LA TRASFORMATA DI LAPLACE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA TRASFORMATA DI LAPLACE"

Transcript

1 LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico, dtto modllo matmatico dinamico. al modllo è cotituito da una o più quazioni diffrnziali ch lgano non olo l variabili incognit di ucita (fftti) con qull not di ingro (cau), ma anch l loro drivat riptto al tmpo. Ad mpio un itma SISO linar tmpoinvariant con ingro x ucita y può r dcritto nlla forma: o, con notazion più compatta n n d y(t) d y(t) dy(t) an + a n n a n + ay(t) dt dt dt m m d x(t) d x(t) dx(t) bm + b m m b m + bx(t) dt dt dt n i m i aid y(t) bid x(t). i i È quindi indipnabil conocr l proprità d i procdimnti di oluzion dll quazioni diffrnziali (linari a cofficinti cotanti) al fin di dtrminar l ucita y(t) di un itma dinamico in ripota ad un dato gnal di ingro x(t). Oltr ai mtodi claici drivati dall'analii matmatica, pr riolvr una quazion diffrnzial linar a cofficinti cotanti, qual qulla dcritta prcdntmnt, i può utilizzar l oprator di traformazion condo Laplac. Si tratta di un procdimnto ch prnta numroi vantaggi riptto all tcnich claich dll analii. In particolar, o traforma quazioni intgro-diffrnziali in quazioni algbrich, di più mplic rioluzion. La traformata di Laplac è una traformazion funzional. al traformazion tabilic una corripondnza biunivoca tra funzioni oggtto (funzioni dl tmpo) funzioni immagin: f(t): [,+ [ C F(): C C

2 ì da aociar a funzioni dl tmpo f(t), in gnral a valori compli, funzioni compl F() dlla variabil compla. In tal modo ad un problma oggtto dfinito nl dominio dl tmpo, po di difficil oluzion, vin aociato un problma immagin, dfinito nl dominio dlla variabil compla, più mplic da riolvr. Dalla oluzion immagin i può quindi ricavar la oluzion oggtto con l'oprazion di antitraformazion o traformazion invra. PROBLEMA OGGEO PROBLEMA IMMAGINE traformazion funzional L SOLUZIONE DEL PROBLEMA OGGEO SOLUZIONE DEL PROBLEMA IMMAGINE traformazion invra L - Si conidri ora la gnrica funzion f(t): dfinita pr t [,+ [ gnralmnt continua in [,+ [ aolutamnt intgrabil in ogni intrvallo [,]: f (t) dt < + > Sia inoltr σ + jω una variabil compla i conidri il gunt intgral di Laplac:

3 + t t f (t)dt lim f (t)dt + Quto intgral può convrgr o divrgr. Poono vrificari i gunti cai: a. l intgral convrg C b. l intgral convrg A, con A C c. l intgral non convrg in alcun punto C Ni primi du cai poiamo dfinir una nuova funzion ch A è dfinita com: F: A C C + t F() f (t)dt La funzion F i dic traformata di Laplac dlla funzion f(t). al traformata i indica anch con: F() L{f(t)} C CONDIZIONI SUFFICIENI PER L'ESISENZA DELLA RASFORMAA DI LAPLACE L condizioni ufficinti pr l'itnza dlla traformata di Laplac F() ono lncat di guito ono oddifatt da quai tutt l funzioni f(t) ch vngono analizzat nlla pratica ni controlli automatici. I. Funzion caual : qualiai pr t<+ f (t) pr t< 3

4 al condizion è ncaria pr la biunivocità dlla traformazion, cioè prché i poa ricavar f(t) con l'oprazion invra: f(t) L - {F()} Ea può r facilmnt ottnuta con un'opportuna clta dll'origin dll'a di tmpi, oia ffttuando vntualmnt una tralazion dll'a vrtical. II. Funzion continua a tratti: [,] f(t) ha un numro finito di dicontinuità III. Funzion limitata al finito: M R+ tal ch t R+: f(t) <M con t t IV. Funzion di ordin ponnzial all'infinito: M r+ σ R t R + tal ch f(t) < M -σt con t t t finito EOREMA DEL DOMINIO DI CONVERGENZA Si è vito ch l intgral di Laplac ha un dominio di convrgnza A, in cui o convrg in cui la traformata di Laplac è quindi dfinita. Si può dimotrar ch la traformata di Laplac F() it pr tutti i valori di tali ch: R{}>σc, σc Α ovvro il dominio di convrgnza A è dato da un mipiano ch coincid con la part dl piano complo pota alla dtra dlla rtta vrtical individuata da σc, dtta acia di convrgnza. Evidntmnt nl cao particolar σc- i ha A C la traformata di Laplac F() è dfinita in tutto il piano complo (cao a di pagina 3), 4

5 mntr pr σc+ i ha A la traformata di Laplac F() non è dfinita (cao c di pagina 3). Nl guito ignoriamo il problma dll individuazion dll acia di convrgnza dgli intgrali di Laplac conidrati, dando pr contato ch i vngono analizzati mpr all intrno dl ripttivo dominio di dfinizion. SEGNALI CANONICI ipicamnt ni controlli automatici pr ttar un itma dinamico i utilizzano di gnali dtti canonici o di aggio. Ei vngono lncati di guito. ) Il più comun gnal canonico è il gradino o calino unitario, ch modlla la bruca variazion di un gnal, dovuta ad mpio alla chiuura di un intrruttor o all accnion di un motor lttrico. Eo è dunqu un gnal dicontinuo. ( t ) t < t ) Un ultrior gnal canonico piuttoto comun è la funzion rampa unitaria, ch modlla l aumnto cotant di un gnal. Un mpio tipico i ha ngli altoforni pr la lavorazion di mtalli, in cui la tmpratura aumnta in modo imil all andamnto di una rampa. r ( t ) t t < t 3) Un altro gnal di aggio è la funzion rampa parabolica unitaria, ch modlla l aumnto continuo di un gnal. p ( t ) t t < t 5

6 4) Un ultrior gnal di aggio è la funzion inuoidal, ch modlla l ocillazion continua di un gnal d è comunmnt uata pr ttar la ripota di rti lttrich itmi di controllo audio vido. x ( t ) inωt t < inωt (t). t 5) Di analogo uo è la funzion coinuoidal. x ( t ) coωt t < coωt (t). t 6) Important è poi la funzion impulo di ampizza finita, data dalla combinazion di du gradini, ch ottnd un ara unitaria. t < ;t> p (t) t / p (t) Si orva ch qualiai ia la durata dlla funzion impulo di ampizza finita a ha mpr ara unitaria, oia val la rlazion: + p (t)dt. 7) Il gnal impulo di Dirac è un gnal idal ch approima un impulo di ara unitaria i tingu in un tmpo infinitimo. Eo modlla fnomni itantani com fulmini o urti improvvii. δ( t ) lim p ( t ) 6

7 Valgono l gunti proprità, alcun dll quali ono intuitiv: +. δ( t )dt +. f ( t ) δ( t )dt f ( ) d( t ) δ ( t ) ; 3. ( t ) t δ( τ ) dτ dt dr( t ) ( t ) ; 4. r( t ) t ( τ ) dτ dt dp( t ) r ( t ) ; 5. p( t ) t r( τ ) dτ dt β α f(t) δ(t - a) dt f(a) a α a α [, β] [, β] In particolar, orvando la proprità 3, è vidnt ch in a l oprator di drivata indica la drivata gnralizzata, poiché l impulo di Dirac è dicontinuo tra - + in o aum valor infinito. Quindi l impulo di Dirac è in raltà una ditribuzion, non una funzion vra propria. RASFORMAE NOEVOLI Riportiamo di guito l traformat di funzioni notvoli. E i poono ricavar applicando la dfinizion di intgral di Laplac, com è indicato nl cao dl gradino unitario. a) raformata dlla funzion gradino unitario f(t) (t) pr t pr t < F() 7

8 Infatti dalla dfinizion di traformata i ha: + -t -t F() () (t) dt lim dt + t - - lim - lim - ( ) lim poiché riulta: lim + - R{} > F() con σc b) raformata dll impulo di Dirac f(t) δ(t) F ( ) Infatti dalla dfinizion di traformata applicando la proprità di pagina 6 i ha: -t -t t F() () + (t) dt + δ δ (t) dt c) raformata dlla funzion rampa unitaria f(t) r(t) t (t) F() 8

9 d) raformata dlla funzion rampa parabolica f(t) p(t) / t (t) F() 3 ) raformata dlla funzion ponnzial (a C ) f(t) -at (t) F ( ) + a Infatti dalla dfinizion di traformata i ha: + at -t -(+a)t ( a)t F() (t) dt lim dt lim a -(+a) -(+a) lim - ( ) lim + +a +a +a + poiché -(+a) lim R{} > -R{a} + riulta: F ( ) con σc -R{a} + a f) raformata dll funzioni inuoidali f(t) [n (ωt)] (t) F() ω + ω 9

10 f(t) [co (ωt)] (t) F() + ω Pr la traformazion i fruttano l formul di Eulro, rapprntando l funzioni inuoidali com omm di ponnziali compli. Infatti pr l formul di Eulro i ha: inω t jωt j jωt, coωt jωt + jωt quindi L{in(ωt)} L{ j t ω }- L{ jω t } j j j jω j + jω + jω + jω jω ω. j + ω j + ω + ω Analogamnt i ha: L{co(ωt)} L{ ω }+ L{ j t + jω + jω + ω jωt } + jω + ω + ω + jω. PROPRIEÀ E REGOLE DI RASFORMAZIONE a) Val la gunt rlazion: F(*) F*() dov il imbolo * indica l'oprazion di coniugazion di numri compli: i ricordi ch F() è una funzion a valori compli.

11 b) Proprità di linarità La combinazion linar tramit i cofficinti compli a b di du funzioni f(t) d f(t), avnti traformat F() d F(), ha com traformata la ta combinazion linar dll funzioni F() d F(): f(t) a f(t) + b f(t) F() a F() + b F() Infatti l intgral è un oprator linar. c) orma dlla tralazion nl tmpo Data una funzion f(t) con traformata F(), la funzion f(t) ritardata nl tmpo di τ condi ha la gunt traformata: g(t) f(t-τ) G() -τ F() quindi l oprator -τ modlla un ritardo puro nl dominio dlla frqunza compla. d) orma dlla tralazion compla Data una funzion f(t) con traformata F() conidrato a C, i ha: g(t) -at f(t) G() F(+a) Si noti ch la traformata notvol dlla funzion ponnzial vita nl paragrafo prcdnt è un cao particolar di quto torma, quando i conidra f(t)(t). Altri cai particolari ono i gunti: g(t) (-at) n(ωt) G() ( ) + a + ω g(t) (-at) co(ωt) ( + a) G() ( + a) + ω ω

12 ) orma dl cambiamnto di cala Data una funzion f(t) con traformata F(), la funzion da a ottnuta cambiando la cala di tmpi di una quantità a C ha la gunt traformata: f) orma dlla moltiplicazion pr tn Cai particolari: g(t) f(t/a) G() a F(a ) g(t) t f(t) G( ) g(t) tn f(t) G( ) ( ) n df( ) d d ( n ) [ F( )] d n I) raformata dlla potnza: g(t) tn (t) n! G ( ) n+ Pr mpio: rampa g(t) t (t) r(t) parabola g(t) t (t) p(t) G ( ) G ( ) 3 II) g(t) tn (-at) G ( n! ) ( + a ) n+ g) orma dlla traformata dlla drivata Sia f(t) una funzion dfinita drivabil pr t ; it la traformata F() di f(t), allora it la traformata dlla ua drivata prima, ch val:

13 L {f () (t)} F() - f() Gnralizzando pr l drivat ucciv, con un procdimnto di itrazion i ottin: L {f () (t)} F() - f() - f () () L {f (3) (t)} 3 F() - f() - f () () - f () () L {f (n) (t)} n F() - n- f() - n- f () () f (n-) () - f (n-) () Pr mpio: δ(t) d( t ) dt L {δ(t)}. Si nota ch la condizion inizial i calcola mpr com f( - ), anch la f(t) è dicontinua in, com nl cao dl gradino. Infatti l condizioni iniziali ono conidrat mpr prima dll applicazion dll ingro. h) orma dlla traformata dll'intgral S f(t) ha traformata F(), allora val la rgola: i(t) t f(τ) dτ I() F() Pr mpio: r(t) ( t τ)dτ L {r(t)} p(t) r( t τ)dτ L {p(t)} ;. 3 3

14 i) orma dlla funzion priodica Sia f(t) una funzion priodica di priodo a valori in C. Si conidri la funzion f (t), ottnuta rtringndo il dominio di dfinizion di f(t) all'intrvallo [,]: f (t): [,] C Prtanto val la gunt prion: f(t) k f (t k) f (t) + f (t ) + f (t )+ Si ipotizzi ch f (t) ia traformabil con traformata F (). Allora val la gunt rgola di traformazion: f(t) F( ) F ( ) ( ) F ( ) + n ( ) n F ( ) dov i è applicata la nota rgola dll ri condo cui + n ( x ) n x. l) Prodotto di convoluzion Dat du funzioni f (t) d f (t), il prodotto di convoluzion tra loro è dfinito com gu, dov il imbolo indica il prodotto di convoluzion: f ( t ) f ( t ) + f( t ) f( τ ) f ( t τ ) dτ 4

15 S f(t) d f(t) hanno ripttivamnt traformat F() d F(), val la gunt rgola di traformazion: f(t) F() F () F () IMPULSI DI ORDINE SUPERIORE Analogamnt all impulo di Dirac i poono dfinir impuli di ordin uprior, dov i intnd δ(t) com l impulo dl primo ordin. In gnral l'impulo di ordin n-imo val: n δ n n dδn-(t) d (t) d δ(t) d (t) δ n (t) dt n n dt dt dt d ha traformata (ch i ottin facilmnt applicando la proprità di traformazion dlla drivata di una funzion riportata a pagina ): L {δn(t)} n () n- n Grazi agli impuli è quindi poibil antitraformar i polinomi in. EOREMA DEL VALORE FINALE E EOREMA DEL VALORE INIZIALE I. orma dl valor final Nll'ipoti ch f(t) ia traformabil condo Laplac con traformata F() ia drivabil, ch inoltr ita il limit pr t + di f(t), allora val la gunt rlazion:. lim f (t) lim F() t + 5

16 II. orma dl valor inizial Nll'ipoti ch itano i gunti limiti: lim t f ( t ) lim F( ) allora val la gunt rlazion: lim t f(t) lim F() 6

17 ESEMPI Calcolar la traformata di Laplac dl gunt gnal: La funzion f(t) è priodica di priodo 4. Quindi F ( ) F( ) F ( ) 4 4 dov f 4 (t): [,] R è la funzion gunt: f 4 (t)(t)- (t-)+(t-4) f 4 (t) con 4 + F 4 () + 4 da cui 4 F ( ) F() ( ) 7

18 Calcolar la traformata di Laplac dl gunt gnal a dnt di ga: f(t) f (t) t t La funzion f(t) è priodica di priodo. Quindi F ( ) F( ) F ( ) dov f (t): [,] R è la funzion gunt: f (t)r(t)-r(t-)-(t-) con F () da cui F F() ( ) ( ) 8

19 Calcolar la traformata di Laplac dl gunt gnal ottnuto da un raddrizzator a ingola mionda: f(t) f (t) / t / t La funzion f(t) è priodica di priodo. Quindi F ( ) F( ) dov f (t): [,] R è la funzion gunt: f (t)inωt (t)+inω (t-/) (t-/), con ω π ω ω F () ω + ( + ) + ω + ω + ω da cui F F() ( ) ω + + ω 9

20 Calcolar la traformata di Laplac dl gunt gnal ottnuto da un raddrizzator a doppia mionda: f(t) f (t) t t La funzion f(t) è priodica di priodo. Quindi F ( ) F( ) dov f (t): [,] R è la funzion gunt: f (t)inω t (t)+inω (t-) (t-), con π ω' π ω' ω' ω' F () + ( + ) + ω' + ω' + ω' da cui F F() ( ) ω' + + ω'

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Per decrivere l evoluzione di un itema in regime tranitorio, oia durante il paaggio delle ucite da un regime tazionario ad un altro, è neceario ricorrere ad un modello più generale

Dettagli

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT 2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT Mntr il 1 principio rapprnta la conrazion dll nrgia, il 2 principio riguarda la maima quantità di calor ch può r conrtita in laoro. Alcun dfinizioni: Proco

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Sincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHINE ELETTRICHE Macchin Sincron Stfano Pator Dipartimnto di Inggnria Architttura Coro di Elttrotcnica (IN 04) a.a. 2012-1 Introduzion I gnratori i motori incroni ono formati da du parti: Induttor (part

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIOE ORMALE Prma Principali carattritich dlla curva normal La curva normal tandardizzata Prma Un tipo molto important di ditribuzion di frqunza è qulla normal. Quta ditribuzion è particolarmnt

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE

Trasformata di Laplace ESEMPI DI MODELLIZZAZIONE Traformata di Laplace ESEMPI DI MODELLIZZAZIONE Introduzione La traformata di Laplace i utilizza nel momento in cui è tata individuata la funzione di traferimento La F.d.T è una equazione differenziale

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Lezione 10. Prestazioni statiche dei sistemi di controllo

Lezione 10. Prestazioni statiche dei sistemi di controllo zion Prtazioni tatich di itmi di controllo Error a tranitorio aurito prtazioni tatich di un itma di controllo fanno rifrimnto al uo comportamnto a tranitorio aurito oia alla ituazion in cui il itma dopo

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Studio dei transitori con il metodo delle trasformate di Laplace

Studio dei transitori con il metodo delle trasformate di Laplace Studio di traitori co il mtodo dll traformat di Laplac Apputi a cura dll Igg. Baoccu Gia Piro Marra Luca Tutor dl coro di ELETTROTECNICA pr mccaici chimici A. A 3/4 4/5 Facoltà di Iggria dll Uivrità dgli

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma ) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

N (>0 compr.) 6. SOLLECITAZIONI RESISTENTI NEI CAMPI DI ROTTURA

N (>0 compr.) 6. SOLLECITAZIONI RESISTENTI NEI CAMPI DI ROTTURA 6. SLLEITZINI RESISTENTI NEI PI DI RTTUR Dfiniti i campi i rottura è util, prima i affrontar i prolmi i progtto vrifica ll zioni, trminar pr l rtt i rottura in cian campo l riultanti i momnti riultanti

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma 1) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Esempi Calcolo Antitrasformate

Esempi Calcolo Antitrasformate Eempi Calcolo Antitraformate Note per il Coro di FdA - Info April, 05 Il punto focale del coiddetto metodo di Heaviide per l antitraformazione di un egnale regolare a traformata razionale conite nel riconocere

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del Soluzion rcizio L quazioni dinamich dl itma ono: art lttrica: di v Ri + L + ω dt dov ω è la forza controlttromotric. art mccanica: dω J ϑ βω + i dt dϑ ω dt dov Jl M è il momnto d inrzia dl itma a du ma.

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica Lezione 14 Lezione 15

Argomento 8. Francesca Apollonio Dipartimento Ingegneria Elettronica   Lezione 14 Lezione 15 Argomnto 8 ion 4 ion 5 Francca Apollonio Dipartimnto nggnria Elttronica E-mail: in di tramiion Formalimo utiliato pr lo tudio di fnomni di propagaion: toria dll lin di tramiion a toria dll lin di tramiion

Dettagli

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE a. STRATEGIE PER IL RECUPERO DESTINATARI Il Rcupro sarà rivolto agli alunni ch prsntano ancora difficoltà nll adozion di

Dettagli

Circuito Simbolico. Trasformazione dei componenti

Circuito Simbolico. Trasformazione dei componenti Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del coro di Controllo digitale Coro di Laurea in Ingegneria Informatica e dell Informazione Univerità di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte III Sitemi a dati campionati Gianni

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

Introduzione ai Circuiti Elettronici

Introduzione ai Circuiti Elettronici Inroduzion ai Circuii Elronici Sommario Naura di Sgnali Analogici Digiali Bipoli Bipoli Elmnari Connion di Bipoli Analii di Circuii Linari Tmpo-Invariani Equazioni diffrnziali Faori Funzion di Trafrimno

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6 Lzion 6. Sabilià maric A ni imi LTI F.Prvidi - Fondamni di Auomaica - Lz. 6 Schma dlla lzion A. Sudio dlla maric pr. Tormi ulla abilià di imi LTI. Rgion di ainoica abilià. Criri di abilià baai ulla maric

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) Matmatica Gnral 6 fbbraio 9 (prof Biscglia) Traccia A Trovar, s possibil un punto di approssimazion con un rror nll intrvallo, Dopo avrn accrtata l sistnza, calcolar il sgunt

Dettagli

Segnali e sistemi nel dominio della frequenza

Segnali e sistemi nel dominio della frequenza oria di sgnali Sgnali sismi nl dominio dlla rqunza EORIA DEI SEGNALI LAUREA IN INGEGNERIA DELL INORMAZIONE Sommario Sgnali mpo coninuo priodici Sri di ourir Sgnali mpo coninuo apriodici rasormaa di ourir

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

Prof. Capuzzimati Mario - ITIS "Magistri Cumacini" - Como TRASFORMAZIONI

Prof. Capuzzimati Mario - ITIS Magistri Cumacini - Como TRASFORMAZIONI Traformaa di Laplac Prof. Capuzzimai Mario - ITIS "Magiri Cumacini" - Como TASFOMAZIONI L raformazioni in mamaica ono po uilizza pr aggirar l rilvani difficolà ch i prnano nllo volgr diramn i calcoli richii.

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.:

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.: Prima part, Tma A ) L quazion diffrnzial y y = sin(x), con condizion inizial y(0) =, A: ha infinit soluzioni; B: non ha soluzion; C: ha un unica soluzion; D: ha sattamnt du soluzioni; E: N.A. 2) La funzion

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esrcizi Analisi Matmatica II Anno accadmico 06-07 Foglio. P Calcolar la matric Jacobiana dlla funzion composta g f dov l funzioni g f sono dat da: (a) f : R R g : R R dov f(x, y) = (xy, x + y, sin(y))

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s)

ERRORE STATICO. G (s) H(s) Y(s) E(s) X (s) YRET(s) Preciione a regime: errore tatico ERRORE STATICO Alimentazione di potenza E() YRET() G() Y() H() Per errore tatico i intende lo cotamento, a regime, della variabile controllata Y() dal valore deiderato.

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

1 Trasformate e antitrasformate di Laplace

1 Trasformate e antitrasformate di Laplace Traformate e antitraformate di Laplace Ricordiamo intantanto alcune traformate fondamentali, ricordiamo che iccome la trformato di Laplace tiene conto olo dei valori della funzione pr t poitivo, tutte

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 27 Febbraio 2014 L soluzioni dlla prova scritta di Matmatica dl 7 Fbbraio 4. Sia data la unzion a. Trova il dominio di b. Scrivi, splicitamnt pr stso non sono suicinti disnini, quali sono li intrvalli in cui è positiva

Dettagli

Funzioni Continue. se (e solo se) 0

Funzioni Continue. se (e solo se) 0 : A R R A ' Funzioni Continu La unzion si dic continua in ( ( s ( solo s A N sguono tr proprità ainché ( sia continua in :. Dvono sistr initi il it dstro sinistro di ( in. Tali iti dvono ssr uguali tra

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

1;. Argomenta con adeguate motivazioni. ax b abbia un massimo di.. Argomenta con adeguate motivazioni

1;. Argomenta con adeguate motivazioni. ax b abbia un massimo di.. Argomenta con adeguate motivazioni CALCOLO DIFFERENZIALE APPLICAZIONI E COMPLEMENTI 1 Calcola il valor di a b in modo ch il grafico dlla 3 funzion y a b 4 1 abbia un massimo nl punto di coordinat ;1 Argomnta con adguat motivazioni Calcola

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli