inftti ( +4 ivie -4 e -4 ivie +4) non impli he ( -4 = +4 ). Nell insieme N ( x ivie y e y ivie x ) impli he ( x = y ). Inftti ( +3 ivie +3 e +3 ivie +3) impli he ( +3 = +3 ). Mtemti 8

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Terz Suol..........................................................................................................................................

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato

11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato 11. Geometi pin 1. Fomule fonmentli Rettngolo = h = h = h p= + h p= + h h= p = p h + ( ) = h = h h = = se = igonle p = peimeto h = ltezz = e p = semipeimeto Quto = l l = = l l = l = lto = igonle = e p

Dettagli

UKUPAN BROJ OSVOJENIH BODOVA

UKUPAN BROJ OSVOJENIH BODOVA ŠIFRA DRŽAVNO TAKMIČENJE IX rzred UKUPAN BROJ OSVOJENIH BODOVA Test pregledl/pregledo...... Podgori,... 2010. godine ASCOLTO I Asolt un volt il testo. Leggi ttentmente l prov propost. Asolt di nuovo il

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Le grandezze scalari e le grandezze vettoriali

Le grandezze scalari e le grandezze vettoriali VETTORI I VETTORI DEL PINO Le grndezze slri e le grndezze ettorili Esistono grndezze determinte dl nmero he le misr rispetto n prefisst nità, ome per esempio l lnghezz, l re, il olme, il tempo Qeste grndezze

Dettagli

Cap. 8 Sistemi di controllo

Cap. 8 Sistemi di controllo Cap. 8 Sistemi i ontrollo Come già etto, in generale, un sistema è solo potenialmente in grao i soisfare gli obiettivi per i quali è stato ostruito, e ioè i omportarsi nella maniera esierata. Per onseguire

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza

Circonferenza e cerchio La circonferenza e il cerchio Poligoni inscritti e circoscritti a una circonferenza ironferenz e erhio L ironferenz e il erhio Poligoni insritti e irosritti un ironferenz L ironferenz e il erhio Stilisi se le seguenti ffermzioni sono vere o flse. SEZ. M e f g h Il rpporto tr l lunghezz

Dettagli

Calcolo del costo unitario FASE 1

Calcolo del costo unitario FASE 1 ESERCIZIO Definizione el pino ei entri i osto e eterminzione el osto unitrio i prootto Clolo el osto unitrio FASE 1 Azien i prouzione: proue i eni,,, Il proesso prouttivo prevee 3 fsi o proessi prinipli:

Dettagli

Le proprietà fondamentali del campo magnetico

Le proprietà fondamentali del campo magnetico 1) Ftti sperimentli. Le proprietà fonmentli el mpo mgnetio Riportimo ue ftti sperimentli: ) Un filo rettilineo infinito perorso orrente I gener un mpo mgnetio on le seguenti proprietà: l intensità ument

Dettagli

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale.

! Una gerarchia ricorsiva deriva dalla presenza di una ricorsione o ciclo (un anello nel caso più semplice) nello schema operazionale. Gerarhie Riorsive! Una gerarhia riorsiva eriva alla presenza i una riorsione o ilo (un anello nel aso più semplie) nello shema operazionale.! Esempio i shema operazionale on anello:! Rappresentazione sullo

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Capitolo 3. Modelli. Macchine combinatorie Macchine sequenziali asincrone sincrone

Capitolo 3. Modelli. Macchine combinatorie Macchine sequenziali asincrone sincrone Capitolo 3 Moelli Mahine ominatorie Mahine sequenziali asinrone sinrone Il moello el loo o satola nera i I: alfaeto i ingresso u U: alfaeto i usita ingresso ei ati i F u usita ei risultati F: relazione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

ISTITUTO COMPRENSIVO DI ZANICA SCUOLA SECONDARIA DI PRIMO GRADO ERNESTINA BELUSSI COMUN NUOVO. Relazione

ISTITUTO COMPRENSIVO DI ZANICA SCUOLA SECONDARIA DI PRIMO GRADO ERNESTINA BELUSSI COMUN NUOVO. Relazione Relzione Le lssi 1^ A e 1^ B dell Suol Seondri di primo grdo di Comun Nuovo, nell mito di un perorso nnule legto ll eologi (rifiuti e loro riilo), hnno rolto i dti reltivi llo stile di vit di un mpione

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

www.scuolaazienda.it MARIO FLORES L OPERATORE TURISTICO SOLUZIONI Vero o falso? Verifica le tue conoscenze Esercizi

www.scuolaazienda.it MARIO FLORES L OPERATORE TURISTICO SOLUZIONI Vero o falso? Verifica le tue conoscenze Esercizi www.scuolaazienda.it MRIO FLORES L OPERTORE 4 TURISTIO SOLUZIONI Vero o falso? Verifica le tue conoscenze Esercizi VERO O FLSO? MOULO 1 1 V, 2 V, 3 F, 4 F 1 V, 2 V, 3 V, 4 F 1 V, 2 F, 3 F, 4 V 1 F, 2 F,

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Test di autovalutazione

Test di autovalutazione Test di utovlutzione 0 0 0 0 0 50 0 70 0 0 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle 5 lterntive. n Confront le tue risposte on le soluzioni. n Color, prtendo d

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

COGNOME... NOME... Classe... Data...

COGNOME... NOME... Classe... Data... Cpitolo I tringoli Criteri i ongruenz - Tringoli isoseli erifi per l lsse prim Clsse.................................... Dt............................... Congruenz Tringolo isosele Teorem Quesiti 186

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

QUESITI DI PSICOLOGIA

QUESITI DI PSICOLOGIA QUESITI DI PSICOLOGIA appunti 23 TEST DI VERIFICA 1 Che osa si intene on il onetto i atteniilità? a L effiaia he un test ha nel preveere i renimenti i un soggetto nelle ailità speifihe misurate Il grao

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

Il progetto allo SLU per la flessione semplice e composta

Il progetto allo SLU per la flessione semplice e composta Il progetto allo SLU per la leione emplie e ompota Nomenlatura σ R h y.n. σ 0,8y b σ T /0 Ipotei i bae onervazione elle ezioni piane La eormazione in ogni punto ella ezione è proporzionale alla itanza

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1

STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI 1 INDAGINE MULTISCOPO SULLA SICUREZZA DELLE DONNE STRATEGIA DI CAMPIONAMENTO E VALUTAZIONE DEGLI ERRORI CAMPIONARI - INTRODUZIONE La popolazione i interesse ell inagine è costituita alle onne i età compresa

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Icone, finestre e strutture dati

Icone, finestre e strutture dati u t o n e n i t à i m r e n i p p Ione, finestre e strutture ti Competenze speifihe Il signifito elle prinipli ione, il loro spostmento e orinmento sul esktop I prinipli elementi elle finestre elle pplizioni

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

Sull enumerazione di meccanismi a vite

Sull enumerazione di meccanismi a vite Sull enumerzione i menismi vite M. Cvee Università i Cssino, Cssino E-mil:vee@unis.it E. Pennestrì Università i Rom Tor Vergt, Rom E-mil:pennestri@me.unirom2.it L. Vit Università i Rom Tor Vergt, Rom E-mil:vit@ing.unirom2.it

Dettagli

r i =. 100 In generale faremo riferimento al tasso unitario.

r i =. 100 In generale faremo riferimento al tasso unitario. . Operazioni finanziarie Si efinisce operazione finanziaria (O.F.) ogni operazione relativa a impegni monetari e si efinisce operazione finanziaria elementare uno scambio, tra ue iniviui, i capitali iversi.

Dettagli

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del

Questo materiale è stato prodotto dal progetto Programma di informazione e comunicazione a sostegno degli obiettivi di Guadagnare Salute del Questo mterile è stto prodotto dl progetto Progrmm di informzione e omunizione sostegno degli oiettivi di Gudgnre Slute del Ministero dell Slute /CCM, in ollorzione ol Ministero dell Istruzione, dell Università

Dettagli

L'equazione di continuità

L'equazione di continuità L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia.

10. Completare la seguente tabella, in cui sono riportate le produzioni assolute e relative di tre colture altamente diffuse in Italia. ESERCIZI DI BASE 1. I soci proprietri di un piccol compgni gricol sono tre: i signori A, B, C. Mentre i signori A e C hnno l stess quot di prtecipzione ll ziend, il signor B h solo il 50% dell quot degli

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

IL SISTEMA DEI PREZZI DI LEON WALRAS

IL SISTEMA DEI PREZZI DI LEON WALRAS IL SISTEMA DEI PREZZI DI LEON WALRAS E L EQUILIBRIO ECONOMICO GENERALE Sommario: 1. Introuzione 2. Il sistema ei prezzi i Walras e l equilibrio economico generale 3. Le contraizioni implicite nel sistema

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Risolvere il seguente caso aziendale

Risolvere il seguente caso aziendale Risolvere il seguente so zienle Un lergo on 80 oppie nel mese i Giugno e Luglio h registrto un gro i oupzione mere el 40% i ui il 75% iit mer oppi mentre il restnte 25% mer singol. Gli rrivi i perioo sono

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta

Analisi dei dati ottenuti dalla raccolta dei Questionari consegnati al Tessuto Imprenditoriale e Commerciale della Città di Magenta QUESTIONRIO PINO GENERLE DEL TRFFIO URNO ITTÀ DI MGENT nlisi dei dti ottenuti dll rolt dei Questionri onsegnti l Tessuto Imprenditorile e ommerile dell ittà di Mgent Relizzt d onfommerio Mgent e stno Primo

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli