22 novembre Nome Cognome Classe

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "22 novembre Nome Cognome Classe"

Transcript

1 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Gara Triennio 22 novembre 202 dei giorni festivi in un anno è: (A) rimasto invariato (B) aumentato meno del 0% (C) aumentato del 0% (D) diminuito meno del 0% (E) diminuito del 0% 4) S e S 2 sono due sfere; il volume di S 2 è il doppio del volume di S. Quanto vale il rapporto tra la superficie di S 2 equelladis? (A) 4 (B) 2 (C) 2 2 (D) 8 (E) nessuna delle precedenti ) La prova consiste di 20 problemi; ogni domanda è seguita da cinque risposte indicate con le lettere A, B, C, D, E. 2) Una sola di queste risposte è corretta, le altre 4 sono errate. Ogni risposta corretta vale 5 punti, ogni risposta sbagliata vale 0 punti e ogni problema lasciato senza risposta vale punto. ) Per ciascuno dei problemi devi trascrivere la lettera corrispondente alla risposta che ritieni corretta nella griglia riportata qui sotto. Non sono ammesse cancellature o correzioni sulla griglia. Non è consentito l uso di alcun tipo di calcolatrice. 4) Il tempo totale che hai a disposizione per svolgere la prova è di due ore. Buon lavoro e buon divertimento. Nome Cognome Classe 5) Matteo per raggiungere la scuola deve effettuare 2 km in salita, e pedalando sulla sua bicicletta riesce ad arrivare in 2 minuti. Al ritorno, andando in discesa per la stessa strada, impiega solo 4 minuti. Qual è la velocità media di Matteo nell intero tragitto casa-scuola-casa? (A) 0 km/h (B) 2 km/h (C) 5 km/h (D) 20 km/h (E) nessuna delle precedenti 6) Il triangolo isoscele in figura ha base AB di lunghezza m e altezza CH di lunghezza 2 m. Il quadrato al suo interno ha un vertice in H, edue vertici sugli altri due lati: calcolarne l area. (A) /5 m 2 (B) 5/6 m 2 (C) 8/25 m 2 (D) / m 2 (E) /2 m 2 C A H B ) Marco distribuisce 260 figurine tra tutti i suoi amici, che sono meno di 00, dando a ciascuno di loro lo stesso numero di figurine e in modo da distribuirle tutte. Qual è il massimo numero di amici che Marco può avere? (A) 70 (B) 84 (C) 90 (D) 94 (E) nessuna delle precedenti 2) Sapendo che il rettangolo in figura viene diviso dalla linea inclinata in due parti di aree una quadrupla dell altra, calcolare il rapporto tra le lunghezze dei segmenti a e b. (A) 2/ (B) /4 (C) /5 (D) /2 (E) 2/5 ) Sul pianeta Papalla un anno è formato da 400 giorni, numerati da a 400; sono considerati festivi i giorni corrispondenti ai multipli di 6. Il nuovo governo di Papalla riforma il calendario, dividendo l anno in 0 mesi di 40 giorni ciascuno; i giorni di ogni mese vengono ora numerati da a 40, e rimane valida la regola di fare festa nei giorni i cui numeri siano multipli di 6. In seguito alla riforma, il numero a b 7) In una classe gli alunni biondi sono il 40%, del totale mentre i restanti sono castani. Tra tutti gli alunni biondi, il 75% sono femmine. Sapendo che nella classe il numero di femmine è uguale al numero di maschi, qual è la percentuale di maschi castani sul totale degli alunni della classe? (A) 20% (B) 25% (C) 0% (D) 40% (E) 50% 8) Un pavimento è piastrellato come in figura. In quanti modi è possibile colorare le mattonelle esagonali di blu, rosso e nero in modo che due mattonelle esagonali con un lato in comune non abbiano mai lo stesso colore? (A) nessuno (B) 2 (C) (D) 6 (E) infiniti 9) Quante sono le coppie di numeri primi (p, q) tali che p q + sia ancora un numero primo? [Nota: non è un numero primo.] (A) 0 (B) (C) 2 (D) infinite (E) nessuna delle precedenti

2 0) Al 22 novembre 202 il prezzo della benzina è dato per il 5% dal costo del prodotto, che è formato a sua volta da diverse voci (petrolio, raffinazione, costi di distribuzione, ecc.). In particolare il costo del petrolio è il 24% del costo del prodotto. Sapendo che il primo dicembre 202 il prezzo del petrolio aumenterà del 0% e gli altri costi rimarranno invariati, di quanto aumenterà il prezzo della benzina in tale data? (A) 0% (B) 2,4% (C),5% (D) 0,84 % (E) nessuna delle precedenti ) Determinare la somma delle cifre del numero ( ). (A) 4 (B) 8 (C) 202 (D) 20 (E) nessuna delle precedenti 2) Quale tra i seguenti è il numero più grande che divide n 5 5n +4n, qualsiasi sia il numero naturale n? (A) 5 (B) 5 (C) 60 (D) 20 (E) 240 ) Quale tra le seguenti quantità dipendenti da x è minore o uguale a 6 + x2 per ogni numero reale x? (A) 6 + x2 (B) 2 x (C) ( 6 + x)2 (D) 6 + x (E) nessuna delle precedenti 8) Carlo ha sei mele e sei pere: in quanti modi può mettere in fila 6 frutti, in modo tale che tra due mele non ci sia mai nessuna pera? (A) 6 (B) 22 (C) 2 (D) 5 (E) 9 9) Una cavalletta si sposta compiendo salti di esattamente 0 cm. Il suo moto segue questo schema: compie un certo numero di salti in una data direzione, poi ruota verso la sua sinistra di 20 e compie, nella nuova direzione, il doppio dei salti che aveva effettuato nella precedente direzione. A questo punto ruota nuovamente di 20 verso sinistra e raddoppia ancora una volta il numero dei salti. Sapendo che inizia compiendo un solo salto in una data direzione, a quale distanza dal punto iniziale si troverà dopo 7 salti? (A) 20 cm (B) 20 cm (C) 40 cm (D) 40 cm (E) 50 cm 20) Sia x un numero reale maggiore di tale che (x )(x + ) 202 =. Allora: (A) <x<+/ 202 (B) +/ 202 <x<+/2 202 (C) +/2 202 <x<+/ (D) +/ <x<+/2 (E) x>2 4) Il Mago Merlino posa a terra il suo cappello, un cono retto di altezza h = 20 2 cm e di base una circonferenza di raggio r = 0 cm. Una formica, partendo da un punto P sul bordo del cappello, vuole raggiungere il punto Q situato nel punto medio dell apotema dalla parte opposta (vedi figura). Quanto misura il cammino più breve che la formica dovrà percorrere sulla superficie del cappello per raggiungere Q? (A) 5 cm (B) cm (C) 5 + 5π cm (D) 5 + 0π cm (E) nessuna delle precedenti Q h r P 5) Abbiamo un dado a 4 facce recanti i numeri,,5,7 ed un dado a 8 facce recanti i numeri 2,4,6,8,0,2,4,6 (per ciascun dado ogni faccia ha la stessa probabilità di uscire di ogni altra). Qual è la probabilità che, lanciandoli una sola volta entrambi, si ottenga come somma? (A) /6 (B) /8 (C) /4 (D) /2 (E) 6) Sapendo che k è un numero intero e che l equazione x 0 + kx = 0 ha almeno una soluzione data da un numero intero x, quanti valori distinti può assumere k? (A) (B) 2 (C) (D) 4 (E) infiniti 7) Assegnato un numero di due cifre che è un quadrato perfetto, qual è la probabilità che, aggiungendo una cifra a caso tra e 9 a sinistra del numero, si ottenga un multiplo di? (A) /9 (B) 2/9 (C) /9 (D) 4/9 (E) dipende dal numero scelto

3 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Triennio 22 novembre 202 Griglia delle risposte corrette Problema Risposta corretta C 2 A D 4 A 5 C 6 C 7 D 8 D 9 B 0 D Problema Risposta corretta B 2 D E 4 A 5 B 6 B 7 A 8 B 9 E 20 B Risoluzione dei problemi. La risposta è (C). Il numero di amici di Marco deve essere un divisore di 260, e quindi il massimo numero di amici che Marco può avere è il più grande divisore di 260 che sia anche più piccolo di 00. La scomposizione in fattori primi di 260 è 260 = , emostrache90=2 2 5èundivisoredi260enessunaltronumerocompresotra90e00 lo è. Dunque 90 è il più grande divisore di 260 che sia anche minore di 00. [Problema proposto da G. Barbarino.] 2. La risposta è (A). Indichiamo con X e Y le misure (in una data untià di misura) della base e della altezza del rettangolo, rispettivamente, e con A e B le rispettive misure dei segmenti a e b. Sappiamoche A + B = Y e (B + Y ) X 2 A X =4, 2 equindi 4= A +2B A ovvero A B = 2 [Problema proposto da F. Mugelli] =+2 B A B A = 2

4 . La risposta è (D). Secondo il calendario precedente alla riforma, poiché il quoziente della divisione di 400 per 6 è 66, vi erano 66 giorni festivi. Con il nuovo calendario ogni mese ci sono 6 giorni festivi e quindi in un anno ci sono 60 giorni festivi. I giorni festivi sono allora passati da 66 a 60 e la diminuzione, 6, è minore del 0% di 66, che è 6,6. [Problema proposto da P. Negrini.] 4. La risposta è (A). Il volume di una sfera di raggio R è 4πR, mentre la sua superficie è 4πR2. Indichiamo con R e R 2 iraggidis e S 2 rispettivamente. Sappiamo che Dunque 4πR 2 4πR =2 R2 R 2 R = 2 R2 2 R 2 R =2. = 4. Poiché il rapporto tra la superficie di S 2 equelladis coincide con R2 2, esso vale 4. [Problema proposto da P. Leonetti.] 5. La risposta è (C). La velocità media nel percorso casa-scuola-casa è data dalla lunghezza del percorso complessivo, ovvero 4 km (2 per andare e 2 per tornare), diviso il tempo totale impiegato, ovvero 6 minuti (2 per andare e 4 per tornare). Dunque la velocità media è di 0,25 km/min, che coincide con 5 km/h. [Problema proposto da S. Monica.] 6. La risposta è (C). Indichiamo con O il centro del quadrato, con K il vertice del quadrato che appartiene al lato AC econ2x la lunghezza in metri della diagonale del quadrato. Per la similitudine dei triangoli AHC e KOC,abbiamoche CH AH = OC KO = 2 x. x Ma CH AH = 2m 0,5 m =4. Da qui si ottiene x = 2 5 mequindihk = 2 2 m. L area del quadrato è allora m2. [Problema proposto da U. Bindini e A. Sambusetti.] 7. La risposta è (D). Indichiamo con F b e F c le percentuali di femmine bionde e castane rispettivamente, e con M b e M c le percentuali di maschi biondi e castani rispettivamente. Sappiamo che F b + M b =40e F b + F c = M b + M c =50. Lefemminebiondesonoil75%deltotaledeglialunnibiondiequindi i maschi biondi sono il 25% del totale degli alunni biondi, quindi F b =M b. Allora troviamo, dalla prima delle due uguaglianze scritte in precedenza, M b =0,equindidaM b + M c =50 abbiamo M c =40. [Problema proposto da S. Monica.] 2 R 2

5 8. La risposta è (D). Consideriamo una mattonella esagonale M del pavimento, che sia circondata da sei mattonelle esagonali e supponiamo di colorare questa mattonella di blu. A questo punto nessuna delle sei mattonelle che la circondano può essere colorata di blu e due di esse che siano adiacenti devono avere colori diversi, ovvero rosso e nero. Quindi fissato il colore di M ci sono due possibili modi di colorare le sei mattonelle ad essa adiacenti. Poiché ci sono possibili colorazioni per M, e per ciascuna di esse ci sono due colorazioni delle mattonelle adiacenti, ci sono 6 modi distinti di colorare M ele6mattonelleadiacenti,inmodochelerichiestedelproblemasiano soddisfatte. Osserviamo poi che fissato il colore della mattonella M ediquelleadessaadiacenti, la colorazione del resto del pavimento è univocamente determinata. Quindi ci sono 6 modi di colorare il pavimento. [Problema proposto da K. Kuzmin.] 9. La risposta è (B). Osserviamo che p q +èparisep q è d i s p a r i, e v i c e v e r s a è d i s p a r i s e p q è p a r i. P o i c h é l u n i c o numero primo pari è 2, affinché p q + sia primo esso deve essere uguale a 2 oppure deve essere dispari. Ma p q +=2implicap q =ilcheèimpossibile. Dunquedobbiamoaverechep q è pari, e quindi p deve essere pari, ed essendo primo si deve avere p =2. Seq è d i s p a r i p q + ammette la scomposizione: (p q +)=(p +)(p q p q p 2 p +) e quindi in particolare è divisibile per p + e pertanto non può essere primo. Allora anche q deve essere pari e quindi q =2. L unicapossibilitàèallorap = q =2. 0. La risposta è (D). Indichiamo con B il prezzo della benzina oggi, e con P ed O rispettivamente il costo del prodotto e il costo del petrolio, sempre riferiti ad oggi. Sappiamo che P = 5 00 B e O = P quindi 24 5 O = B = 8, 4 00 B. Di conseguenza oggi il costo del petrolio costituisce l 8,4% del prezzo della benzina. Se il costo del petrolio aumenta del 0% (ovvero di un decimo) e tutti gli altri costi rimangono invariati, il prezzo della benzina aumenterà di un decimo dell 8,4%, ovvero dello 0,84%. [Problema proposto da C. Di Stefano.]. La risposta è (B). Sviluppando il cubo del binomio possiamo scrivere (0 20 +) = Ciascuno dei 4 numeri a destra dell uguaglianza, scritti in base 0, ha una sola cifra diversa da zero e in una posizione diversa da quella degli altri, quindi la somma delle cifre del numero che si ottiene sommandoli è = 8. [Problema proposto da C. Di Stefano.]

6 2. La risposta è (D). Possiamo scrivere n 5 5n +4n = n(n 4 5n 2 +4) = n(n 2 4)(n 2 ) = (n 2)(n )n(n +)(n +2). Dunque stiamo considerando un numero che può sempre essere scritto come prodotto di cinque numeri naturali consecutivi (tutti strettamente positivi, poiché n ). In una sequenza di 5 numeri naturali consecutivi vi sono certamente due numeri pari di cui uno multiplo di 4, un multiplo di e un multiplo di 5. Dunque il loro prodotto è certamente multiplo di 20 = D altra parte per n =abbiamon 5 5n +4n =20quindi20èilpiùgrandedivisoredi n 5 5n +4n al variare di n.. La risposta è (E). Nessuna delle espressioni contenute nelle altre risposte è minore o uguale di 6 + x2 per ogni x. Difatti, se per esempio x =0ilnumero + 6 x2 = >,quindi(a) è f a l s a. 6 6 Anche la risposta (D) è e v i d e n t e m e n t e f a l s a s e 0 <x<, poiché in tal caso + x> x2. Sviluppando il quadrato del binomio, si trova anche che non può valere (C): x = 6 + x2 + x> 6 + x2 per x> 5. Proviamo infine che anche la risposta (B) è e r r a t a : i n e ffetti x2 2 x 6 x 2 +2x + 0 ed il discriminante del trinomio 6 x 2 +2x+ vale =44 24 > 0; dunque il trinomio ammette due radici reali distinte ed è negativo per ogni valore di x strettamente compreso tra le due radici. [Problema proposto da G. Barbarino e A. Sambusetti.] 4. La risposta è (A). Calcoliamo prima di tutto l apotema del cono: a = r 2 + h 2 =0cm. P Tagliamo ora il cono lungo l apotema passante per Q, e otteniamo così un settore circolare di centro V,raggioaed arco di circonferenza di lunghezza uguale a 2πr: l angolo al centro che sottende tale arco a d misura dunque ϑ = 2πr 2πr a r = 2 o π radianti. 60 V Q 2 +h 2 Il problema si riduce quindi a trovare la lunghezza del segmento che congiunge il punto medio P dell arco di circonferenza al punto medio Q di uno dei due raggi delimitanti il settore circolare. Poiché l angolo PVQ =60, segue che PQ è p e r p e n d i c o l a r e a l r a g g i o c o n t e n e n t e Q, dunque d = a 2 a 2 2 =. 2 [Problema proposto da Nirvana.] 4

7 5. La risposta è (B). Gli eventi possibili dopo aver lanciato i due dadi possono essere rappresentati da tutte le coppie ordinate (d,d 2 )incuid è i l v a l o r e d e l p r i m o d a d o e d 2 quello del secondo; poichè d può variare tra 4 possibili valori e d 2 tra otto possibili valori, il numero totale di eventi è 2. Osserviamo che per ciascun valore d del dado a 4 facce c è uno e un solo valore d 2 del dado a 8 facce la cui somma con d sia. Quindi gli eventi favorevoli, ovvero le coppie (d,d 2 )talicheasomma d + d 2 sia, sono 4, su un totale di 2. La probabilità che si verifichi un evento favorevole è allora 4 2 = 8. [Probema proposto da S. Mongodi.] 6. La risposta è (B). Indichiamo con n la soluzione intera dell equazione x 0 + kx 2 +4=0; osserviamochen = 0 altrimenti l equazione non è verificata. Possiamo scrivere: n 0 + kn 2 +4=0 k = n 8 4 n 2. Dunque, dato che k è i n t e r o e n 8 4 è i n t e r o, è i n t e r o, e q u i n d i n 2 divide 4 e quindi può essere n 2 solo n = ±, n = ±2. Nel primo caso abbiamo k = 5 enelsecondok = 2 8. k può assumere solo due valori. [Problema proposto da P. Leonetti.] 7. La risposta è (A). Un numero è congruo modulo alla somma delle sue cifre, prese a segni alterni (partendo dal segno positivo per la cifra delle unità). Consideriamo allora un quadrato di due cifre che si scriva, in notazione decimale, come ab; notiamo subito che 8 a b 9echesicuramente a = b, a = b (sennòab non è un quadrato). Ciò significa che la differenza a b è c o n g r u a, modulo, ad un numero intero x compreso tra e 9. Pertanto, qualsiasi sia il quadrato ab assegnato, esiste sempre una e una sola cifra x compresa tra e 9 tale che x a + b sia congruo azeromodulo,cioètalechexab sia divisibile per. La probabilità è dunque uguale a 9. [Problema proposto da S. Mongodi.] 8. La risposta è (B). Rappresentiamo una generica disposizione di 6 frutti con una sequenza di 6 lettere, ciascuna delle quali può essere una P (pera) o una M (mela). Vogliamo contare le sequenze in cui tra due M non ci sia nessuna P ; per comodità chiamiamo queste sequenze accettabili. Come regola generale, una sequenza è accettabile se tutte le M in essa contenute sono adiacenti l una all altra, cioè consecutive; questa osservazione rende più facile contare le sequenze accettabili perché in una sequenza accettabile la posizione delle M è univocamente determinata una volta che si sia individuata la prima M (quella più a sinistra) e il numero complessivo di M presenti nella sequenza. Utilizzando questo fatto scriviamo allora le possibili sequenze in base al numero di M che esse contengono, partendo dal valore massimo in cui ci sono 6 M (ovvero i 6 frutti sono tutte mele), fino a quello minimo in cui non c è nessuna M: se ci sono 6 M si ha sequenza accettabile: MMMMMM. se ci sono 5 M si hanno 2 sequenze accettabili: MMMMMP, PMMMMM. 5

8 se ci sono 4 M si hanno sequenze accettabili: MMMMPP, PMMMMP, PPMMMM. se ci sono M si hanno 4 sequenze accettabili: MMMPPP, PMMMPP, PPMMMP, PPPMMM. se ci sono 2 M si hanno 5 sequenze accettabili: MMPPPP, PMMPPP, PPMMPP, PPPMMP, PPPPMM. se c è una sola M si hanno 6 sequenze accettabili: MPPPPP, PMPPPP, PPMPPP, PPPMPP, PPPPMP, PPPPPM. infine, l unica sequenza senza M è accettabile: PPPPPP. In tutto abbiamo allora = 22 sequenze accettabili. [Problema proposto da P. Leonetti.] 9. La risposta è (E). La cavalletta percorre la spezzata evidenziata in figura, costruita sui lati di triangoli equilateri tra loro adiacenti, in cui i punti rappresentano la posizione in cui essa si trova all inizio e dopo ogni 20 salto. Ne segue che dopo 7 salti la cavaletta si trova precisamente 60 a5 0 cm di distanza dal punto iniziale. o 0 [Problema proposto da S. Monica.] 20. La risposta è (B). Consideriamo la funzione polinomiale f(t) =(t )(t +) 202. Per t>questafunzione è c r e s c e n t e, i n q u a n t o e n t r a m b e l e f u n z i o n i ( t ) e (t +) 202 lo sono, e dunque lo è il loro prodotto. Si ha per ipotesi f(x) =0mentre f = < 202 < 0 pertanto + <x. D altra parte, poiché sappiamo che x>, da f(x) =0deduciamo 202 immediatamente che x =+ < + (x +) [Problema proposto da S. Mongodi.] 6

I Giochi di Archimede - Soluzioni Triennio 22 novembre 2012

I Giochi di Archimede - Soluzioni Triennio 22 novembre 2012 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Triennio novembre 0 Griglia delle risposte corrette Problema Risposta

Dettagli

I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012

I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio novembre 0 Griglia delle risposte corrette Problema Risposta

Dettagli

I Giochi di Archimede - Gara Biennio 22 novembre 2012

I Giochi di Archimede - Gara Biennio 22 novembre 2012 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Gara Biennio novembre 0 ) La prova consiste di 6 problemi; ogni domanda è

Dettagli

I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012

I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio novembre 0 Griglia delle risposte corrette Problema Risposta

Dettagli

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2013

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2013 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio 7 novembre 013 Griglia delle risposte corrette Problema

Dettagli

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno Categoria Student Per studenti del quarto e quinto anno della scuola media superiore I quesiti dal N. al N. 0 valgono 3 punti ciascuno. Risposta B) Per soddisfare le condizioni sulle righe, la coppia di

Dettagli

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Triennio 23 novembre 2016

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano

Dettagli

Risposte ai primi 14 quesiti PUNTEGGIO TOTALE. Istruzioni SQUADRA: SCUOLA: Valutazione esercizi da 1 a 14 A risposta esatta: x5

Risposte ai primi 14 quesiti PUNTEGGIO TOTALE. Istruzioni SQUADRA: SCUOLA: Valutazione esercizi da 1 a 14 A risposta esatta: x5 U.M.I. - I. T. C. G. Pitagora - Calvosa Castrovillari OLIMPIADI DI MATEMATICA 2012- DISTRETTO DI COSENZA Gara a squadre del 2 Febbrio 2012 Istruzioni 1) La prova consiste di 17 problemi divisi in 3 gruppi.

Dettagli

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005

IGiochidiArchimede-SoluzioniBiennio 23 novembre 2005 PROGETTO OLIMPIADI DI MATEMATIA U.M.I. UNIONE MATEMATIA ITALIANA SUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniBiennio 3 novembre 00 1 Griglia delle risposte corrette Risoluzione dei problemi Problema

Dettagli

Regole: Tra due M non ci devono essere P (quindi le M sono da considerarsi come un unico elemento unito che non si può spezzare)

Regole: Tra due M non ci devono essere P (quindi le M sono da considerarsi come un unico elemento unito che non si può spezzare) 1) Considero la parte di figura più generica rappresentata dal fiore a sei petali. Scelto il colore del centro, mi rimangono solo due colori da utilizzare per i petali. Per essi avrò quindi due diverse

Dettagli

Corso di preparazione ai Giochi di Archimede Geometria e Logica

Corso di preparazione ai Giochi di Archimede Geometria e Logica Corso di preparazione ai Giochi di Archimede Geometria e Logica 1) Claudia ha disegnato sul quaderno l iniziale del suo nome, una C. Il disegno è stato fatto tagliando esattamente a metà una corona circolare

Dettagli

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi

Dettagli

GARA MATEMATICA CITTÀ DI PADOVA. 26 marzo 2011 SOLUZIONI

GARA MATEMATICA CITTÀ DI PADOVA. 26 marzo 2011 SOLUZIONI 26 a GARA MATEMATICA CITTÀ DI PADOVA 26 marzo 2011 SOLUZIONI 1.- Affinché le soluzioni siano numeri interi è necessario che il discriminante dell equazione sia un quadrato perfetto ( in questo caso la

Dettagli

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca I Giochi di Archimede - Gara Biennio 22 novembre 2018 La prova è costituita da

Dettagli

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA. 4. Qual è la cifra delle unità di 3 (87)? (A) 1 (B) 7 (C) 3 (D) 9 (E) 5

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA. 4. Qual è la cifra delle unità di 3 (87)? (A) 1 (B) 7 (C) 3 (D) 9 (E) 5 T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Biennio 25 novembre 2015

Dettagli

Risposte ai primi 14 quesiti

Risposte ai primi 14 quesiti U.M.I. - I. T. C. G. Pitagora - Calvosa Castrovillari OLIMPIADI DI MATEMATICA 2011- DISTRETTO DI COSENZA Gara a squadre del 24 Marzo 2011 Istruzioni 1) La prova consiste di 17 problemi divisi in 3 gruppi.

Dettagli

3. Quante sono le coppie di numeri interi positivi (m, n) tali che m n = 2 12? (A) 2 (B) 1 (C) 3 (D) 6 (E) 4

3. Quante sono le coppie di numeri interi positivi (m, n) tali che m n = 2 12? (A) 2 (B) 1 (C) 3 (D) 6 (E) 4 T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca I Giochi di Archimede - Gara Biennio 23 novembre 2017 La prova è costituita da

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 18 marzo 2010 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_10Mat.qxp 15-02-2010 7:17 Pagina 28 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

I Giochi di Archimede - Soluzioni Triennio 27 novembre 2013

I Giochi di Archimede - Soluzioni Triennio 27 novembre 2013 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Triennio 7 novembre 013 Griglia delle risposte corrette Problema

Dettagli

Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio Quesiti

Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio Quesiti Kangourou della Matematica 2016 Coppa a squadre Kangourou Semifinale turno A Cervia, 7 maggio 2016 Quesiti 1. I biglietti di Giacomo Ci sono 200 biglietti numerati da 1 a 200. Giacomo vuole accoppiare

Dettagli

Anno accademico

Anno accademico Anno accademico 1998 1999 1. Dato un quadrato Q di lato unitario siano P 1, P 2, P 3, P 4, P 5 dei punti interni a Q. Sia d i j la distanza fra P i e P j. (a) Si dimostri che almeno una delle distanze

Dettagli

Progetto Olimpiadi di Matematica 2000

Progetto Olimpiadi di Matematica 2000 UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE DI PISA Progetto Olimpiadi di Matematica 2000 GARA di SECONDO LIVELLO 21 febbraio 2001 1) Non sfogliare questo fascicoletto finché l insegnante non ti

Dettagli

BUON LAVORO E BUON DIVERTIMENTO!!!

BUON LAVORO E BUON DIVERTIMENTO!!! A. I. C.M. c/o L.S. S. Cannizzaro Via Arimondi, 14 Palermo http://aicm.cjb.net aicm@math.unipa.it GARA DI MATEMATICA PER LA SCUOLA DELL O OBBLIGO DELLA REGIONE AUTONOMA SICILIA SEMIFINALE SCUOLA MEDIA

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio novembre 011 Griglia delle risposte

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012

Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 Kangourou della Matematica 2012 finale nazionale italiana Mirabilandia, 7 maggio 2012 LIVELLO STUDENT S1. (5 punti ) Assegnati tre punti non allineati nello spazio, quante sfere passano per questi tre

Dettagli

2 Premio Alessandro Rabuzzi

2 Premio Alessandro Rabuzzi Premio Alessandro Rabuzzi Gara a squadre di matematica - Febbraio 06 SOLUZIONI Curiosiamo innanzitutto tra gli sport olimpici. I 00 metri piani 06. La maratona 038 3. I cinque anelli 045 4. Marcia 50 km

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Kangourou Italia Gara del 21 marzo 2019 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2019 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2019 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. I numeri 1, 2, 3 e 4

Dettagli

Anno Scolastico PROVA DI MATEMATICA. Di preparazione all esame. Scuola Secondaria di I grado. Classe Terza. Codici. Scuola:... Classe:...

Anno Scolastico PROVA DI MATEMATICA. Di preparazione all esame. Scuola Secondaria di I grado. Classe Terza. Codici. Scuola:... Classe:... Ministero dell Istruzione dell Università e della Ricerca Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione Anno Scolastico 008 009 PROVA DI MATEMATICA Di preparazione

Dettagli

TEST PER L ATTRIBUZIONE DI UN EVENTUALE OBBLIGO FOR- MATIVO AGGIUNTIVO - COMPITO A (2013)

TEST PER L ATTRIBUZIONE DI UN EVENTUALE OBBLIGO FOR- MATIVO AGGIUNTIVO - COMPITO A (2013) TEST PER L ATTRIBUZIONE DI UN EVENTUALE OBBLIGO FOR- MATIVO AGGIUNTIVO - COMPITO A (2013) FACOLTÀ DI ECONOMIA 1. Cinque amici arrivano ad una festa uno per volta. Antonio arriva prima di Beppe. Carlo arriva

Dettagli

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi?

Alunno/a Pag La figura indica quanti romanzi leggono gli alunni di una classe in un mese. Quanti sono gli alunni che leggono almeno 2 romanzi? Alunno/a Pag. Esercitazione Alunno/a in preparazione alla PROVA d ESAME Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera. Quale tra le seguenti proposizioni è FALSA? A. La somma di due numeri dispari

Dettagli

Kangourou Italia Gara del 17 marzo 2005 Categoria Student Per studenti di quarta o quinta superiore. I quesiti dal N. 1 al N. 10 valgono 3 punti

Kangourou Italia Gara del 17 marzo 2005 Categoria Student Per studenti di quarta o quinta superiore. I quesiti dal N. 1 al N. 10 valgono 3 punti _05_D.qp 21/02/2005 16.15 Pagina 28 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di quarta o quinta superiore I quesiti dal N. 1 al N. 10 valgono 3 punti 1. Per quale dei seguenti valori

Dettagli

IGiochidiArchimede--Soluzionitriennio

IGiochidiArchimede--Soluzionitriennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 19 novembre 2008 Griglia delle risposte

Dettagli

Risposte ai primi 14 quesiti PUNTEGGIO TOTALE. Istruzioni SQUADRA: SCUOLA: Valutazione esercizi da 1 a 14 A risposta esatta: x5

Risposte ai primi 14 quesiti PUNTEGGIO TOTALE. Istruzioni SQUADRA: SCUOLA: Valutazione esercizi da 1 a 14 A risposta esatta: x5 U.M.I. - I. I. S. Pitagora - Calvosa Castrovillari OLIMPIADI DI MATEMATICA 2013- DISTRETTO DI COSENZA Gara a squadre del 17 Gennaio 2013 Istruzioni 1) La prova consiste di 17 problemi divisi in 3 gruppi.

Dettagli

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d)

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d) Su ciascuna delle facce di un cubo di lato l si appoggia una piramide retta avente come base la faccia del cubo Che altezza deve avere la piramide affinché la somma dei volumi del cubo e delle piramidi

Dettagli

Kangourou Italia Gara del 28 marzo 2007 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado

Kangourou Italia Gara del 28 marzo 2007 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado Testi_08.qxp 9-0-008 14:56 Pagina Kangourou Italia Gara del 8 marzo 007 ategoria Per studenti di seconda o terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono punti ciascuno 1.

Dettagli

Soluzioni ottava gara Suole di Gauss

Soluzioni ottava gara Suole di Gauss Soluzioni ottava gara Suole di Gauss 25 Marzo 2019 1. Risposta: 6435 Per la soluzione di questo problema possiamo considerare le cifre da 1 a 9 come bambini a cui devono essere distribuite in totale 7

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

1 Funzioni trigonometriche

1 Funzioni trigonometriche 1 Funzioni trigonometriche 1 1 Funzioni trigonometriche Definizione 1.1. Si definisce circonferenza goniometrica la circonferenza centrata nell origine di un piano cartesiano e raggio unitario. L equazione

Dettagli

Soluzione esercizi Gara Matematica 2009

Soluzione esercizi Gara Matematica 2009 Soluzione esercizi Gara Matematica 009 ( a cura di Stefano Amato, Emanuele Leoncini e Alessandro Martinelli) Esercizio 1 In una scacchiera di 100 100 quadretti, Carlo colora un quadretto di rosso, poi

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 9 novembre 008 Griglia delle risposte

Dettagli

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Triennio 25 novembre 2015

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti ciascuno.

Dettagli

33 a GARA MATEMATICA CITTÀ DI PADOVA 7 APRILE 2018

33 a GARA MATEMATICA CITTÀ DI PADOVA 7 APRILE 2018 a GARA MATEMATICA CITTÀ DI PADOVA 7 APRILE 018 SOLUZIONI 1.- Dei quattro vertici del quadrato, due stanno sulla semicirconferenza e due sul diametro, infatti tre non possono stare sul diametro (sarebbero

Dettagli

Parte I. Incontro del 6 dicembre 2011

Parte I. Incontro del 6 dicembre 2011 Parte I Incontro del 6 dicembre 20 3 Notazioni Si suppone che il lettore sia familiare con le notazioni insiemistiche, in particolare con quelle che riguardano gli insiemi numerici: N = { 0,, 2, 3, } (numeri

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto.

PNI 2004 QUESITO 1. Il grado sessagesimale è definito come la novantesima parte dell angolo retto. www.matefilia.it PNI 2004 QUEITO 1 Il grado sessagesimale è definito come la novantesima parte dell angolo retto. Il grado centesimale è definito come la centesima parte dell angolo retto. La misura in

Dettagli

20 MARZO 2010 TESTO E SOLUZIONI

20 MARZO 2010 TESTO E SOLUZIONI 25 a GARA MATEMATICA CITTÀ DI PADOVA 20 MARZO 2010 TESTO E SOLUZIONI 1.- È dato un rettangolo ABCD. Si dimostri che per un qualunque punto P del piano vale : PD 2 + PB 2 = PA 2 + PC 2 con AC una diagonale.

Dettagli

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e

SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Prima. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

1 5 Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (c)

1 5 Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (c) Il numero reale log 4 è uguale a 16 8 log 4 16 d) Nessuna delle risposte precedenti è corretta L uguaglianza cos(arccos x) = x è valida Per ogni numero reale x Per ogni x tra 0 e π Per ogni x tra 1 ed

Dettagli

Appunti di Matematica 1 - Insiemi - Insiemi

Appunti di Matematica 1 - Insiemi - Insiemi Insiemi Il concetto di insieme è molto importante in matematica. Cominciamo con lo stabilire cos è un insieme in senso matematico: un raggruppamento di oggetti è un insieme se si può stabilire in modo

Dettagli

Categoria Junior Per studenti di seconda o terza superiore

Categoria Junior Per studenti di seconda o terza superiore Categoria Junior Per studenti di seconda o terza superiore 1. Risposta C). Moltiplicando 2006 per 1, 2, 3, 4 si ottiene rispettivamente 2006, 4012, 6018, 8024. Di questi numeri, solo tre hanno cifre tutte

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Testi_09.qxp 5-04-2009 20:26 Pagina 6 Kangourou Italia Gara del 9 marzo 2009 Categoria Per studenti di terza della scuola secondaria di primo grado o prima della secondaria di secondo grado I quesiti dal

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Junior Per studenti di seconda e terza superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Junior Per studenti di seconda e terza superiore Kangourou Italia Gara del 15 marzo 001 Categoria Junior Per studenti di seconda e terza superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio Quesiti

Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio Quesiti Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio 2016 Quesiti 1. Somme Chiamate m il più piccolo numero di due cifre la somma delle quali sia ancora un numero di due

Dettagli

Un cono circolare retto ha area di base 9π cm 2 e altezza 4 cm. L area della superficie totale del cono è di cm 2

Un cono circolare retto ha area di base 9π cm 2 e altezza 4 cm. L area della superficie totale del cono è di cm 2 Le due rette r ed s nello spazio sono sghembe (non si intersecano e non sono parallele) e le loro direzioni formano un angolo di 45. Ruotando s attorno ad r si ottiene a) Un piano Un cilindro completo

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Parte II. Incontro del 20 dicembre 2011

Parte II. Incontro del 20 dicembre 2011 Parte II Incontro del 20 dicembre 2011 12 I quadrati modulo 4 Cerchiamo di determinare i possibili resti nella divisione per 4 del quadrato x 2 di un numero intero x. Se x = 2h è un numero pari allora

Dettagli

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011

Gara Matematica. Dipartimento di Matematica Ulisse Dini. Viale Morgagni 67/a Firenze. Soluzioni edizione 2011 Gara Matematica Dipartimento di Matematica Ulisse Dini Viale Morgagni 67/a - 50134 Firenze Soluzioni edizione 011 Esercizio 1. Determinare tutti gli interi positivi non nulli n che sono uguali alla somma

Dettagli

Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore

Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 004 005

Dettagli

QUESITO 1. Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo?

QUESITO 1. Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo? www.matefilia.it PNI 29 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Lanciando due dadi, qual è il numero che ha maggiore probabilità di uscita? Qual è la probabilità che esca un numero primo? Nel lancio

Dettagli

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) SOLUZIONI II ALLENAMENTO REGIONALE TEMATICO VENERDÌ 4 DICEMBRE 08 Quesito Siano due numeri interi primi tra loro tali che quanto vale? Sviluppando l espressione si ottiene quindi e e la soluzione è Quesito

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado Testi_07.qxp 16-0-2007 12:0 Pagina 10 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono punti

Dettagli

4. Quale dei seguenti numeri si può ottenere sommando i quadrati di due numeri interi multipli di 3? (A) 459 (B) 363 (C) 633 (D) 495 (E) 549

4. Quale dei seguenti numeri si può ottenere sommando i quadrati di due numeri interi multipli di 3? (A) 459 (B) 363 (C) 633 (D) 495 (E) 549 T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca I Giochi di Archimede - Gara Triennio 22 novembre 2018 La prova è costituita da

Dettagli

Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno

Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno Categoria Benjamin Per studenti del primo e secondo anno della scuola media inferiore I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno 1. Risposta D) (2008 200 8) + 2008 = 1800 + 2008 = 3808. 2. Risposta

Dettagli

Appunti di Trigonometria per il corso di Matematica di base

Appunti di Trigonometria per il corso di Matematica di base Appunti di Trigonometria per il corso di Matematica di base di Giovanna Neve Diploma accademico di primo livello per il corso di Tecnico di Sala di Registrazione Conservatorio C. Pollini Padova Indice

Dettagli

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006 LIVELLO ÉCOLIER E1. (5 punti ) Qual è il multiplo di 11 più vicino a 1000? E2. (7 punti ) Le lettere della parola ELA sono tutte distinte fra loro. Fa corrispondere ad ogni lettera di questa parola una

Dettagli

Prima puntata della gara a squadre. 21 Novembre 2002

Prima puntata della gara a squadre. 21 Novembre 2002 Prima puntata della gara a squadre. 1 Novembre 00 Soluzioni. Quesito 1. Nel piano, consideriamo due cerchi di raggio 3 cm e 1 cm tangenti esternamente. Determinare l area del più piccolo insieme convesso

Dettagli

Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi?

Quesiti. 1. La somma di quest anno La somma vale Quanti sono gli addendi? Quesiti 1. La somma di quest anno La somma 1 3 + 5 7 + 9 vale 2013. Quanti sono gli addendi? 2. Il triangolo numerato Una tabella di numeri ha l aspetto di un triangolo: in figura ne vedete una parte.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.

Dettagli

PROGETTO OLIMPIADI - sezione di Roma. gara a squadre del 29 marzo dipartimenti di Matematica delle Università di Roma I e Roma III

PROGETTO OLIMPIADI - sezione di Roma. gara a squadre del 29 marzo dipartimenti di Matematica delle Università di Roma I e Roma III PROGETTO OLIMPIADI - sezione di Roma gara a squadre del 29 marzo 2001 dipartimenti di Matematica delle Università di Roma I e Roma III con il contributo dell Unione Matematica Italiana (1) Fra pochi mesi

Dettagli

LICEO STATALE C. LORENZINI - PESCIA

LICEO STATALE C. LORENZINI - PESCIA LICEO STATALE C. LORENZINI - PESCIA Progetto Olimpiadi di Matematica Prof. Gianpaolo Prina [gp.prina@gmail.com] Lezione del 5/11/201 - Problemi di allenamento tratti dalle gare olimpiche Geometria piana

Dettagli

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180

inferiore ai 180, ha area uguale al quadrato della corda AD che sottende un arco uguale alla somma dell arco AC e dell arco 180 L approssimazione di π secondo al-kashi Al-Kashi calcola il π in modo tale che soddisfi una condizione, detta Condizione di Al-Kashi : La circonferenza di un cerchio deve essere espressa in funzione del

Dettagli

A. I. C.M. c/o L.S. S. Cannizzaro Via Arimondi, 14 Palermo

A. I. C.M. c/o L.S. S. Cannizzaro Via Arimondi, 14 Palermo A. I. C.M. c/o L.S. S. Cannizzaro Via Arimondi, 14 Palermo http://aicm.cjb.net aicm@dipmat.math.unipa.it GARA DI MATEMATICA PER LA SCUOLA DELL O OBBLIGO DELLA REGIONE AUTONOMA SICILIA SEMIFINALI ELEMENTARI

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in. Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m. I problemi di massimo e minimo sono problemi

Dettagli

Kangourou della Matematica 2019 Coppa Kangourou a squadre Semifinale turno A Cervia, 3 maggio Quesiti

Kangourou della Matematica 2019 Coppa Kangourou a squadre Semifinale turno A Cervia, 3 maggio Quesiti Kangourou della Matematica 209 Coppa Kangourou a squadre Semifinale turno A Cervia, 3 maggio 209 Quesiti. La sostituzione Se sostituite i numeri N =, 2, 3, nell espressione N 2 209N + 209 ottenete una

Dettagli

Quesiti 1. La percentuale 2. Cinque cifre dispari All'interno di un quadrato 4. Giovani e adulti 5. Un numero fortunato Resti e divisioni

Quesiti 1. La percentuale 2. Cinque cifre dispari All'interno di un quadrato  4. Giovani e adulti 5. Un numero fortunato Resti e divisioni Quesiti 1. La percentuale Un numero A è superato del 25% (rispetto a se stesso) da un numero B. Di quale percentuale il numero B (rispetto a se stesso) supera il numero A? 2. Cinque cifre dispari Quanti

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Liceo Scientifico Statale G. Stampacchia Tricase Oggetto: Test di ingresso Conoscenze e competenze sul programma previsto nella classe seconda del Liceo Scientifico. Algebra Q) Ordinare in forma crescente

Dettagli

Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle

Dettagli

2009 Categoria Junior Per studenti del secondo o del terzo anno della scuola secondaria di secondo grado

2009 Categoria Junior Per studenti del secondo o del terzo anno della scuola secondaria di secondo grado 2009 Categoria Junior Per studenti del secondo o del terzo anno della scuola secondaria di secondo grado 1. Risposta E) Un quarto dei 2008 atleti che hanno corso insieme a Matteo si sono classificati prima

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

ESERCIZI DI MATEMATICA

ESERCIZI DI MATEMATICA DI MATEMATICA PER GLI STUDENTI IN INGRESSO ALLA CLASSE PRIMA Rev. Luglio 2019 Pag. 1 di 18 NUMERI NATURALI L insieme dei numeri naturali si indica con N. TABELLA DEI NUMERI PRIMI DIVISIBILITÀ E MULTIPLI

Dettagli

IGiochidiArchimede-SoluzioniTriennio 22 novembre 2006

IGiochidiArchimede-SoluzioniTriennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-SoluzioniTriennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta 1 4 5 6 7 E 8 E 9

Dettagli

IGiochidiArchimede-SoluzioniTriennio 23 novembre 2005

IGiochidiArchimede-SoluzioniTriennio 23 novembre 2005 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE IGiochidiArchimede-SoluzioniTriennio novembre 005 1 Griglia delle risposte corrette Risoluzione dei problemi

Dettagli

Disequazioni di 1 grado

Disequazioni di 1 grado Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze

Dettagli

NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... b =

NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:... b = Soluzioni Test di ingresso: MATEMATICA C.d.L. Scienze Geologiche (26/09/202) VALUTAZIONE mancata risposta o risposta errata: 0 punti risposta corretta: punto NOME E COGNOME:... DATA DI NASCITA:... MATRICOLA:....

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

Soluzioni verifica scritta 1A Scientifico 20/01/2009

Soluzioni verifica scritta 1A Scientifico 20/01/2009 Soluzioni verifica scritta 1A Scientifico 0/01/009 Esercizio 1 68 = 3 + ; = 11 + 0 MCD68 ; ) = ultimo resto 0) 68 68 mcm68 ; ) = = =68 11 = 68 10 + 1) = 680 + 68 = 748 MCD68; ) Esercizio Possiamo considerare

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Superiore. Classe Terza. Ministero dell Istruzione, dell Università e della Ricerca Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli