Fondamenti di Infrastrutture Viarie

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti di Infrastrutture Viarie"

Transcript

1 Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo Riviera Studente: Eleonora Magnotta Matricola:

2 ESERCITAZIONE 11 del 19 gennaio 2012 Esercizio 1 Progettare, verificare e tracciare un raccordo concavo e due convessi (uno per condizione da soddisfare) per una strada di categoria C ( km/h, Figura 1): Figura 1: Sezione tipo C1 Si supponga che la velocità di percorrenza, desunta dal diagramma delle velocità, sia di 95 km/h e che i profili altimetrici da raccordare siano i seguenti (Figura 2): - 2% + 2% + 4% - 3% Figura 2: Profili altimetrici da raccordare Prima di iniziare con la soluzione dell esercizio facciamo alcuni richiami teorici: I raccordi verticali condizionano la visibilità disponibile. In particolare: i raccordi concavi condizionano la visibilità nella marcia notturna; i raccordi convessi condizionano la visibilità tanto nella marcia notturna, quanto in quella diurna. 2

3 Il parametro geometrico caratterizzante è Rv (raggio del cerchio osculatore nel vertice del raccordo parabolico. A cavallo dei raccordi verticali si distinguono due casi: 1. veicolo e fascio interni alla curva verticale (D < L); 2. veicolo e fascio esterni alla curva verticale (D > L). Ove: R V = raggio del raccordo verticale concavo [m]; D = distanza di visibilità per l arresto [m]; Δi = variazione di pendenza del raccordo ( i2 i1, %); h = altezza dei fari dal piano stradale [m]; θ = massima divergenza verso l alto del fascio luminoso abbagliante [ ]. 3

4 La normativa italiana fornisce questo abaco di progetto che sintetizza graficamente il risultato delle due equazioni prima viste. Secondo la norma possono essere fatte le seguenti ipotesi: h = 0,5 m; θ = 1. 4

5 Non essendovi differenze nelle condizioni di visibilità tra caso diurno e notturno, le condizioni da analizzare sono quelle di seguito indicate: ostacolo fisso presente sulla corsia; veicolo che procede in senso opposto sulla stessa carreggiata nel caso di sorpasso consentito. La normativa italiana fornisce anche in questo caso un abaco di progetto che sintetizza graficamente il risultato delle equazioni prima viste. 5

6 Valori minimi (nessuna parte del veicolo, eccetto le ruote, deve avere contatti con la superficie stradale): Rv 20 m (DOSSI); Rv 40 m (SACCHE). 2. Valore minimo (comfort di marcia): Svolgimento: La prima operazione da compiere è calcolare la distanza di visibilità D all interno del raccordo verticale. Iniziamo dal RACCORDO CONCAVO: 6

7 Questa è dunque la distanza da assumere come distanza in cui garantire la visibilità. Si passa ora al calcolo del raggio verticale. Si possono utilizzare sia gli abachi che le relazioni analitiche. ABACHI: verrà di seguito riportato l abaco che noi useremo, partendo dale considerazioni che: Δi = 4%; D = m Come si vede dall abaco allegato di seguito si ottiene un raggio verticale pari a 4300 m. Tale raggio verticale R V lo useremo per calcolare la lunghezza del raccordo L: 7

8 RELAZIONI ANALITICHE: consideriamo il caso D<L, ovvero, m < 172m. Calcolo del raggio verticale: Calcolo della lunghezza del raccordo: Verifichiamo ora che i risultati trovati soddisfino i valori minimi impostati dalla Normativa. a. Nessuna parte del veicolo, eccetto le ruote, deve avere contatti con la superficie stadale, quindi, nei raccordi concavi: R V 40 m VERIFICATO. b. Valore minimo dell accelerazione centripeta verticale per il comfort di marcia: VERIFICATO. Per il tracciamento è opportuno ricordare alcune importanti relazioni: Equazione generale dei raccordi parabolici: Coordinate del vertice A della parabola: Valore della freccia f: Il tracciamento viene effettuato per punti. Si suppongono 11 punti aventi Δx costante: 8

9 Noto Δx, utilizzando l equazione generale dei raccordi parabolici posso individuare le coordinate degli 11 punti ipotizzati, e utilizzarli per il tracciamento: Punto: x: y: 1 0,00 0, ,35-0, ,70-0, ,05-0, ,40-0, ,75-0, ,10-0, ,45-0, ,80-0, ,15-0, ,50 0,00 La verticale condotta dal punto V (intersezione delle livellette) suddivide la proiezione sull orizzontale della parabola (L) in due segmenti uguali pari a L/2. Pertanto, noto L e V, posso individuare l origine del sistema di riferimento su cui tracciare la parabola (con opportuna scala) ed i punti di tangenza con le livellette e quindi disegnare il raccordo: 9

10 Inseriamo ora il nostro raccordo in una porzione di profilo longitudinale e non più all interno di un sistema locale di riferimento, dove, i dati di progetto sono: L 1 =150 m; i 1 =-2%; L 2 =120 m; i 2 =+2%; x V1 =15,5 m; z V1 =315,7 m; 10

11 La prima operazione da compiere è il calcolo della distanza di visibilità D all interno del raccordo verticale. La categoria è C, le condizioni da analizzare sono: ostacolo fisso presente sulla corsia; veicolo che precede in senso opposto sulla stessa carreggiata nel caso di sorpasso consentito. La distanza di arresto, anche in questo caso la si può calcolare mediante l abaco delle Norme Tecniche oppure mediante le relazioni analitiche. Si considera la relazione analitica desunta dall equazione della trazione: 11

12 La prima condizione (presenza di ostacolo fisso) richiede pertanto una distanza di visuale libera da garantire è di m. Per la distanza di sorpasso si utilizza la seguente relazione: d S = 20 v = 20 (95/3.6)=527.8 m La seconda condizione (presenza di veicolo che precede in senso opposto sulla stessa carreggiata) richiede pertanto una distanza di visuale libera da garantire di m. Si può procedere al calcolo del raggio verticale. Si possono utilizzare sia gli abachi presenti nella Norma Tecnica (h 1 =1.1 m; h 2 =0.1 m), che le relazioni analitiche: ABACHI: verrà di seguito riportato l abaco che noi useremo, partendo dalle considerazioni che: Δi=7%; D=165.2 m. Si ricava come si vede dall abaco un raggio verticale pari a 8000 m. Tale raggio verticale lo useremo per calcolare la lunghezza L del raccordo: 12

13 RELAZIONI ANALITICHE: consideriamo il caso D<L, ovvero, m < 560 m. Calcolo del raggio verticale: Calcolo della lunghezza del raccordo: Verifichiamo ora che i risultati trovati soddisfino i valori minimi impostati dalla Normativa. c. Nessuna parte del veicolo, eccetto le ruote, deve avere contatti con la superficie stadale, quindi, nei raccordi concavi: R V 20 m VERIFICATO. d. Valore minimo dell accelerazione centripeta verticale per il comfort di marcia: VERIFICATO. Consideriamo infine il caso in cui via vi sia la presenza di un ostacolo mobile, dove quindi si verifichi la distanza di sorpasso. Si può procedere al calcolo del raggio verticale, utilizzando sia gli abachi che le relazioni analitiche: ABACHI: verrà di seguito riportato l abaco che noi useremo, partendo dalle considerazioni che: Δi=7%; D=527.8 m. 13

14 Come si vede dall abaco allegato di seguito si otterrà un raggio verticale pari a m. Tale raggio verticale R V lo useremo per calcolare la lunghezza L del raccordo: RELAZIONI ANALITICHE: consideriamo il caso D < L, ovvero, m < 2394 m. Calcolo del raggio verticale: Calcolo della lunghezza del raccordo: Verifichiamo ora che i risultati trovati soddisfino i valori minimi impostati dalla Normativa. 14

15 e. Nessuna parte del veicolo, eccetto le ruote, deve avere contatti con la superficie stadale, quindi, nei raccordi concavi: R V 20 m VERIFICATO. f. Valore minimo dell accelerazione centripeta verticale per il comfort di marcia: VERIFICATO. Si sceglie la condizione che porta ad avere R V minore e si traccia il raccordo verticale nel sistema di riferimento locale ed inserendolo all interno di un profilo longitudinale, essendo noti i seguenti parametri: L 1 =150 m; i 1 =-2%; L 2 =120 m; i 2 =+2%; x V1 =15,5 m; z V1 =315,7 m; Per il tracciamento è opportune ricordare alcune relazioni importanti: Equazione generale dei raccordi parabolici: Coordinate del vertice A della parabola: Valore della freccia f: Il tracciamento viene effettuato per punti. Si suppongono 11 punti aventi Δx costante: Noto Δx, utilizzando l equazione generale dei raccordi parabolici posso individuare le coordinate degli 11 punti ipotizzati, e utilizzarli per il tracciamento: 15

16 Punto: x: y: ,63 0, ,26 1, ,89 2, ,52 3, , ,78 4, ,41 4, ,04 5, ,67 5, ,3 5, ,93 5, ,56 5, ,19 5, ,82 5, ,45 5, ,08 4, ,71 4, ,34 3, ,97 3, ,6 2,56 La verticale condotta dal punto V (intersezione delle livellette) suddivide la proiezione sull orizzontale della parabola (L) in due segmenti uguali pari a L/2. Pertanto, noto L e V, posso individuare l origine del sistema di riferimento su cui tracciare la parabola (con opportuna scala) ed i punti di tangenza con le livellette e quindi disegnare il raccordo: 16

17 17

Fondamenti di Infrastrutture Viarie

Fondamenti di Infrastrutture Viarie Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo

Dettagli

LA COSTRUZIONE DELL ANDAMENTO ALTIMETRICO DEL NASTRO STRADALE

LA COSTRUZIONE DELL ANDAMENTO ALTIMETRICO DEL NASTRO STRADALE COSTRUZDE, FERROVIE ED AER LA ONE DELL ANDAMENTO ALTIMETRICO DEL NASTRO STRADALE Concetti introduttivi L andamento altimetrico del nastro stradale, detto anche profilo longitudinale del tracciato è costituito

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Fondamenti di Infrastrutture Viarie

Fondamenti di Infrastrutture Viarie Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Paolo Martinis Trieste, 11 marzo Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A.

Paolo Martinis Trieste, 11 marzo Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. Paolo Martinis Trieste, 11 marzo 004 Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. 003-004 Esercitazione Per una strada extraurbana secondaria (tipo

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

DELLA CARREGGIATA IN CURVA

DELLA CARREGGIATA IN CURVA ALLARGAMENTO DELLA CARREGGIATA IN CURVA (1) Nei tratti di strada in curva, a parità di larghezza delle corsie, il franco fra i veicoli diminuisce rispetto a quella che si ha in rettifilo, in misura tanto

Dettagli

PROIEZIONI ORTOGONALI: SEZIONI CONICHE

PROIEZIONI ORTOGONALI: SEZIONI CONICHE www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.

Dettagli

NORME FUNZIONALI E GEOMETRICHE PER LA COSTRUZIONE DELLE STRADE CAP

NORME FUNZIONALI E GEOMETRICHE PER LA COSTRUZIONE DELLE STRADE CAP ANDAMENTO PLANIMETRICO DELL ASSE: Pendenza Trasversale LA CURVA CIRCOLARE CURVE A RAGGIO VARIABILE Effetti benefici: 1 - riducono il contraccolpo (variazione di accelerazione trasversale); 2 - favoriscono

Dettagli

Esercizi (Testi) Roberto Roberti Tel.: 040/

Esercizi (Testi) Roberto Roberti Tel.: 040/ Università degli Studi di Trieste Facoltà di Ingegneria Corso di: Strade Ferrovie ed Aeroporti Esercizi (Testi) Roberto Roberti Tel.: 040/558.3588 E-mail: roberti@dicar.units.it Anno accademico 2011/2012

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

I N D I C E 1. PREMESSA normative di riferimento inquadramento funzionale e sezione trasversale... 4

I N D I C E 1. PREMESSA normative di riferimento inquadramento funzionale e sezione trasversale... 4 I N D I C E 1. PREMESSA... 2 2. normative di riferimento... 3 3. inquadramento funzionale e sezione trasversale... 4 4. caratteristiche progettuali... 5 4.1 Andamento planimetrico... 6 4.1.1 Rettifili...

Dettagli

Lezione 05: Distanze di visibilità

Lezione 05: Distanze di visibilità Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura Laurea Magistrale: Ingegneria Civile Corso : Principi di Infrastrutture iarie (cod. 39MI) Lezione 5: Distanze di visibilità Roberto

Dettagli

I N D I C E 1. GENERALITÀ Galleria IGA Galleria IGA RIFERIMENTI NORMATIVI 4 3. DATI DI BASE PER IL CALCOLO ILLUMINOTECNICO 5

I N D I C E 1. GENERALITÀ Galleria IGA Galleria IGA RIFERIMENTI NORMATIVI 4 3. DATI DI BASE PER IL CALCOLO ILLUMINOTECNICO 5 I N D I C E 1. GENERALITÀ 2 1.1 Galleria IGA01 2 1.2 Galleria IGA02 2 2. RIFERIMENTI NORMATIVI 4 3. DATI DI BASE PER IL CALCOLO ILLUMINOTECNICO 5 4. MODALITÀ DI CALCOLO 6 4.1 Caratteristiche generali 6

Dettagli

Esercitazioni STRADE FERROVIE AEROPORTI Prof. Andrea Benedetto

Esercitazioni STRADE FERROVIE AEROPORTI Prof. Andrea Benedetto Oggetto Corso Docente Esercitazioni STRADE FERROVIE AEROPORTI Prof. Andrea Benedetto Mattia Campolese Anno 2005 / 2006 Studente ANNO ACCADEMICO 2005-2006 CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI STRADE

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Fondamenti di Infrastrutture Viarie

Fondamenti di Infrastrutture Viarie Politecnico di Torino Fondamenti di Infrastrutture Viarie Relazione esercitazioni. Anno Accademico 2011/2012 Corso di Fondamenti di Infrastrutture Viarie Professore: Marco Bassani Esercitatore: Pier Paolo

Dettagli

POLITECNICO DI TORINO 1 a Facoltà di Ingegneria A.A. 2011/2012. Progetto di Infrastrutture Viarie. Corso di Laurea Magistrale in Ingegneria Civile

POLITECNICO DI TORINO 1 a Facoltà di Ingegneria A.A. 2011/2012. Progetto di Infrastrutture Viarie. Corso di Laurea Magistrale in Ingegneria Civile POLITECNICO DI TOINO a Facoltà di Ingegneria A.A. 0/0 Corso di Laurea Magistrale in Ingegneria Civile Progetto di Infrastrutture Viarie prof. Marco Bassani ing. oberto Melotti Esercizio : Progetto di una

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

I.S.I.S. CUCUZZA SEZ. GEOMETRI CALTAGIRONE. PROGRAMMA DI TOPOGRAFIA svolto nella classe V sezione C. anno scolastico

I.S.I.S. CUCUZZA SEZ. GEOMETRI CALTAGIRONE. PROGRAMMA DI TOPOGRAFIA svolto nella classe V sezione C. anno scolastico I.S.I.S. CUCUZZA SEZ. GEOMETRI CALTAGIRONE PROGRAMMA DI TOPOGRAFIA svolto nella classe V sezione C anno scolastico 2005-2006 ARGOMENTO LE STRADE PRELIMINARI Generalità - Evoluzione storica delle strade

Dettagli

Insegnamento di Fondamenti di Infrastrutture viarie

Insegnamento di Fondamenti di Infrastrutture viarie Insegnamento di Fondamenti di Infrastrutture viarie Territorio ed infrastrutture di trasporto La meccanica della locomozione: questioni generali Il fenomeno dell aderenza e l equazione generale del moto

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

La trilaterazione. Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato

La trilaterazione. Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato La trilaterazione È necessario sapere e saper operare con: Le proporzioni Obiettivi di apprendimento: Definizione di trilaterazione Risoluzione di un terreno a piano quotato La trilaterazione è una tecnica

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

L'andamento planimetrico delle strade ordinarie

L'andamento planimetrico delle strade ordinarie L'andamento planimetrico delle strade ordinarie Distanze di sicurezza 1 DISTANZA DI VISUALE LIBERA DISTANZA DI VISUALE LIBERA Google Street View 3 DISTANZA DI VISUALE LIBERA 1,10 m 1,10 m Google Street

Dettagli

Soluzione dei sistemi lineari con metodo grafico classe 2H

Soluzione dei sistemi lineari con metodo grafico classe 2H Soluzione dei sistemi lineari con metodo grafico classe H (con esempi di utilizzo del software open source multipiattaforma Geogebra e calcolatrice grafica Texas Instruments TI-89) Metodo grafico Il metodo

Dettagli

DIAGRAMMA DELLE VELOCITA (1)

DIAGRAMMA DELLE VELOCITA (1) DIAGRAMMA DELLE VELOCITA (1) Scopo del diagramma delle velocità La legge attuale adotta intervalli della velocità di progetto maggiori di quelli considerati nelle precedenti norme del CNR, ma impone delle

Dettagli

ANNO ACCADEMICO 2010-2011 CORSO DI LAUREA IN INGEGNERIA CIVILE

ANNO ACCADEMICO 2010-2011 CORSO DI LAUREA IN INGEGNERIA CIVILE ANNO ACCADEMICO 2010-2011 CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI STRADE FERROVIE AEROPORTI Studente: Gaetano Passaro Matricola: 278723 ANNO ACCADEMICO 2010-2011 CORSO DI LAUREA IN INGEGNERIA CIVILE

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Civile CORSO DI PROGETTO DI INFRASTRUTTURE VIARIE Esercitazione : PROGETTO DI UNA BRETELLA STRADALE Anno

Dettagli

Esercizi. Roberto Roberti Tel.: 040/

Esercizi. Roberto Roberti Tel.: 040/ Esercizi Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura Corso Laurea Magistrale: Ingegneria Civile Insegnamento: Principi di Infrastrutture Viarie (cod. 239MI) Roberto Roberti

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9

Macerata 24 marzo 2015 classe 3M COMPITO DI RECUPERO ASSENTI. k <, mentre se. x = e. x = che sono le soluzioni dell equazione, 3 9 Macerata 4 marzo 015 classe M COMPITO DI RECUPERO ASSENTI Problema 1 y = k x + 5k x 4 + k E dato il fascio di parabole di equazione ( ) ( ). SI ha quindi la concavità rivolta k = si ha la parabola degenere

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

DIAGRAMMA DELLE VELOCITA ESERCITAZIONE

DIAGRAMMA DELLE VELOCITA ESERCITAZIONE PROGETTI DI INFRSTRUTTURE VIRIE DIGRMM DELLE VELOCIT ESERCITZIONE Il capitolo 5.4 del Decreto Ministeriale del 5/11/2001 prevede che per la verifica della correttezza della progettazione si debba redigere

Dettagli

MODULO 1 : OPERAZIONI CON I VOLUMI

MODULO 1 : OPERAZIONI CON I VOLUMI SCHEDA SINTETICA DEGLI OBIETTIVI PERSEGUITI IN TERMINI DI CONOSCENZE, COMPETENZE E CAPACITA MATERIA: TOPOGRAFIA DOCENTE: MARINA GARAVANI Ore di lezione effettuate al 15 maggio 2015: n 125 su n 140 previste

Dettagli

PLANIMETRIA E PROFILO INSIEME

PLANIMETRIA E PROFILO INSIEME PLANIMETRIA E PROFILO INSIEME planimetria profili 11 RELAZIONE TRA PLANIMETRIA E PROFILO La correlazione tra andamento planimetrico e altimetrico è molto stretta; variazioni del primo incidono subito sul

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Si decide un collegamento

Si decide un collegamento ALL'IEA ALLA STRAA Pianificazione del territorio Analisi dei collegamenti ecisioni politiche Si decide un collegamento Fase Preliminare: A - Studio del territorio B - Studio dei volumi di traffico A B

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Corso di Topografia. ISIS Buonarroti - Fossombroni Arezzo. Prof. Giuliano Allegrini - Prof. Fabrizio Martini. Progetto Stradale

Corso di Topografia. ISIS Buonarroti - Fossombroni Arezzo. Prof. Giuliano Allegrini - Prof. Fabrizio Martini. Progetto Stradale Corso di Topografia ISIS Buonarroti - Fossombroni Arezzo Prof. Giuliano Allegrini - Prof. Fabrizio Martini Progetto Stradale 5B CAT - Anno Scolastico 2014/2015 DATI DI PROGETTO* PENDENZA: es. 5% RAGGIO

Dettagli

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante.

Iperbole. L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Iperbole L iperbole è il luogo dei punti per i quali la differenza delle distanze da due punti fissi detti fuochi rimane costante. Vedi figura: Figura 1 Iperbole equilatera. Se i fuochi si trovano sull

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1) ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

FILA A D B. La retta per AB ha equazione y = x - 4, quella per CD y = x + 2. Risolvendo il sistema fra la retta per AB e la circonferenza otteniamo

FILA A D B. La retta per AB ha equazione y = x - 4, quella per CD y = x + 2. Risolvendo il sistema fra la retta per AB e la circonferenza otteniamo FILA A C D B - - A 1) Dato il grafico in figura, scrivere l equazione della circonferenza e le equazioni delle rette per AB e per CD. Scrivere e risolvere i due sistemi fra circonferenza e retta e verificare

Dettagli

Per strade soggette a frequente innevamento la pendenza. minimo utilizzabile è quello che, negli abachi,

Per strade soggette a frequente innevamento la pendenza. minimo utilizzabile è quello che, negli abachi, PRESCRIZIONI NORMATIVE Per strade soggette a frequente innevamento la pendenza trasversale va limitata al 6 % e di conseguenza il raggio minimo utilizzabile è quello che, negli abachi, corrisponde a tale

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

M557 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO. Tema di: MATEMATICA

M557 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO. Tema di: MATEMATICA Maturità Sessione suppletiva 999 M7 ESAME DI STATO DI LICEO SCIENTIFICO COSO DI ODINAMENTO Tema di: MATEMATICA Il candidato scelga a suo piacimento due dei seguenti problemi e li risolva:. Data una semicirconferenza

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli

Grandezze geometriche e fisiche. In topografia si studiano le grandezze geometriche: superfici angoli Topografia la scienza che studia i mezzi e i procedimenti operativi per il rilevamento e la rappresentazione grafica, su superficie piana (un foglio di carta) di una porzione limitata di terreno.... è

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

L illuminamento medio in esercizio risulta pari a 500 lux. Determinare :

L illuminamento medio in esercizio risulta pari a 500 lux. Determinare : 1)Un sala di lettura, di pianta rettangolare 10 x 5 metri, è illuminata con plafoniere dotate di due lampade fluorescenti tubolari, di potenza 36 W ciascuna e flusso luminoso 2800 lm. Le dimensioni dell

Dettagli

Costruzioni di strade, ferrovie e aeroporti Prof. Pasquale Colonna A.A Politecnico di Bari

Costruzioni di strade, ferrovie e aeroporti Prof. Pasquale Colonna A.A Politecnico di Bari CRITERI BASE DI PROGETTAZIONE STRADALE PREMESSA: Occorre fare un paragone tra la circolazione stradale e lacircolazione l i ferroviaria i dacui quellastradale l ha preso origine. ii Obiettivo della circolazione

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari.

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari. Funzioni elementari. Funzioni lineari. Funzioni elementari Per potere determinare le proprietà e quindi il grafico di una qualsiasi funzione a partire dalla sua espressione analitica, dobbiamo prima di

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Microeconomia - Problem set 4 - soluzione

Microeconomia - Problem set 4 - soluzione Microeconomia - Problem set 4 - soluzione (Prof Paolo Giordani - TA: Pierluigi Murro) 2 Maggio 2015 Esercizio 1 Calcolare i prodotti marginali di ciascun fattore produttivo (P M 1, P M 2 ) e il saggio

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

La prospettiva e i suoi strumenti teorici e tecnici

La prospettiva e i suoi strumenti teorici e tecnici Dispense del Corso di Disegno, tenuto da Riccardo Migliari nella Facoltà di Architettura Ludovico Quaroni della Sapienza Università di Roma nell Anno Accademico 2009 2010 La prospettiva e i suoi strumenti

Dettagli

UNIVERSITA DEGLI STUDI DELLA BASILICATA Scuola di Ingegneria. Corso di: FONDAMENTI DI TRASPORTI ESERCITAZIONE

UNIVERSITA DEGLI STUDI DELLA BASILICATA Scuola di Ingegneria. Corso di: FONDAMENTI DI TRASPORTI ESERCITAZIONE UNIVERSITA DEGLI STUDI DELLA BASILICATA Scuola di Ingegneria Corso di: FONDAMENTI DI TRASPORTI ESERCITAZIONE FLUSSO VEICOLARE E LIVELLO DI SERVIZIO DI UNA STRADA BIDIREZIONALE A DUE CORSIE Dott. Ing. Donato

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente.

Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente. La paraola Definizione: si definisce paraola il luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice. Una rappresentazione grafica indicativa

Dettagli

1. La funzione f(x) deve avere uno zero in corrispondenza di x=3

1. La funzione f(x) deve avere uno zero in corrispondenza di x=3 PROBLEMA 1: Il porta scarpe da viaggio Un artigiano vuole realizzare contenitori da viaggio per scarpe e ipotizza contenitori con una base piana e un'altezza variabile sagomata che si adatti alla forma

Dettagli

4^C - Esercitazione recupero n 4

4^C - Esercitazione recupero n 4 4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

INTEGRAZIONE VOLONTARIA N. 1 Immissione alla SP BS 11

INTEGRAZIONE VOLONTARIA N. 1 Immissione alla SP BS 11 ECONORD AMBIENTE SRL Progettazione impianti di recupero e smaltimento rifiuti Consulenza ambientale Sviluppo pratiche autorizzative, V.I.A., Verifiche di V.I.A. etc Pratiche Albo Gestori Ambientali Perizie

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Esercizi e problemi sulla parabola

Esercizi e problemi sulla parabola Esercizi e problemi sulla parabola Esercizio 1. Si consideri l'insieme di parabole: con k R, k 1. Γ k : y = (k + 1)x x + k 4 (a) Determinare, per quali k, la parabola passa per l'origine. (b) Determinare,

Dettagli

ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 2006

ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 2006 Scuola Specializzata per le Professioni Sanitarie e Sociali 69 Canobbio ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 006 Avvertenza: - in tutti gli esercizi i risultati devono essere corredati da calcoli

Dettagli

Esercizi di Fisica LB - Ottica

Esercizi di Fisica LB - Ottica Esercizi di Fisica LB - Ottica Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio Un sistema ottico centrato è costituito (da sinistra a destra) da una lente sottile biconcava (l indice

Dettagli

Lezione 05: Geometria del lato aria

Lezione 05: Geometria del lato aria Università degli Studi di Trieste Dipartimento di Ingegneria e Architettura Laurea Magistrale: Ingegneria Civile Corso di INFRASTRUTTURE AEROPORTUALI Lezione 05: Geometria del lato aria Roberto Roberti

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 CLASSE : 3N indirizzo scienze applicate DOCENTE: CAPRI MATTEO MATERIA: MATEMATICA Libro di testo utilizzato:

Dettagli

DISEGNO E RAPPRESENTAZIONE

DISEGNO E RAPPRESENTAZIONE 29. Osservando la sezione longitudinale dell Auditorium di Ibirapuera costruito da Oscar Niemeyer a San Paolo nel 2005, qual è la corretta disposizione dei piani verticali per ottenere le sezioni trasversali

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI

PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI 7 PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI ESERCITAZIONE 1 (la correzione completa è a pag. 75) In un triangolo ABC, rettangolo in A, con AB = 1 cm e AC = cm, è inscritto un rettangolo ADEF (con D su

Dettagli

pianificazione urbanistica del territorio traffico volume natura classificazione velocità di progetto natura dei terreni centri abitati

pianificazione urbanistica del territorio traffico volume natura classificazione velocità di progetto natura dei terreni centri abitati 1 La realizzazione di una strada costituisce un momento della pianificazione urbanistica del territorio, territorio dunque viene sempre preceduta da un attenta analisi che porta alla definizione dei seguenti

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

Anno 1. Circonferenza

Anno 1. Circonferenza Anno 1 Circonferenza 1 Introduzione Secondo gli storici intorno circa al V millennio a.c. nell'antica Mesopotamia fu inventata dai Sumeri la ruota. Non è un caso che la ruota fu inventata dai Sumeri. Essi,

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO Definizione di circonferenza La circonferenza è una linea chiusa i cui punti sono tutti equidistanti da un punto fisso detto CENTRO Definizione di cerchio Si definisce CERCHIO la

Dettagli