I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ."

Transcript

1 ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti ) Es. A9. Ricordiamo che, dati tre vettori v, v, v in R, per vedere se sono linearmente indipendenti o dipendenti, basta calcolare det (A) = det(v, v, v ) Allora se det (A) = se det (A) i vettori sono linearmente dipendenti i vettori sono linearmente indipendenti Nel nostro caso, poichè risulta v = 4, v = det (A) = i vettori v, v, v sono linearmente indipendenti. ) Es. A In questo caso v = 4, v = det (A) =, v = = 8, v = = i vettori v, v, v sono linearmente dipendenti, cioè si può trovare una combinazione lineare α v + β v + γ v dei tre vettori, con coefficienti α, β e γ non tutti nulli, che fornisce il vettore nullo. Determinare una relazione di dipendenza lineare significa determinare i coefficienti α, β e γ ( non tutti nulli) tali che cioè da cui α α v + β v + γ v = + β α + β + γ β + γ α + β + γ + γ = = Per trovare i tre coefficienti α, β e γ, bisogna pertanto risolvere il sistema lineare omogeneo α + β + γ = β + γ = α + β + γ =.

2 Già sappiamo che la matrice dei coefficienti ha determinante nullo, pertanto il sistema omogeneo ammette soluzioni diverse da quella banale. La sottomatrice ( ) della matrice dei coefficienti ha determinante diverso da zero, pertanto le soluzioni del sistema si ottengono risolvendo il sistema α + β β γ = λ = λ = λ da cui α β γ = λ = λ = λ Questo significa che, ponendo per esempio λ =, si ottiene la relazione di dipendenza lineare + =. Osserviamo che, qualunque altro numero mettiamo al posto di λ, otteniamo una relazione di dipendenza lineare. Ad esempio, ponendo λ = si ha cioè + = OSSERVAZIONE: Era possibile osservare, senza svolgere il procedimento sopra descritto, che v v = v v + v v =. Questa è una relazione di dipendenza lineare, equivalente a quella già trovata. ) Es. B5 I vettori v =, v =, v = sono linearmente dipendenti quando assume i valori che rendono nullo il determinante della matrice A() = Poichè A() =. = + = ( + ) A() = =, =.

3 Pertanto i vettori sono linearmente dipendenti = & = linearmente indipendenti & Per trovare una relazione di dipendenza lineare bisogna esaminare separatamente in casi = e =. Caso =. I vettori sono v =, v =, v = Poichè v è un multiplo di v si può scrivere la relazione di dipendenza lineare Caso =. I vettori sono v = v + v + v =., v =, v = In questo caso la relazione di dipendenza lineare non è del tutto evidente, quindi conviene utilizzare il metodo già visto nell esercizio ( A). Bisogna determinare i coefficienti α, β e γ ( non tutti nulli) tali che cioè da cui α α v + β v + γ v =, + β α + β 6γ α + β γ α γ + γ 6 = = Per trovare i tre coefficienti α, β e γ, bisogna pertanto risolvere il sistema lineare omogeneo α + β 6γ = α + β γ = α γ = Il sistema ammette soluzioni diverse da quella banale perchè la matrice dei coefficienti ha determinante nullo. La sottomatrice ( ) della matrice dei coefficienti ha determinante diverso da zero, pertanto il sistema sopra scritto è equivalente il sistema. 6.. α + β α γ = λ = λ = λ

4 da cui α β γ = λ = λ = λ Questo significa che, ponendo per esempio λ =, otteniamo che fornisce la relazione di dipendenza lineare α = β = γ = v + v + v =, facilmente verificata perchè + 6 =. II. Foglio di esercizi su sistemi lineari )Es. Studiare, al variare del parametro reale, e quindi risolvere il sistema La matrice dei coefficienti A ha determinante A() = x + y z = x y 4z = x + y 6z = 4 6 Poichè la sottomatrice ( ) =. ha determinante diverso da zero, la matrice A ha rango. Il sistema è compatibile per quei valori di che rendono anche il rango della matrice completa A b = 4. 6 Le sottomatrici diverse da A che si possono estrarre dalla matrice completa A b, hanno determinante = + 5, 4 6 =, 4 = Per 4 allora rango(a b) = pertanto il sistema non è compatibile. Se = 4 la matrice completa ha rango e quindi il sistema è compatibile. Le soluzioni sono quelle del sistema x + y = 4 + λ x = λ x y = + 4λ, y = z = λ z = λ

5 )Es. Studiare, al variare del parametro reale, e quindi risolvere il sistema ( )x + ( )y = x y z = (4 )y 8z = La matrice dei coefficienti A ha determinante A() = 4 8 = + 6 = ( 4) ( + 5). Allora rango(a) = & 5. In questo caso il sistema è compatibile perchè il rango della matrice completa A b = 4 8 è ancora. Le soluzioni, ottenute con la regola di Cramer sono x = = + 6, y = z = Bisogna esaminare i casi = 4 e = 5. Caso = 4 La matrice dei coefficienti è e poichè la sottomatrice A = 8 ( = ) = ha determinante diverso da zero, la matrice A ha rango. Se consideriamo la matrice completa notiamo che la sottomatrice A b = 8 8 ha determinante 6 ; allora la matrice completa ha rango e quindi il sistema è incompatibile..

6 Caso = 5 La matrice dei coefficienti è e poichè la sottomatrice A = ( 6 8 ha determinante diverso da zero, la matrice A ha rango. La matrice completa è Poichè la sottomatrice A b = ) ha determinante 4, la matrice completa ha rango e quindi il sistema è incompatibile. )Es.5 Studiare, al variare dei parametri reali ed h, e quindi risolvere il sistema La matrice dei coefficienti x + y = x + y = h x + 6y = 6 ha rango se riusciamo a trovare una sottomatrice con determinante diverso da zero. Le sotto matrici che possiamo estrarre hanno determinante 6 =, =, 6 = 6 = ( ). Se = le tre sottomatrici hanno determinante nullo, quindi in questo caso rango di A =. Se, ci sono due sottomatrici con determinante diverso da zero, quindi rango A =. Caso. La matrice completa A b = h 6 ha determinante h 6h +. Pertanto rango A b = per i valori di h per cui risulta. h 6h + = h( ) = ( ) h = ( ) Quindi rango A b = se h = rango A b = se h

7 Quindi se h, il sistema non è compatibile, mentre se h = il sistema è compatibile e le sue soluzioni sono quelle del sistema ed essendo, quelle del sistema x + y = x + y = x + 6y = { x + y = x + y =, cioè : Caso =. Il sistema diventa x = = 6, y = x + y = x + y = h x + 6y = =. e sappiamo che la matrice dei coefficienti ha rango. La matrice completa ha rango, h, perchè la sottomatrice A b = ( h 6 ha determinante diverso da zero. Quindi se = il sistema è incompatibile, h R. 4)Es.7 Studiare, al variare del parametro reali, e quindi risolvere il sistema La matrice dei coefficienti ha determinante ) x y 5z = x y z = x + y z = 5 5 Pertanto, poichè deta = = & =, risulta = = ( ). rango A =, rango A = =, =

8 Caso,. Poichè la matrice completa è A b = 5 il rango di A b è ( contiene come sottomatrice la matrice quadrata A) e quindi il sistema è compatibile e le soluzioni si trovano con la regola di Cramer x = 5 =, y = 5 8 =, z = = 4. Caso =. Il sistema diventa x 5z = x y z = y z = e sappiamo che la matrice A dei coefficienti ha rango. Dobbiamo vedere quale è il rango della matrice completa A b = 5 Vediamo che essa ha rango poichè vi è la sottomatrice ha determinante 4, quindi il sistema è incompatibile. Caso =. Il sistema diventa x y 5z = x y z = x + y z = e sappiamo che la matrice A dei coefficienti ha rango. Dobbiamo vedere quale è il rango della matrice completa A b = 5 Vediamo che essa ha rango poichè vi è la sottomatrice ha determinante 78, quindi il sistema è incompatibile...

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria che ho tenuto presso la

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006

Tutoraggio di Algebra Lineare e Geometria. Correzione del tema d'esame del 28/2/2006 Tutoraggio di Algebra Lineare e Geometria Correzione del tema d'esame del 8//6 Esercizio. Si considerino in R 4 i vettori : v =, v =, v = / / a) si dica se tali vettori sono linearemente indipendenti e

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA SRCIZI DI ALGBRA LINAR COMPLMNTI DI GOMTRIA Foglio 3 sercizio 1. Determinare la decomposizione LU della matrice reale simmetrica A = 1 2 1 2 5 3 1 3 4 sercizio 2. Determinare la decomposizione LU della

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Numeri di Fibonacci, Autovalori ed Autovettori.

Numeri di Fibonacci, Autovalori ed Autovettori. Numeri di Fibonacci, Autovalori ed Autovettori. I numeri sulla Mole Antonelliana. Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

Esercizio 1 (sistema omogeneo) Discutere al variare del parametro k reale il sistema:

Esercizio 1 (sistema omogeneo) Discutere al variare del parametro k reale il sistema: Leione - esercitaioni di lgebra e Geometria - nno accademico 9- Eserciio (sistema omogeneo) Discutere al variare del parametro reale il sistema: ) ( ) ( e risolverlo per. n, m La matrice incompleta del

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7. 1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

RANGO DI UNA MATRICE ρ(a)

RANGO DI UNA MATRICE ρ(a) RANGO DI UNA MATRICE (A) a,... a A M M am,... a, n mn, K É il massimo ordine di un minore estratto con determinante non nullo. Equivalentemente è il massimo numero di righe (colonne) linearmente indipendenti.

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

20 gennaio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 0 gennaio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

(a) 8x 9y = 2, (b) 28x + 6y = 33.

(a) 8x 9y = 2, (b) 28x + 6y = 33. Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova scritta di Matematica Discreta (12 CFU) 28 Giugno 2017 Parte A A1 1 [10 punti] Dimostrare

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

IV-2 Forme quadratiche

IV-2 Forme quadratiche 1 FORME QUADRATICHE 1 IV-2 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Coordiante omogenee e proiezioni

Coordiante omogenee e proiezioni CAPITOLO 15 Coordiante omogenee e proiezioni Esercizio 15.1. Utilizzando le coordinate omogenee, determinare l equazione della retta r passante per i punti A(2,) e B( 1,0) e della retta s passante per

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Sistemi d equazioni lineari

Sistemi d equazioni lineari Introduzione Introduzione Sia dato il seguente sistema d equazioni: S S S S Come si risolve un sistema... come si risolve? Lezione 25.wpd 08/01/2011 XXV - 1 Lezione 25.wpd 08/01/2011 XXV - 2 Introduzione

Dettagli

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza:

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza: Dipartimento di Matematica e Informatica Anno Accademico 05-06 Corso di Laurea in Informatica (L-) Prova in itinere di Matematica Discreta ( CFU) Febbraio 06 A Tempo a disposizione. 90 minuti [6 punti]

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 050308-2 1 Ortogonalita nel piano Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico, con origine in O Tranne avviso contrario,

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

Parte 7. Autovettori e autovalori

Parte 7. Autovettori e autovalori Parte 7. Autovettori e autovalori A. Savo Appunti del Corso di Geometria 23-4 Indice delle sezioni Endomorfismi, 2 Cambiamento di base, 3 3 Matrici simili, 6 4 Endomorfismi diagonalizzabili, 7 5 Autovettori

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Fondamenti di Algebra Lineare e Geometria TEMA A

Fondamenti di Algebra Lineare e Geometria TEMA A Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA A Risolvere i seguenti esercizi motivando adeguatamente ogni risposta.

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli