Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12"

Transcript

1 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA SUFFICIENZA Es. *) Data la seguente rete determinare il massimo flusso da S a T. Disegnare il taglio minimo e scrivere nelle parentesi sugli archi il flusso che li attraversa. I numeri associati agli archi sono le capacità massime degli stessi, le capacità minime sono sempre 0. Flusso Massimo S [ ] 5 [ ] 4 [ ] 7 [ ] Es. *) La seguente tabella riporta la richiesta giornaliera di acqua da parte di tre grandi risaie, la capacità di erogazione da parte dei tre bacini più vicini e i costi per unità di acqua fornita. Bacini Risaie A B C Capacità Richiesta Riportare il costo giornaliero complessivo di rifornimento delle risaie e, per ogni risaia, la quantità di acqua fornita da ogni centrale. Costo totale 7 [ ] 6 [ ] 5 [ ] 4 [ ] 9 [ ] 5 [ ] [ ] Bacini Risaie A B C T Es. ) Una azienda manifatturiera deve decidere quali commesse fare eseguire a 4 squadre di lavoro. Ogni squadra può eseguire in tempo utile solo una commessa. Per le diverse caratteristiche delle commesse e competenze dei membri delle squadre di lavoro i costi attesi variano secondo i dati della seguente tabella: Squadra Comm. A B C D Riportare la decisione ottima Squadra 4 Es. 4*) costo totale Dato il seguente problema 0-LP max x -6 x +4 x + 5x 4-8 x 5 0 x - x - 4x + x 4 + 4x x - 8x + 5x + x 4 +7x 5 Sapendo che il suo rilassamento lineare produce la seguente soluzione x 0.86 x x.000 x x Commessa indicare i tagli di estensione di minimal cover indotti da tale soluzione considerando separatamente i due vincoli Taglio associato al primo vincolo Taglio associato al secondo vincolo Es. 5) Dato il seguente problema 0-LP max 5x +0 x +0 x +8 x 4 + 5x 5 6x + 40x + x x 5 4 0x + 4x + 0x + 8x x 5 58 Calcolare il valore della soluzione ottima dei seguenti rilassamenti: rilassamento per eliminazione del primo vincolo rilassamento surrogato, pesando entrambe i vincoli rilassamento lagrangiano, rilassando il primo vincolo con peso. Eliminazione Surrogato Lagrangiano z x x x x 4 x 5

2 A / A 4/ Es. 6*) Risolvere il seguente problema di zaino max x +0 x +8 x +6 x 4 + x 5 0x + x + x + 4x x 5 Utilizzare l'albero di esplorazione in figura, scegliendo x i =0 sempre il ramo di sinistra e x i = il ramo di destra ed usare solo il rilassamento lineare per il calcolo dell UB (tranne al più nei nodi del quarto livello) Per ogni nodo visitato indicare, all'interno di esso, l'ordine di visita ed inoltre, immediatamente sotto, UB e LB (soluzione ottima corrente) e se il nodo è stato potato e per quale motivo. Cerchiare il nodo corrispondente alla soluzione ottima. Es. 7) Il seguente albero è l'albero di esplorazione completo che emergerebbe in una ricerca esaustiva delle soluzioni di un problema di massimizzazione. In realtà l'albero è esplorato con strategia depth first sul nodo più promettente tra i due figli del nodo correntemente analizzato. Indicare in che sequenza i nodi escono dalla ListaNodiAperti e quali nodi sono potati. UB = 000 UB = 60 UB = 700 UB = 600 UB = 550 UB = 540 UB = 55 UB = 50 UB = 540 UB = 450 UB =50 UB = 50 UB = 55 Inammissibile UB = 490 UB = 500 Inammissibile UB = 400 Inammissibile UB = 480 Inammissibile Inammissibile UB = 470 UB = 470 UB = 500 UB = 60 UB=50 Inammissibile UB = 55 Inammissibile Inammissibile

3 A 5/ A 6/ Es. 8*) Data la seguente tabella delle distanze tra alcune città A B C D E A B C D E Determinare un circuito hamiltoniano con le seguenti euristiche del nodo più prossimo: dell inserimento nodo più lontano: A partire dal circuito ottenuto con l euristica del nodo più prossimo, applicare l algoritmo -opt fino a quando non sono più possibili miglioramenti, indicare per tutti i passi ) coppia archi di partenza, ) coppia archi alternativa, ) risparmio ottenuto, 4) circuito finale. Indicare anche i passi dove lo scambio non avviene. Risultato fine algoritmo: Passi (eventualmente aggiungere altre righe) Es. 9) Sia data una rete di trasmissione in cui ad ogni arco (i,j) sono associati una capacità massima u ij (la minima è sempre zero), un costo variabile c ij e un costo fisso f ij, analogamente, ad ogni nodo i sono associati una capacità massima v i (la minima è sempre zero), un costo variabile d i e un costo fisso g i. Siano inoltre x ij e y i le variabili continue che rappresentano il flusso che rispettivamente attraversa gli archi ed i nodi. Siano z ij e w i le variabili binarie che assumono valore quando i rispettivi archi o nodi sono attivi (i.e., attraversati da un flusso non nullo). Indicare la veridicità delle seguenti affermazioni: Dati i vincoli z + z w, z + z 4 w, z + z 4 w il seguente vincolo è un taglio di Chvatal-Gomory z + z + z 4.5w VERO FALSO Il seguente vincolo esprime correttamente il fatto che il nodo può servire al più un canale alla volta tra (,), (,) e (4.) z + z + z 4 w VERO FALSO Il seguente vincolo esprime correttamente il fatto che ragioni di sicurezza almeno uno dei canali che giungono nel nodo deve essere sempre attivo z + z + z 4 VERO FALSO Il seguente vincolo esprime correttamente il fatto che, per ragioni di back-up, se scorre del flusso attraverso i nodi 6 e 7 allora scorre del flusso anche attraverso i nodi 8 o 9: w 6 + w 7 (w 8 + w 9 ) VERO FALSO Coppia archi di partenza Coppia archi alternativa Risparmio ottenuto Circuito finale

4 A 7/ A 8/ Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA SUFFICIENZA Es. *) Data la seguente rete determinare il massimo flusso da S a T. Disegnare il taglio minimo e scrivere nelle parentesi sugli archi il flusso che li attraversa. I numeri associati agli archi sono le capacità massime degli stessi, le capacità minime sono sempre 0. Flusso Massimo S 9 [ ] [ ] 7 [ ] 0 [ ] Es. *) La seguente tabella riporta la richiesta giornaliera di acqua da parte di tre grandi risaie, la capacità di erogazione da parte dei tre bacini più vicini e i costi per unità di acqua fornita. Bacini Risaie A B C Capacità Richiesta Riportare il costo giornaliero complessivo di rifornimento delle risaie e, per ogni risaia, la quantità di acqua fornita da ogni centrale. Costo totale 6 [ ] 5 [ ] 8 [ ] 5 [ ] 9 [ ] 5 [ ] Bacini Risaie A B C T Es. ) Una azienda manifatturiera deve decidere quali commesse fare eseguire a 4 squadre di lavoro. Ogni squadra può eseguire in tempo utile solo una commessa. Per le diverse caratteristiche delle commesse e competenze dei membri delle squadre di lavoro i costi attesi variano secondo i dati della seguente tabella: Squadra Comm. A B C D Riportare la decisione ottima Squadra 4 Es. 4*) costo totale Dato il seguente problema 0-LP max x -6 x +4 x - 5x x 5 0 x - x - 4x + 0x 4 + x x - 8x + 5x + x 4 +7x 5 Sapendo che il suo rilassamento lineare produce la seguente soluzione x 0.74 x x.000 x x Commessa indicare i tagli di estensione di minimal cover indotti da tale soluzione considerando separatamente i due vincoli Taglio associato al primo vincolo Taglio associato al secondo vincolo Es. 5) Dato il seguente problema 0-LP max 5x +0 x +0 x +8 x 4 + 5x 5 6x + 40x + x x 5 4 0x + 4x + 0x + 8x x 5 58 Calcolare il valore della soluzione ottima dei seguenti rilassamenti: rilassamento per eliminazione del primo vincolo rilassamento surrogato, pesando entrambe i vincoli rilassamento lagrangiano, rilassando il primo vincolo con peso. Eliminazione Surrogato Lagrangiano z x x x x 4 x 5

5 A 9/ A 0/ Es. 6*) Risolvere il seguente problema di zaino max x +0 x +8 x +6 x 4 + x 5 0x + x + x + x x 5 0 Utilizzare l'albero di esplorazione in figura, scegliendo x i =0 sempre il ramo di sinistra e x i = il ramo di destra ed usare solo il rilassamento lineare per il calcolo dell UB (tranne al più nei nodi del quarto livello) Per ogni nodo visitato indicare, all'interno di esso, l'ordine di visita ed inoltre, immediatamente sotto, UB e LB (soluzione ottima corrente) e se il nodo è stato potato e per quale motivo. Cerchiare il nodo corrispondente alla soluzione ottima. Es. 7) Il seguente albero è l'albero di esplorazione completo che emergerebbe in una ricerca esaustiva delle soluzioni di un problema di massimizzazione. In realtà l'albero è esplorato con strategia depth first sul nodo più promettente tra i due figli del nodo correntemente analizzato. Indicare in che sequenza i nodi escono dalla ListaNodiAperti e quali nodi sono potati. UB = 000 UB = 60 UB = 700 UB = 600 UB = 550 UB = 540 UB = 55 UB = 50 UB = 540 UB = 450 UB =500 UB = 50 UB = 55 Inammissibile UB = 490 UB = 500 Inammissibile UB = 400 Inammissibile UB = 480 Inammissibile Inammissibile UB = 470 UB = 470 UB = 50 UB = 60 UB=500 Inammissibile UB = 50 Inammissibile Inammissibile

6 A / A / Es. 8*) Data la seguente tabella delle distanze tra alcune città A B C D E A B C D E Determinare un circuito hamiltoniano con le seguenti euristiche del nodo più prossimo: dell inserimento nodo più lontano: A partire dal circuito ottenuto con l euristica del nodo più prossimo, applicare l algoritmo -opt fino a quando non sono più possibili miglioramenti, indicare per tutti i passi ) coppia archi di partenza, ) coppia archi alternativa, ) risparmio ottenuto, 4) circuito finale. Indicare anche i passi dove lo scambio non avviene. Risultato fine algoritmo: Passi (eventualmente aggiungere altre righe) Es. 9) Sia data una rete di trasmissione in cui ad ogni arco (i,j) sono associati una capacità massima u ij (la minima è sempre zero), un costo variabile c ij e un costo fisso f ij, analogamente, ad ogni nodo i sono associati una capacità massima v i (la minima è sempre zero), un costo variabile d i e un costo fisso g i. Siano inoltre x ij e y i le variabili continue che rappresentano il flusso che rispettivamente attraversa gli archi ed i nodi. Siano z ij e w i le variabili binarie che assumono valore quando i rispettivi archi o nodi sono attivi (i.e., attraversati da un flusso non nullo). Indicare la veridicità delle seguenti affermazioni: Dati i vincoli z + z w, z + z 4 w, z + z 4 w il seguente vincolo è un taglio di Chvatal-Gomory z + z + z 4 w VERO FALSO Il seguente vincolo esprime correttamente il fatto che il nodo può servire al più due canali alla volta tra (,), (,) e (4.) z + z + z 4 w VERO FALSO Il seguente vincolo esprime correttamente il fatto che ragioni di sicurezza almeno uno dei canali che giungono nel nodo deve essere sempre attivo z + z + z 4 = w VERO FALSO Il seguente vincolo esprime correttamente il fatto che, per ragioni di back-up, se scorre del flusso attraverso i nodi 6 e 7 allora scorre del flusso anche attraverso i nodi 8 o 9: w 6 + w 7 (w 8 + w 9 ) VERO FALSO Coppia archi di partenza Coppia archi alternativa Risparmio ottenuto Circuito finale

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni Contenuto e scopo presentazione Crew Scheduling e Crew Rostering Contenuto vengono introdotti modelli e metodi per problemi di turnazione del personale Raffaele Pesenti 07/02/2002 14.41 Scopo fornire strumenti

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Problemi complessi : come trovare una soluzione soddisfacente?

Problemi complessi : come trovare una soluzione soddisfacente? Informatica nel futuro, sfide e prospettive - evento scientifico per i 40 anni di ated Manno, 7 ottobre 2011 Problemi complessi : come trovare una soluzione soddisfacente? Marino Widmer Università di Friburgo

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP)

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP) MRP Pianificazione della produzione Materials Requirements Planning (MRP) 15/11/2002 16.58 Con l MRP si decide la tempificazione delle disponibilità dei materiali, delle risorse e delle lavorazioni. MRP

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching POLITECNICO DI TORINO I Facoltà di Ingegneria Corso di Laurea in Matematica per le Scienze dell Ingegneria Tesi di Laurea Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local

Dettagli

PROVA INTRACORSO TRACCIA A Pagina 1 di 6

PROVA INTRACORSO TRACCIA A Pagina 1 di 6 PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI.

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. 1. ABSTRACT In questo progetto si intende costruire un sistema di sorveglianza mediante l uso di robot mobili. L idea base è quella di usare

Dettagli

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE Negli ultimi anni si è compreso che sistemi anche molto diversi tra loro possono essere efficacemente descritti in termini di cosiddetti "networks" o reti complesse.

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME 5 luglio 2006 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Algoritmi enumerativi

Algoritmi enumerativi Capitolo 7 Algoritmi enumerativi Come abbiamo visto, né gli algoritmi greedy né quelli basati sulla ricerca locale sono in grado, in molti casi, di garantire l ottimalità della soluzione trovata. Nel caso

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione presentato in questo file trova la seq. a costo minimo per

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 1 giugno 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del giugno 202 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore ontenuto e scopo presentazione Node Routing ontenuto vengono introdotti modelli e metodi per problemi di ommesso Viaggiatore: Traveling Salesman Problem (TSP) enni di TSP e VRP Scopo fornire strumenti

Dettagli

DNA sequence alignment

DNA sequence alignment DNA sequence alignment - Introduzione: un possibile modello per rappresentare il DNA. Il DNA (Acido desossiribonucleico) è una sostanza presente nei nuclei cellulari, sia vegetali che animali; a questo

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi.

Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. PROGETTO SeT Il ciclo dell informazione Alla ricerca dell algoritmo. Scoprire e formalizzare algoritmi. Scuola media Istituto comprensivo di Fagagna (Udine) Insegnanti referenti: Guerra Annalja, Gianquinto

Dettagli

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2)

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2) Algoritmi per la visualizzazione DISEGNO DI GRAFI: ALCUNI CASI PARTICOLARI Disegno 2D ortogonale Disegno ortogonale 2D () Disegno ortogonale 2D (2) Punto di vista umano: primo criterio per giudicare la

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Contenuto e scopo presentazione. Problemi di Zaino e di Caricamento. Gestione delle operazioni ai terminali. Motivazioni

Contenuto e scopo presentazione. Problemi di Zaino e di Caricamento. Gestione delle operazioni ai terminali. Motivazioni Contenuto e scopo presentazione Problemi di Zaino e di Caricamento Contenuto vengono introdotti dei modelli e degli algoritmi di soluzione per problemi di zaino e di caricamento 09/01/2006 8.00 Scopo fornire

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Introduzione all ottimizzazione Ilario Filippini 2 Esempio 1! 3 Esempio 1!! 4 Esempio 2!!? 5 Ottimizzazione!!!!!! Ottimizzazione 6 Approccio matematico

Dettagli

26 Febbraio 2015 Modulo 2

26 Febbraio 2015 Modulo 2 Reti di Comunicazione e Internet Prof. I. Filippini Cognome Nome Matricola 26 Febbraio 2015 Modulo 2 Tempo complessivo a disposizione per lo svolgimento: 1h 40m E possibile scrivere a matita E1 E2 Domande

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Ricerca con avversari

Ricerca con avversari Ricerca con avversari Roberto Tagliaferri Dipartimento di Informatica Università di Salerno ( Sa ) 84084 Fisciano rtagliaferri@unisa.it Indice I giochi Decisioni ottime nei giochi L algoritmo minimax Potatura

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Informatica per la comunicazione" - lezione 8 -

Informatica per la comunicazione - lezione 8 - Informatica per la comunicazione - lezione 8 - Esercizio Convertire i seguenti numeri da base 10 a base 2: 8, 23, 144, 201. Come procedere per risolvere il problema? Bisogna ricordarsi che ogni sistema,

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

Esercizi svolti di Elettrotecnica

Esercizi svolti di Elettrotecnica Marco Gilli Dipartimento di Elettronica Politecnico di Torino Esercizi svolti di Elettrotecnica Politecnico di Torino TOINO Maggio 2003 Indice Leggi di Kirchhoff 5 2 Legge di Ohm e partitori 5 3 esistenze

Dettagli

COGNOME E NOME (IN STAMPATELLO) MATRICOLA

COGNOME E NOME (IN STAMPATELLO) MATRICOLA Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica 3 Proff. Ghezzi, Lanzi, Matera e Morzenti Seconda prova in itinere 4 Luglio 2005 COGNOME E NOME (IN STAMPATELLO) MATRICOLA Risolvere

Dettagli

CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique

CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique CPM - PERT CPM - PERT CPM e PERT sono metodologie per la gestione di progetti composti da più attività in cui esistano relazioni di precedenza. Critical Path Method Project Evaluation and Review Technique

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Ulteriori applicazioni del Massimo Flusso 1. Connettività di grafi. Selezione di progetti 3. Trasporto in reti 4. Eliminazione in tornei Università degli Studi di Salerno Corso di

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e Alberi di decisione Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e lanciarlo con i parametri di default.

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

Macchine a stati finiti sincrone

Macchine a stati finiti sincrone Macchine a stati finiti sincrone Modulo 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Macchine a stati finiti Dall

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Università degli Studi di Genova Corso di Laurea Magistrale in Ingegneria Gestionale

Università degli Studi di Genova Corso di Laurea Magistrale in Ingegneria Gestionale Pianificazione di una rete logistica per lo smaltimento e il riutilizzo dei rifiuti di apparecchiature elettriche ed elettroniche: applicazione del progetto WEEENMODELS nel Comune di Genova Candidata:

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

Ottimizzazione in ECLiPSe

Ottimizzazione in ECLiPSe OTTIMIZZAZIONE In molte applicazioni non siamo interessati a soluzioni ammissibili, ili, ma alla soluzione ottima rispetto a un certo criterio. ENUMERAZIONE trova tutte le soluzioni ammissibili scegli

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

ALGORITMO DEL SIMPLESSO

ALGORITMO DEL SIMPLESSO ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)

Dettagli

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1]

Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Laurea Specialistica in Informatica - Università di Ferrara 2008-2009 [1] Macchine di Turing modello di calcolo introdotto dall ingegner Alan Turing nel 1936, per simulare il processo di calcolo umano

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Rappresentazione dell Informazione

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

Compito di Informatica Grafica 5 appello 29/06/2006

Compito di Informatica Grafica 5 appello 29/06/2006 Nome e Cognome Numero di Matricola Ing. Edile (Immatr. nell a.a. ) Ing. Edile-Architettura (Immatr. nell a.a. ) Esercizio 1 (12 punti) Sia data la base di dati il cui schema è rappresentato in figura,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli