Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi"

Transcript

1 Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata Luca Bertazzi 0 3

2 Ulisse: da Troia a Itaca Troia Itaca 509 km Quale è stato invece il viaggio di Ulisse?

3 Il viaggio di Ulisse Troia Itaca 9404 km 0 anni Un Odissea!!

4 Ottimizzare il viaggio di Ulisse Ulisse poteva percorrere 509 km per tornare a Itaca ne ha percorsi 9404 visitando 6 location Qual è il percorso minimo che parte da Itaca, visita le 6 location una sola volta e ritorna a Itaca?

5 Le 6 location da visitare Itaca

6 La soluzione di Ulisse Troia Itaca = 993 km Qual è invece il percorso ottimo?

7 Il percorso ottimo Itaca 6859 km 3054 km in meno!!

8 Logistica 0 3

9 ) Gestione della produzione 0 3

10 0 3 Drilling problems: Quale percorso minimizza il tempo totale di perforazione del circuito?

11 2) Gestione magazzini e scorte 0 3

12 Picking problems: Quale percorso minimizza il tempo totale di picking nel magazzino?

13 3) Gestione dei trasporti 0 3

14 0 3 Routing problems: 0 3 Quali percorsi minimizzano la distanza totale per servire i clienti?

15 0 3 4) Logistica integrata Strategie di produzione e spedizione che ottimizzino: 0 3 Produzione Trasporto Scorte sistemi integrati di produzione e distribuzione

16 RMI: Retailer-Managed Inventory Ogni retailer decide la propria politica di approvvigionamento VMI: Vendor-Managed Inventory Il supplier monitora le scorte dei retailer e decide quando e come servire ogni retailer

17 Da Ulisse alla Logistica integrata 0 3 Come determinare il percorso minimo che parte da Itaca, visita le 6 location una sola volta e ritorna a Itaca? Come determinare il percorso minimo che parte dal produttore, visita i clienti una sola volta e torna al produttore?

18 Il problema del commesso viaggiatore TSP (Traveling Salesman Problem) Un commesso viaggiatore deve visitare un certo numero di città. Vuole partire da casa e ritornare a casa dopo aver visitato ogni città una sola volta, percorrendo la distanza minima circuito hamiltoniano a costo minimo

19 Dati n : numero di città c ij : distanza dalla città i alla città j n = 6 Matrice delle distanze:

20 Come determinare un circuito hamiltoniano a costo minimo? Algoritmo di Nearest Neighbor - Parto da Itaca Vado verso la città più vicina (Zakinthos) - Da Zakinthos vado verso la città più vicina (Corfù) - Da Corfù - - Torno a Itaca

21 Nearest Neighbor (NN) Itaca 9988 km Più di Ulisse (9404)!! L algoritmo di NN può generare soluzioni non ottime

22 Come determinare un circuito hamiltoniano a costo minimo? Un percorso è una delle permutazioni degli n nodi Algoritmo di completa enumerazione - Genero tutte le permutazioni corrispondenti a soluzioni diverse - Scelgo la permutazione a costo minimo

23 L algoritmo di completa enumerazione genera sempre una soluzione ottima, ma Numero di soluzioni ammissibili: # permutazioni: n! # soluzioni diverse: (n-)!/2 n = 6 5!/ 2 = giorni di calcolo su una potente workstation

24 Come varia il tempo di calcolo al variare di n? n Tempo di calcolo < secondo 4 giorni secoli L algoritmo di completa enumerazione può essere impraticabile

25 Non per questo si deve esagerare E. Hofmann, La Repubblica, 24 settembre 200 Le farò allora un esempio elementare. Supponga di avere alle sue dipendenze un rappresentante di commercio che debba visitare quattro città. Naturalmente vorrà calcolare il percorso che questo signore deve fare nel modo più efficiente possibile, in modo da rendere minimi gli spostamenti e quindi il costo. Ebbene, con i computer normali, di oggi, il problema non è risolvibile. Ci si può impazzire sopra notti intere. Non è risolvibile. Non le dico cosa succede se poi le città invece di quattro diventano venti. Le conviene non cominciare nemmeno.

26 Il più grande TSP risolto all ottimo: nodi Aprile 2006 Georgia Tech

27 Alcuni record precedenti: 987: 666 posti interessanti nel mondo

28 998: 3509 città negli USA

29 200: 52 città in Germania

30 2002: 6862 città in Italia

31 2004: città in Svezia È il più grande TSP geografico risolto all ottimo

32 Soluzioni ottime nel tempo

33 Riassumendo L algoritmo di Nearest Neighbor può generare soluzioni non ottime L algoritmo di completa enumerazione genera sempre una soluzione ottima, ma può essere impraticabile E stato risolto all ottimo un problema con città Come è stato possibile ottenere questo risultato?

34 Ricerca operativa metodi quantitativi e scientifici nei processi decisionali Logistica Finanza Telecomunicazioni Data Mining Bio-informatica Gestione delle Risorse Umane Gestione dei Servizi Sanitari PROBLEMA MODELLO What-if? What-is-best? ALGORITMI software

35 ) Definizione del problema Dato un grafo completo e pesato G=(V,A), determinare un circuito hamiltoniano a costo minimo PROBLEMA MODELLO ALGORITMI software

36 Dati: n : numero di città c ij : distanza dalla città i alla città j n = 6 Matrice delle distanze:

37 2) Formulazione di un modello ) Variabili decisionali: L arco (i,j) appartiene al circuito? PROBLEMA MODELLO ALGORITMI software

38 x x 2 2 Per ogni arco (i,j) si introduce una variabile binaria che può valere 0 o { 0,} x3 { 0,} x4 { 0,} x23 { 0,} x24 { 0,} x34 { 0,} { 0,} x { 0,} x { 0,} x { 0,} x { 0,} x { 0,} 3 4 x ij 32 0 (i,j) non appartiene (i,j) appartiene 42 43

39 2) Funzione obiettivo: PROBLEMA minimizzare il costo totale Costo arco (i,j) 0 = 0 c se se x ij ij x ij = MODELLO ALGORITMI Costo totale: n n i= j= c ij x ij software

40 x x x x = = = 0 = 0 x x 3 x x = 0 = 0 = 0 = 0 x x 4 x x = = = 0 = 0 Costo totale di questa soluzione: n n c ij x ij i= j= = *+ 2*0 + *+ *+ 2*0 + *+ + *0 + 2*0 + *0 + *0 + 2*0 + *0 = 4

41 Funzione obiettivo: PROBLEMA minimizzare il costo totale MODELLO min n n c ij x ij i= j= ALGORITMI software

42 3) Vincoli: a) Si deve entrare in ogni nodo una sola volta n xij = j =,2,..., n i= b) Si deve uscire da ogni nodo una sola volta n xij = i =,2,..., n j= PROBLEMA MODELLO ALGORITMI software

43 c) Subtours elimination 2 PROBLEMA MODELLO i S j S 4 {,2 n} xij S S,..., ALGORITMI software

44 { } { } n j n i x n S S x n i x n j x x c ij S i S j ij n j ij n i ij n i n j ij ij,2,...,,2,..., 0,,2,...,,2,...,,2,..., min = = = = = = = = = = PROBLEMA MODELLO ALGORITMI software Modello:

45 3) Applicazione di algoritmi a) Esatti soluzione ottima x 2 = 0 x 2 = Completa enumerazione Branch-&-Bound Branch-&-Cut x3 = 0 x3 = x4 = 0 x 4 = PROBLEMA MODELLO ALGORITMI software

46 b) Euristici soluzione buona Nearest Neighbor Insertion Lin-Kernighan Tabu search Algoritmi Genetici Simulated Annealing PROBLEMA MODELLO ALGORITMI software

47 Obiettivo ideale: - Soluzione ottima - Tempo polinomiale soluzione ottima euristica PROBLEMA MODELLO ALGORITMI software 0 costo

48 tempo polinomiale esponenziale Es: Nearest Neighbor Es: Completa enumerazione tempo

49 Per il TSP: Tempo/Sol. Ottima Euristica Polinomiale Esponenziale Completa enumerazione Branch-&-Bound Branch-&-Cut Nearest Neighbor Insertion Lin-Kernighan

50 Algoritmi esatti polinomiali Non è mai stato ottenuto un algoritmo in grado di fornire la soluzione ottima del TSP in tempi polinomiali (algoritmo esatto polinomiale) Inoltre: Il TSP è NP-hard

51 Il TSP è NP-hard Appartiene ad una classe di problemi per i quali: - non è mai stato trovato un algoritmo esatto polinomiale - se si trovasse un algoritmo esatto polinomiale per uno di questi problemi, ogni problema della classe avrebbe un algoritmo esatto polinomiale Teoria della complessità computazionale

52 È altamente probabile che un algoritmo esatto polinomiale per il TSP non esista Potenziare gli algoritmi esatti algoritmi euristici PROBLEMA MODELLO ALGORITMI software

53 Algoritmi esatti: Risolvere all ottimo TSP sempre più grandi 954: 49 città 2007: città PROBLEMA MODELLO ALGORITMI software

54 Algoritmi euristici: Trovare soluzioni sempre più vicine all ottimo PROBLEMA MODELLO Nearest Neighbor: 20% Farthest Insertion: 9% Lin-Kernighan: % ALGORITMI software

55 4) Utilizzo di software Gli algoritmi esatti ed euristici sono implementati in software PROBLEMA MODELLO ALGORITMI Concorde software

56 Concorde per il TSP: PROBLEMA MODELLO ALGORITMI software

57 Ricerca operativa e Ulisse Soluzione Ulisse Nearest Neighbor Lin-Kernighan Distanza PROBLEMA MODELLO Ottima 6859 Soluzione ottima in meno di un secondo! ALGORITMI software

58 Ricerca operativa e Logistica componenti fornitori 64 impianti.000 rivenditori 0 PROBLEMA 3 MODELLO Risparmio del 26% del costo logistico! ALGORITMI software

59 0 3 Il TSP è solo uno dei sottoproblemi della logistica integrata La vera sfida consiste nel trovare la soluzione migliore per l intero sistema

60 Conclusione 0 3 Un antico proverbio recita: Se un problema non ha soluzioni, perchè preoccuparsi? Se un problema ha soluzioni, perchè preoccuparsi? PROBLEMA MODELLO ALGORITMI Il problema di Ulisse ha soluzioni La soluzione di Ulisse costa il 43.8% più dell ottimo

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Ricerca Operativa (Operations Research) The Science of Better Modelli e algoritmi per la soluzione di problemi

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

PROBLEMA DEL COMMESSO VIAGGIATORE

PROBLEMA DEL COMMESSO VIAGGIATORE PROBLEMA DEL COMMESSO VIAGGIATORE INTRODUZIONE Il problema del commesso viaggiatore (traveling salesman problem :TSP) è un classico problema di ottimizzazione che si pone ogni qual volta, dati un numero

Dettagli

Algoritmi Euristici. Molti problemi reali richiedono soluzioni algoritmiche

Algoritmi Euristici. Molti problemi reali richiedono soluzioni algoritmiche 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Il problema del commesso viaggiatore e problemi di vehicle routing

Il problema del commesso viaggiatore e problemi di vehicle routing Il problema del commesso viaggiatore e problemi di vehicle routing Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre

Dettagli

Complessità Computazionale

Complessità Computazionale Complessità Computazionale La teoria della Computabilità cattura la nozione di algoritmo nel senso che per ogni problema sia esso decisionale o di calcolo di funzione stabilisce dei criteri per determinare

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e Telematica (DIST) Università di Genova paolucci@dist.unige.it Anno accademico 2000/2001 La Ricerca Operativa (Operation

Dettagli

Cercare il percorso minimo Ant Colony Optimization

Cercare il percorso minimo Ant Colony Optimization Cercare il percorso minimo Ant Colony Optimization Author: Luca Albergante 1 Dipartimento di Matematica, Università degli Studi di Milano 4 Aprile 2011 L. Albergante (Univ. of Milan) PSO 4 Aprile 2011

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e Telematica (DIST) Università di Genova paolucci@dist.unige.it http://www.dattero.dist.unige.it Anno accademico

Dettagli

Problemi di localizzazione di servizi (Facility Location Problems)

Problemi di localizzazione di servizi (Facility Location Problems) 9. Problemi di Localizzazione di Servizi 1 Problemi di localizzazione di servizi (Facility Location Problems) Dato un insieme di clienti richiedenti una data domanda di merce e dato un insieme di possibili

Dettagli

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Richiami di Teoria dei Grafi. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Richiami di Teoria dei Grafi Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Teoria dei grafi La Teoria dei Grafi costituisce, al pari della Programmazione Matematica, un corpo

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati come problemi di Programmazione Lineare

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

LA PROGRAMMAZIONE MATEMATICA (p.m.)

LA PROGRAMMAZIONE MATEMATICA (p.m.) LA PROGRAMMAZIONE MATEMATICA (p.m.) Un problema di programmazione matematica è un problema di ottimizzazione riconducibile alla seguente espressione generale: ricercare i valori delle variabili x 1, x

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

3.1 Progetto di rete con capacità

3.1 Progetto di rete con capacità .1 Progetto di rete con capacità Un azienda deve progettare la propria rete di telecomunicazioni per permettere l invio di una quantità di dati d k 0 per ogni coppia origine-destinazione di nodi (s k,t

Dettagli

Ricordo che è ammesso alla prova scritta solo chi ha già consegnato ed avuto approvato il progetto.

Ricordo che è ammesso alla prova scritta solo chi ha già consegnato ed avuto approvato il progetto. Ricordo che è ammesso alla prova scritta solo chi ha già consegnato ed avuto approvato il progetto. NON CORREGGERÒ il compito a chi non ha consegnato il progetto Esercizio 1 (possibili più risposte esatte

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Cognome................................ Nome................................... Matricola............................... Algoritmi e Strutture Dati Prova scritta del 4 luglio 207 TEMPO DISPONIBILE: 2 ore

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

Teoria della Complessità Computazionale

Teoria della Complessità Computazionale Teoria della Complessità Computazionale Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 21 Ottobre 2014 Ricerca Operativa 2

Dettagli

Tecniche euristiche Ricerca Locale

Tecniche euristiche Ricerca Locale Tecniche euristiche Ricerca Locale PRTLC - Ricerca Locale Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo: rilassamenti Rilassamento

Dettagli

Ricerca Operativa 2. Ricerca Operativa 2 p. 1/6

Ricerca Operativa 2. Ricerca Operativa 2 p. 1/6 Ricerca Operativa 2 Ricerca Operativa 2 p. 1/6 Introduzione In questo corso ci occuperemo di problemi di ottimizzazione. Ricerca Operativa 2 p. 2/6 Introduzione In questo corso ci occuperemo di problemi

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

Ricerca Operativa 2. Ricerca Operativa 2 p. 1/6

Ricerca Operativa 2. Ricerca Operativa 2 p. 1/6 Ricerca Operativa 2 Ricerca Operativa 2 p. 1/6 Introduzione In questo corso ci occuperemo di problemi di ottimizzazione. Tali problemi sono tipicamente raggruppati in classi ognuna delle quali è formata

Dettagli

Nome Cognome... Firma...

Nome Cognome... Firma... Prova del 2 Dicembre 2013 Compito A A.1). (14 punti) Due elettricisti stanno progettando un nuovo impianto elettrico. Hanno a disposizione 50 componenti, con caratteristiche tecniche diverse, e devono

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

Teoria della Complessità Concetti fondamentali

Teoria della Complessità Concetti fondamentali Teoria della Complessità Concetti fondamentali L oggetto della teoria della complessità è stabilire se un problema sia facile o difficile La difficoltà di un problema è una caratteristica generale e non

Dettagli

Problemi intrattabili

Problemi intrattabili Tempo polinomiale ed esponenziale Una Tm M ha complessita in tempo T(n) se, dato un input w di lunghezza n, M si ferma dopo al massimo T (n) passi. Problemi intrattabili Ci occuperemo solo di problemi

Dettagli

Automi e Linguaggi Formali

Automi e Linguaggi Formali Automi e Linguaggi Formali Problemi intrattabili, classi P e NP A.A. 2014-2015 Alessandro Sperduti sperduti@math.unipd.it Problemi intrattabili Ci occuperemo solo di problemi decidibili, cioè ricorsivi.

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Strategie risolutive e algoritmi per problemi di partizionamento ottimo di grafi

Strategie risolutive e algoritmi per problemi di partizionamento ottimo di grafi Strategie risolutive e algoritmi per problemi di partizionamento ottimo di grafi Natascia Piroso 12 luglio 2007 Natascia Piroso Partizionamento ottimo di grafi 12 luglio 2007 1 / 17 Definizione Dato un

Dettagli

Teoria della Complessità Computazionale Parte I: Introduzione

Teoria della Complessità Computazionale Parte I: Introduzione Teoria della Complessità Computazionale Parte I: Introduzione Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it rev. 3.0 - ottobre 2003 Teoria della Complessità Studia la difficoltà dei

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa R.Cerulli M.Gentili - F. Carrabs Dipartimento di Matematica (DM) Università di Salerno LA RICERCA OPERATIVA Si occupa dello sviluppo e dell applicazione di metodi matematici

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Problemi intrattabili, classi P e NP. Problemi intrattabili, classi P e NP

Problemi intrattabili, classi P e NP. Problemi intrattabili, classi P e NP roblemi intrattabili Ci occuperemo solo di problemi decidibili, cioe ricorsivi. Tra loro, alcuni sono detti trattabili, se si puo provare che sono risolvibili in tempo polinomiale in modo deterministico.

Dettagli

Problemi decisionali nei trasporti: Vehicle Routing Problems

Problemi decisionali nei trasporti: Vehicle Routing Problems Problemi decisionali nei trasporti: Vehicle Routing Problems Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Problemi di Trasporto Problemi di pianificazione e gestione con elevata

Dettagli

ALFABETIZZAZIONE INFORMATICA

ALFABETIZZAZIONE INFORMATICA Laurea in ilosofia a.a. 2008-2009 LTIZZZION INORMTI Ogni problema che ho risolto è diventato una regola che in seguito è servita a risolvere altri problemi. (René escartes, artesio iscorso sul metodo )

Dettagli

Metodi di Ottimizzazione per la Logistica e la Produzione

Metodi di Ottimizzazione per la Logistica e la Produzione Metodi di Ottimizzazione per la Logistica e la Produzione Laboratorio Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria Università di Modena e Reggio Emilia MOLP Parte I 1 / 41 Contenuto della

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Euristiche per il Problema del Commesso Viaggiatore Renato Bruni bruni@dis.uniroma.it Il materiale presentato

Dettagli

Teoria della Complessità Computazionale

Teoria della Complessità Computazionale Teoria della Complessità Computazionale Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it Rev. 1.3, 11/00 rev. 1.3 - Novembre 2000 Teoria della Complessità Studia la difficoltà dei problemi

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modelli decisionali su grafi - Problemi di Localizzazione Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Percorso Minimo tra tutte le coppie di vertici 2 Si può applicare n volte Dijstra

Dettagli

Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale (V.O.) Prova scritta di Ricerca Operativa 10 giugno 2003

Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale (V.O.) Prova scritta di Ricerca Operativa 10 giugno 2003 Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale (V.O.) Prova scritta di Ricerca Operativa 1 giugno 23 Nome: Cognome: Matricola: Esercizio 1) Nel concorso a pronostici del Totocalcio

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1. Luigi De Giovanni -

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli

Problemi difficili e ricerca esaustiva intelligente

Problemi difficili e ricerca esaustiva intelligente Problemi difficili e ricerca esaustiva intelligente Progettazione di Algoritmi a.a. 2016-17 Matricole congrue a 1 Docente: Annalisa De Bonis Gli argomenti di questa lezione sono tratti da Dasgupta, Papadimitriou,

Dettagli

Problemi di Instradamento di Veicoli

Problemi di Instradamento di Veicoli Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Problemi di Instradamento di Veicoli Renato Bruni bruni@dis.uniroma1.it Il materiale presentato è derivato

Dettagli

1) Disegnare la rete di progetto con le attività sugli archi, e la rete di progetto con le attività sui nodi.

1) Disegnare la rete di progetto con le attività sugli archi, e la rete di progetto con le attività sui nodi. Un progetto di ricerca e sviluppo di una società si compone di 12 (principali) attività con precedenze, durate normali b ij (in giorni), costi diretti c ij (in dollari) delle attività alla loro durata

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II CORSO DI RICERCA OPERATIVA II docente Ing. Giuseppe Bruno ESERCIZI CAPITOLO 2 - TECNICHE DI PREVISIONE

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II CORSO DI RICERCA OPERATIVA II docente Ing. Giuseppe Bruno ESERCIZI CAPITOLO 2 - TECNICHE DI PREVISIONE UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II CORSO DI RICERCA OPERATIVA II docente Ing. Giuseppe Bruno ESERCIZI CAPITOLO 2 - TECNICHE DI PREVISIONE Esercizio 1 In tabella sono riportati i valori delle

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Prof. Pagani Corrado ALGORITMI E COMPLESSITÀ COMPUTAZIONALE

Prof. Pagani Corrado ALGORITMI E COMPLESSITÀ COMPUTAZIONALE Prof. Pagani Corrado ALGORITMI E COMPLESSITÀ COMPUTAZIONALE COMPLESSITÀ DEGLI ALGORITMI L oggetto della teoria della complessità è stabilire se un problema sia facile o difficile In base a quali parametri

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: max x + x x x x x x + x x Si applichi l algoritmo del Simplesso Duale, per via algebrica, a

Dettagli

Parte II: Ottimalità, rilassamenti e bound

Parte II: Ottimalità, rilassamenti e bound Parte II: Ottimalità, rilassamenti e bound Ottimalità, rilassamenti e bound Consideriamo il seguente problema z * = max {c T x : x X, X {0,1} n } dove z* è il valore della soluzione ottima x*. Domanda:

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

città

città Esercitazione 11-4-18 Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella: città 2 3 4 5 1

Dettagli

Corso di Trasporto merci e logistica. Supporto didattico ad uso esclusivo interno. a cura di: ing. Mario Cordasco A.A

Corso di Trasporto merci e logistica. Supporto didattico ad uso esclusivo interno. a cura di: ing. Mario Cordasco A.A logistica Supporto didattico ad uso esclusivo interno a cura di: ing. Mario Cordasco A.A. 2008-2009 La distribuzione fisica delle merci La logistica è l insieme delle attività e dei servizi che permettono

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Struttura del Corso. Durata

Struttura del Corso. Durata Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria (DISMI) Università degli studi di Modena e Reggio Emilia Via Amendola 2, Pad. Buccola, 42122 Reggio Emilia web: www.or.unimore.it/iori/iori.htm

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability

Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability Un esempio di applicazione della programmazione lineare intera al progetto di una rete stradale con vincoli di network survivability Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria

Dettagli

Corso di Modelli e Algoritmi della Logistica

Corso di Modelli e Algoritmi della Logistica Corso di Modelli e Algoritmi della Logistica - Aree di Intervento della Logistica Prof. Antonio Sassano Dipartimento di Informatica e Sistemistica Universita di Roma La Sapienza Roma Ottobre - Introduzione

Dettagli

Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k )

Soluzione. V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di origine-destinazione (s k,t k ) Soluzione.1 Progetto di rete con capacità a) Diamo la seguente formulazione del problema: Insiemi V : insieme dei nodi del grafo A: insieme degli archi del grafo K: insieme degli indici delle coppie di

Dettagli

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale: min y + y + y + y + y + y y y y + y +y = y y + y +y y

Dettagli

Esame di Ricerca Operativa del 04/07/17

Esame di Ricerca Operativa del 04/07/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y + y +9 y y y

Dettagli

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14 Esame di Ricerca Operativa del /07/18 Cognome) Nome) Numero di Matricola) Esercizio 1. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema max 7 x 1 + x x 1 + x 6 x 1 +x x 1

Dettagli

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Corso di Intelligenza Artificiale, a.a. 2017-2018 Prof. Francesco Trovò 19/03/2018 Constraint Satisfaction problem Fino ad ora ogni stato è stato modellizzato come una

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2016/17) Nome: Cognome: Matricola: Secondo appello //0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si risolva il seguente problema di PL max x x x x x + x x x per via algebrica, mediante l algoritmo del Simplesso Primale a partire

Dettagli

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44;

1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; 1) Data la seguente istanza di TSP (grafo completo con 5 nodi): c 12 = 52; c 13 = 51; c 14 = 40; c 15 = 53; c 23 = 44; c 24 = 15; c 25 = 12; c 34 = 32; c 35 = 55; c 45 = 24 Si calcoli l ottimo duale (formulazione

Dettagli

ESERCIZIO 1: Punto 1

ESERCIZIO 1: Punto 1 ESERCIZIO : Punto La seguente matrice è una matrice delle distanze di un istanza del problema del Commesso Viaggiatore. - - - - - - - Calcolare.Il valore del rilassamento che si ottiene determinando l

Dettagli

Appunti su algoritmi approssimati per il Problema del Commesso Viaggiatore (TSP)

Appunti su algoritmi approssimati per il Problema del Commesso Viaggiatore (TSP) Appunti su algoritmi approssimati per il Problema del Commesso Viaggiatore (TSP) A. Agnetis 1 Algoritmi approssimati ed euristici Il Problema del Commesso Viaggiatore (Traveling Salesman Problem, TSP)

Dettagli

Ottimizzazione Combinatoria 2 Presentazione

Ottimizzazione Combinatoria 2 Presentazione Ottimizzazione Combinatoria Presentazione ANTONIO SASSANO Università di Roma La Sapienza Dipartimento di Informatica, Automatica e Gestionale «Antonio Ruberti» Roma, Febbraio Prerequisiti (cosa sapete)

Dettagli

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. L autista di un taxi puo trasportare al massimo persone richiedendo a ciascuna Euro a km per il viaggio. Fanno richiesta

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

Nome Cognome... Firma...

Nome Cognome... Firma... AA 2017-2018, Prova del 4 Dicembre 2017, Compito A A.1). (13 punti) Una ditta di trasporti possiede 15 grossi camion frigoriferi, ognuno dotato di due celle a temperature differenti. La cella alla temperatura

Dettagli

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2011/12) Nome: Cognome: Matricola: 5 o Appello 8/0/0 RICERCA OPERATIVA (a.a. 0/) Nome: Cognome: Matricola: ) Si individui un albero dei cammini minimi di radice sul grafo in figura, utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Proposte di temi per il progetto

Metodi e Modelli per l Ottimizzazione Combinatoria Proposte di temi per il progetto Metodi e Modelli per l Ottimizzazione Combinatoria L. De Giovanni G. Zambelli Versione del 30/11/2009 Si fornisce di seguito un elenco di possibili temi per il progetto MeMOC, ricordando che il tema del

Dettagli

Teoria della complessità

Teoria della complessità Teoria della complessità Materiale consigliato: testo del corso capitolo 34 Introduzione agli algoritmi e strutture dati T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein McGraw Hill, 2005 Denise Salvi

Dettagli

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 OTTIMIZZAZIONE SU GRAFI. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 2 OTTIMIZZAZIONE SU GRAFI E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Molti problemi decisionali possono essere formulati utilizzando il linguaggio della teoria dei grafi. Esempi: - problemi di

Dettagli

Preappello di metodi matematici per le decisioni economiche e aziendali A

Preappello di metodi matematici per le decisioni economiche e aziendali A UNIVERSITÀ DEGLI STUDI ROMA TRE Preappello di metodi matematici per le decisioni economiche e aziendali 11-12-2018 A Candidato (cognome e nome)......... Matricola o CF...... Esercizio 1 1) Data la matrice

Dettagli

Introduzione ai Problemi di Flusso su Reti

Introduzione ai Problemi di Flusso su Reti UNIVERSI DI PIS IROCINIO ORMIVO IVO - I CICLO CLSSE DI BILIZIONE MEMIC PPLIC Introduzione ai Problemi di lusso su Reti Relatore: Prof. V. Georgiev.U: Prof. M. Berni Elisabetta lderighi R.O e Riforma della

Dettagli

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano Programma lineare intero: (PLI) min c T x Ax b x 0 intero Ipotesi: A, b interi La condizione di interezza non è

Dettagli

Algoritmo per A. !(x) Istanza di B

Algoritmo per A. !(x) Istanza di B Riduzioni polinomiali Una funzione f: T*!T* è detta computabile in tempo polinomiale se esiste una macchina di Turing limitata polinomialmente che la computi. Siano L 1 e L 2 " T* due linguaggi. Una funzione

Dettagli

Week #9 Assessment. Practice makes perfect... November 23, 2016

Week #9 Assessment. Practice makes perfect... November 23, 2016 Week #9 Assessment Practice makes perfect... November 23, 2016 Esercizio 1 Un azienda di trasporto deve caricare m camion {1,..., m} in modo da servire giornalmente un dato insieme di clienti. Nei camion

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

COMPLEMENTI DI RICERCA OPERATIVA

COMPLEMENTI DI RICERCA OPERATIVA Corsi di Laurea in Ingegneria dell Automazione, Informatica, Matematica e Telecomunicazioni COMPLEMENTI DI RICERCA OPERATIVA Edoardo Amaldi DEI - Politecnico di Milano amaldi@elet.polimi.it Sito web: http://home.dei.polimi.it/amaldi/cro-09.shtml

Dettagli