1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc."

Transcript

1 Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore, ed introduciamo alcune nozioni basilari, quali la formula di Eulero e le funzioni iperboliche. Poniamo: N := {0, 1,, 3,..., n,...}: insieme dei numeri naturali; Z := {..., n,...,, 1, 0, 1,,..., n,...}: insieme dei numeri interi relativi; Q := {m/n : m, n Z,n 0}: insieme dei numeri razionali; R: insieme dei numeri reali (ovvero razionali o irrazionali); 1 C := {z = a + ib : a, b R} (ove i = 1): insieme dei numeri complessi. I numeri reali sono rappresentabili in forma decimale (o più in generale rispetto ad una qualsiasi base) come numeri decimali illimitati. I numeri razionali corrispondono ai decimali illimitati periodici, ad esempio 1 =1,000..., 1,34 =1, , 1,1000 =1, , 1, = I numeri irrazionali sono invece rappresentabili come decimali illimitati aperiodici, ad esempio 1, , π, e. Questi insiemi sono inscatolati come segue: N Z Q R C. Vi sono poi anche gli spazi vettoriali R N, C N per ogni intero N 1. Ricordiamo che R è in corrispondenza biunivoca con i punti della retta, detta retta reale. I numeri razionali sono distribuiti densamente in R, ovvero ogni intervallo ]a, b[ contiene infiniti razionali; tuttavia lungo la retta Q presenta infiniti buchi, corrispondenti agli infiniti numeri irrazionali. Per questo motivo in analisi si usano i numeri reali piuttosto che quelli razionali. Per un qualsiasi sottoinsieme limitato A ( ) di R, inf A e sup A necessariamente esistono in R (mentre min A e max A possono non esistere), ma possono essere irrazionali. Ad esempio, per A := {x R : x>0, x < }, inf A =0, sup A =, min A, max A non esistono. 3 Una Osservazione sui Numeri Complessi. Tramite la corrispondenza C x + iy (x, y) R, l insieme C dei numeri complessi può essere identificato con un piano, detto piano complesso o piano di Argand-Gauss. Tramite la proiezione stereografica ogni punto della sfera (ovvero della superficie di una palla) di raggio unitario è proiettato dal polo nord in un punto del piano equatoriale. Convenendo 1 Ricordiamo che si pone anche R + := {x R : x 0}. Per definizione, lunità immaginaria i risolve l equazione z =1È noto che a questa equazione si può attribuire anche la soluzione z = i. La sostituzione di i con i corrisponde ad un ribaltamento del piano complesso ed è del tutto ininfluente... 3 Ricordiamo che il max A èilpiú grande elemento di A (se esiste), mentre sup A èilpiú piccolo dei maggioranti di A, se l insieme è superiormente limitato, + altrimenti. La distinzione tra min A e inf A è analoga.

2 Metodi Matematici per TLC a.a A. Visintin che il polo nord stesso sia poiettato nel cosiddetto punto all infinito (denotato con ), resta così definita una corrispondenza biunivoca e continua tra la sfera e C { }; quest ultimo insieme è anche denominato sfera di Riemann. Ricordiamo che per ogni numero complesso z = a + ib (con a, b R) si definiscono la parte reale Re(z), la parte immaginaria Im(z), ed il coniugato z come segue: pertanto Re(z) :=a, Im(z) :=b, z := a ib; Re(z) = z + z, Im(z) = z z i z =Re(z) i Im(z) z C. (1.1) L insieme C può sì essere identificato con R,maè dotato di proprietà algebriche ben più ricche di quelle dello spazio vettoriale R, in quanto in C sono definiti anche un prodotto ed una divisione. Tale prodotto non va confuso con quello tra elementi di R e scalari di R, né con il prodotto scalare ed il prodotto vettoriale di R, che forniscono elementi di R. 4 D altra parte, a differenza di questi altri prodotti, il prodotto di C è invertibile: l inverso della moltiplicazione per un qualsiasi complesso w 0è la divisione per w. 5 In C vale poi il teorema fondamentale dell algebra: per ogni n 1, ogni equazione della forma z n + a n 1 z n a 1 z + a 0 =0 (con coefficienti a 0,..., a n 1 C) ha almeno una soluzione z C. 6 La Formula di Eulero e le Funzioni Circolari. I punti del piano, ovvero di R, possono essere rappresentati non solo mediante le coordinate cartesiane ma anche mediante le coordinate polari (ρ, θ) (distanza dall origine ed anomalia): ogni z C è della forma z = ρ(cos θ + i sin θ). È allora conveniente porre la formula di Eulero e iθ :=cos θ + i sin θ θ R, (1.) epiù in generale 7 e a+iθ := e a (cos θ + i sin θ) a, θ R. (1.3) È chiaro che ogni z C può anche essere scritto nella forma z = ρe iθ. Grazie alle formule di addizione del seno e del coseno, si verifica facilmente l identità e z 1+z = e z 1 e z z 1,z C. 4 Il prodotto vettoriale di due elementi di R è considerato come uno scalare, in quanto è perpendicolare ad R. 5 C può anche essere rappresentato mediante l insieme A delle matrici reali antisimmetriche, tramite la corrispondenza ( ) a b C A: a + ib A = ; b a in effetti le quattro operazioni in C si traducono nelle stesse operazioni in A. 6 Più precisamente, ne ha esattamente n, se queste sono considerate con la loro molteplicità (definita opportunamente...). 7 Nel capitolo dedicato al Calcolo Complesso vedremo che questa formula può essere giustificata esprimendo l esponenziale e le funzioni seno e coseno come serie di potenze. Comunque l uso della notazione esponenziale è basato sul fatto che la funzione h(θ) := cos θ+i sin θ soddisfa una proprietà tipica dell esponenziale: h(θ 1 +θ )= h(θ 1 )h(θ ), per ogni θ 1,θ R.

3 Classi Numeriche 3 [Es] Si vede quindi come questa rappresentazione esponenziale sia conveniente per moltiplicazioni, divisioni e potenze di numeri complessi. La (1.) fornisce la seguente rappresentazione delle funzioni circolari (seno e coseno): quindi cos θ := eiθ + e iθ, sin θ := eiθ e iθ i tan θ := sin θ cos θ = eiθ e iθ i(e iθ + e iθ ) Si noti che queste espressioni soddisfano l identità (cos θ) + (sin θ) =1 θ R. θ R; (1.4) θ R tale che e iθ + e iθ 0. (1.5) Quindi al variare di θ in R il punto (x, y) =(cos θ, sin θ) percorre la circonferenza di equazione x + y =1inR. Pertanto il punto z =cos θ + i sin θ appartiene alla circonferenza di equazione Re(z) +Im(z) =1inC, che si può scrivere equivalentemente nella forma z =1 (non z =1!). Le Funzioni Iperboliche. Questi risultati suggeriscono di definire le seguenti funzioni, dette coseno iperbolico, seno iperbolico e tangente iperbolica: cosh θ := eθ + e θ, sinh θ := eθ e θ tanh θ := sinh θ cosh θ = eθ e θ θ R. e θ + e θ θ R, (Non è necessario richiedere e θ + e θ 0 perché la somma di due esponenziali reali non si annulla mai). Queste funzioni soddisfano l identità (1.6) (cosh θ) (sinh θ) =1 θ R. (1.7) Quindi al variare di θ in R il punto (x, y) =(cosh θ, sinh θ) corre lungo la curva di equazione x y =1inR, ovvero l iperbole equilatera passante per il punti (1, 0)e( 1, 0). Pertanto il punto z =cosh θ + i sinh θ percorre l iperbole equilatera di equazione Re(z) Im(z) =1in C. Fin qui abbiamo fatto variare il parametro θ in R. Comunque, grazie agli sviluppi in serie di Taylor in campo complesso, le formule (1.4) valgono per ogni θ C, al pari della formula cos θ + sin θ =1. Pure le definizioni (1.6) possono essere estese ad ogni θ C, al pari della formula (1.7). (In tal modo si vede come la funzione esponenziale complessa permetta di costruire tutte le funzioni circolari ed iperboliche.) Dalle formule (1.6) e (1.4) possiamo allora desumere il seguente legame tra funzioni iperboliche e circolari: cosh iz =cos z, cos iz =cosh z, sinh iz = i sin z sin iz = i sinh z z C. (1.8) Questo ha interessanti conseguenze; ad esempio lungo l asse immaginario le funzioni seno e coseno sono illimitate. Inoltre la soluzione generale dell equazione y = my con m>0può essere scritta nelle due forme equivalenti y(t) =c 1 e mt + c e mt (c 1,c R), y(t) =C 1 cosh(mt)+c sinh(mt) (C 1,C R). (1.9)

4 4 Metodi Matematici per TLC a.a A. Visintin In analogia con le note formule di trigonometria circolare si possono poi derivare le formule della trigonometria iperbolica: Pertanto sinh(α + β) =sinh α cosh β + cosh α sinh β, cosh(α + β) =cosh α cosh β + sinh α sinh β, tanh α + tanh β tanh(α + β) = α, β R. 1 + tanh α tanh β (1.10) cosh α =(cosh α) + (sinh α) =(cosh α) 1 =(sinh α) +1 α R. (1.11) Alcune Decomposizioni Notevoli. (i) Reale ed Immaginario. Come noto ogni numero complesso può essere rappresentato in uno ed un solo modo come somma di una parte reale e di una parte immaginaria, cf. (1.1). Viceversa la parte reale e quella immaginaria possono essere espresse in termini del numero e del suo coniugato. Questa decomposizione si applica quindi anche alle funzioni f : A C. (ii) Pari e Dispari. Sia A un sottoinsieme di R simmetrico rispetto all origine, ad esempio A = R. Per ogni f : A C si dice che f è pari f( t) =f(t) t A, f è dispari f( t) = f(t) t A. (1.1) È immediato verificare che il prodotto di due funzioni pari o di due funzioni dispari è pari, mentre il prodotto di una funzioni pari ed una dispari è dispari (il che può forse spiegare questa terminologia). Ad esempio la funzione potenza t t n è pari se n è pari, mentre è dispari se n è dispari. Il coseno è pari, seno e tangente sono dispari; lo stesso vale per le corrispondenti funzioni iperboliche. Ogni funzione f : A C può essere decomposta nella somma di una parte pari e di una parte dispari: f = f p + f d, ove si è posto f p (t) := f(t)+f( t) Si noti che (parte pari), f d (t) := f(t) f( t) f è pari (dispari, risp.) f d 0(f p 0, risp.). 8 (parte dispari). (1.13) Queste nozioni valgono anche per le successioni bilatere (ovvero con indice che varia in Z invece che in N), che non sono altro che funzioni definite su A = Z. Si noti che la parte reale (immaginaria, rispett.) di una funzione pari è pari; un analoga affermazione vale le per funzioni dispari. Inoltre, banalmente, la parte pari (dispari, rispett.) di una funzione reale è reale; un analoga affermazione vale le per funzioni immaginarie. (iii) Una Decomposizione Doppia. Ogni funzione f : A C può essere decomposta univocamente nella somma di una parte pari reale f pr,più una parte dispari reale f dr,più una parte pari immaginaria f pi,più una parte dispari immaginaria f di : f = f pr + f dr + f pi + f di. 8 g 0 significa che g è identicamente nulla, ovvero g(t) = 0 per ogni t.

5 Classi Numeriche 5 As esempio, la parte pari reale f pr coincide con la parte reale della parte pari, ed anche con la parte pari della parte reale. Analoghe considerazioni valgono per f dr,f pi,f di. (iv) Parte Positiva e Parte Negativa. Posto t + = t + t, t = t t t R, (1.14) si ha t +,t 0, t + t =0, t = t + t, t = t + + t t R. Quindi t 0(t 0, risp.) se e solo se t = t + (t = t, risp.). Ovviamente questa decomposizione può anche essere applicata a t = f(x), per qualsiasi funzione a valori reali: f : A R: f(x) +,f(x) 0, f(x) + f(x) =0 f(x) =f(x) + f(x), f(x) = f(x) + + f(x) x A. (1.15) (v) Parte Simmetrica e Parte Asimmetrica di una Matrice Quadrata. Data una A = {a ij } una matrice di C N, poniamo a (s) ij := a ij + a ji, a (a) ij := a ij a ji i, j {1,.., N}. Le matrici quadrate A (s) = {a (s) ij } e A (a) = {a (a) ij } sono quindi rispettivamente simmetrica e antisimmetrica; inoltre A = A (s) + A (a). (vi) Parte Crescente e Parte Decrescente. Vediamo ora che un ampia classe di funzioni reali di una variabile reale può essere rappresentata come differenza di due funzioni non decrescenti. Sia A un intervallo di R, eventualmente A = R. Per ogni f : R R di classe C 1, scelto un qualsiasi a A e posto g 1 (t) = t a f (τ) + dτ, g (t) = le funzioni g 1 e g sono entrambe non decrescenti e f = g 1 g. Esercizi. Si rappresentino i seguenti numeri complessi 9 t a f (τ) dτ t R, (1.16) 3i exp (ire iϕ ), ( + i) exp ( i i+1 ), (3 i) 1 exp (π π /i),... in forma cartesiana x + iy ed in forma esponenziale e z. Mediante il coniugio e le altre consuete operazioni, si può rapprentare la trasformazione C C : x + iy x + iy? Per ogni a>0 si definisca l esponenziale in base a ponendo a z := e z log a per ogni z C, e si discutano le proprietà di questa funzione. Dall identità (e a ) b = e ab valida per ogni a, b C si ricavi la formula di de Moivre: (cos θ + i sin θ) n =cos(nθ)+i sin(nθ) θ R, n N. Si verifichi la formula della radice: (cos θ + i sin θ) 1/n =cos(θ/n +kπ/n)+i sin(θ/n +kπ/n) per k =0,..., n, θ R, n N(n 0). (1.17) 9 Per ragioni tipografiche a volte è utile porre exp ξ := e ξ.

6 6 Metodi Matematici per TLC a.a A. Visintin Si verifichino le formule (1.10). Si ricavino le formule di bisezione in trigonometria iperbolica, ovvero si esprimano sinh (α/), cosh (α/), tanh (α/) mediante le funzioni iperboliche di α. Si determinino la parti pari e dispari di una funzione f : R C tale che f(t) =0per ogni t<0.

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R.

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R. Serie di Fourier 1 Serie di Fourier In questo capitolo introduciamo le funzioni periodiche, la serie di Fourier in forma trigonometrica per le funzioni di periodo π, e ne identifichiamo i coefficienti.

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Capitolo 9 Esponenziali e logaritmi... Capitolo 0 Funzioni circolari 0. Descrizione di fenomeni periodici Tra le funzioni elementari ne esistono due atte a descrivere fenomeni che si ripetono periodicamente

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

L unità immaginaria si indica con la lettera i oppure con la lettera j

L unità immaginaria si indica con la lettera i oppure con la lettera j I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o CAVOUR-MARCONI Loc. Piscille Via Assisana, 40/d-06154 PERUGIA Tel. 075/5838322 Fax 075/32371

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Programma di Matematica

Programma di Matematica Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

RDefinizione (Funzione) . y. . x CAPITOLO 2

RDefinizione (Funzione) . y. . x CAPITOLO 2 CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

Matematica 3. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [2015-16]

Matematica 3. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [2015-16] Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [05-6] Indice I Numeri e Funzioni Numeri 3. Premessa............................................. 3. Tipi di numeri..........................................

Dettagli

Matematica di base. Marco Di Francesco. October 28, 2015

Matematica di base. Marco Di Francesco. October 28, 2015 Matematica di base Marco Di Francesco October 28, 2015 2 Chapter 1 Insiemi, numeri e introduzione alle funzioni 1.1 Insiemi La teoria degli insiemi permette di definire in modo sintetico e generale i problemi

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Funzioni trascendenti

Funzioni trascendenti Funzioni trascendenti Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 17 novembre 007 Sommario Esponiamo la teoria fondamentale delle funzioni

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

Cos è una funzione? (x,y) Є f o y=f(x)

Cos è una funzione? (x,y) Є f o y=f(x) Cos è una funzione? Dati gli insiemi X e Y non vuoti, si chiama funzione da in una relazione f tale che per ogni x Є X esiste uno ed un solo elemento y Є Y tale che (x,y) Є f. Data la funzione f:x->r,

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Programma precorso di matematica

Programma precorso di matematica Programma precorso di matematica a.a. 015/16 Quello che segue è il programma dettagliato del precorso. Si fa riferimento al testo [MPB] E. Acerbi, G. Buttazzo: Matematica Preuniversitaria di Base, Pitagora

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Successioni e serie di funzioni A. Albanese, A. Leaci, D. Pallara In questa dispensa generalizzeremo la trattazione delle successioni e delle serie al caso in cui i termini delle stesse siano non numeri

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Programmazione del dipartimento di MATEMATICA per il quinquennio

Programmazione del dipartimento di MATEMATICA per il quinquennio IPIA C. CORRENTI Programmazione del dipartimento di MATEMATICA per il quinquennio FINALITA DELL INSEGNAMENTO DELLA MATEMATICA Promuovere le facoltà intuitive e logiche Educare ai processi di astrazione

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0. Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco

Dettagli

PREREQUISITI. Cenni di logica elementare:

PREREQUISITI. Cenni di logica elementare: PREREQUISITI La Conferenza dei Presidi delle Facoltà di Ingegneria Italiane (documento di giugno 2006) ritiene che per intraprendere con profitto gli studi in Ingegneria gli studenti debbano possedere:

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi

Registro di Analisi Matematica II c.l. IIn a.a. 2006/2007 M. Furi Registro delle lezioni di Analisi Matematica II (6 CFU) Università di Firenze - Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica A.A. 2006/2007 - Prof. Massimo Furi Testo di riferimento:

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero

APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA Margherita Roggero A.A. 2005/2006 M. Roggero - Appunti ed Esercizi di Matematica Discreta Introduzione Queste note contengono gli appunti del corso di Matematica

Dettagli