Prendiamo in considerazione la matrice tridiagonale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prendiamo in considerazione la matrice tridiagonale"

Transcript

1 Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali per la risoluzione Prendiamo in considerazione la matrice tridiagonale a) Provare a costruirla in ambiente matlab come somma di matrici con una sola diagonale non nulla b) Usando una opportuna built-in funzione, mostrare in ambiente Matlab che le due fattorizzazioni Gaussiane coincidono c) Calcolare in ambiente Matlab il vettore x, tale che A 2 x = b = ( - 0 ) T, senza eseguire il quadrato della matrice A >> % punto a) >> A=diag([ ])+diag([ - ],)+diag([6-3 -4],-) >> % punto b) >> [L,U,P]=lu(A) L = U = P =

2 0 0 0 >> % la Matrice P è l'identità e i due metodi coincidono >> % punto c) >> % A(Ax) = b, pongo y = Ax, e risolvo Ay=b e Ax=y >> b=[ - 0 ]'; >> y=a\b;x=a\y; Si prenda in esame la matrice a) La fattorizzazione P LU, ha mostrato che i due scambi sono r = 3 e r 2 = 3. Usare l apposita bult-in funzione Matlab che trova anche la matrice di permutazione P, e mostrare che è uguale al prodotto delle due matrici di permutazione elementari associate agli scambi. b) Risolvere il sistema Ax = b = ( 0 -) T, sia usando la funzione slash, che passando attraverso la built-in funzione che calcola l inversa di A. Se si considera come valore esatto la soluzione ottenuta con la prima opzione, calcolare l errore relativo commesso con la seconda opzione usando la norma infinito > % punto a) >> A=[2 0 2; 2;4 2 2]; >> [L,U,P]=lu(A); >> % trovo le due matrici di permutazione >> % elementare associate agli scambi >> P0=eye(3);P=P([3 2 ],:);P2=P([ 3 2],:); >> P==P2*P > b=[ 0 -]'; >> % risolvo con lo slash >> x=a\b; >> % risolvo con l'inversa >> y=inv(a)*b; >> norm(y-x,inf)/norm(x,inf) 0 >> % con le due opzioni ho ottenuto la stessa soluzione! >> % la matrice A e il vettore b hanno elementi che sono >> % potenze di due. Probabilmente lo è anche l'inversa e >> % la soluzione del sistema, nessun errore di floating! >> x x =

3 >> x==[0 - /2]' Si consideri la matrice a) Si costruisca in ambiente Matlab la matrice B di ordine tre di elementi b ij = (2a ji -)/(a ii + ). b) Risolvere, in ambiente Matlab l' equazione matriciale AXB = U, dove U ha tutti elementi uno, e calcolare il residuo. ( Nel caso non si riesca a trovare la B del punto a), sia B una matrice casuale qualsiasi). >> %punto a) >> A=[2 - ;- 3-2;0 4]; >>for i=:3,for j=:3,b(i,j)=(2*a(j,i)-)/(a(i,i)+);end,end >> % risolvo l'equazione AXB = C >> U=ones(3);X=A\U/B; >> % calcolo il residuo >> A*X*B-U.0e-05 * Prendiamo in esame la matrice a) Mostrare che la built-in funzione matlab per la fattorizzazione P LU, trova una matrice di permutazione P uguale alla matrice identità, pur non essendo A ha predominanza diagonale per colonne, e che la fattorizzazione non produce errori di floating

4 b) Rimpiazzare i due elementi della diagonale 2, con -, e l unico elemento della diagonale 3, con, senza reinserire tutta la matrice. Mostrare che l inversa di A, ottenuta usando l apposita built-in funzione Matlab, viene calcolata esattamente! c) Calcolare mediante funzione Matlab il determinante della matrice >>% punto a) >> A=[ 0 0;- 0 0; 0 0 ; 2 0 0] >> [L,U,P]=lu(A) L = U = P = >> % Fattorizzazioni Gaussiane coincidenti >> L*U-A

5 >> % nessun errore di floating >> % punto b) >> A(,3)=-;A(2,4)=-;A(,4)= >> A_=inv(A) A_ = >> A_*A >>% A_ è esattamente l inversa di A >> punto c) >> B=[A A_;A_ A] B = >> det(b) 45 Si consideri la matrice

6 a) Aggiornare tale matrice con una quarta colonna di elementi uguali a /3. Quindi eseguire un altro aggiornamento con una quarta riga uguale alla somma delle precedenti tre righe. Mostrare, con la built-in funzione Matlab apposita, che il determinante di A non dà esattamente il risultato zero ( fl(/3) /3). b) Calcolare b = Ax, con x=(- 0 2) T.( Nel caso in cui non si riesca a trovare la 4 ä 4 matrice del punto a), si prenda in esame la 4 ä 4 matrice di Hilbert ( >> hilb(4)). Risolvere il sistema Ay= b e misurare l errore relativo dell approssimazione y di x, e valutare residuo rispetto a x, usando una norma qualsiasi. >> % punto a) >> A=[2 ;4 2 ;-2 0 ] >> A=[A ones(3,)/3] >> % poiché sum(a) è il vettore riga >> contenente la somma delle righe di A >> A=[A;sum(A)] >> % la matrice A è singolare ma >> det(a).6653e-06 >> % per l aritmetica Matlab >> x=[- 0 2]' x = -

7 0 2 >> b=a*x b = >> % risolviamo Ay=b >> y=a\b Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = e-08. y = >> Misurando globalmente >> norm(y-x,inf)/norm(x,inf) >> % con errore del 30% >> % valutiamo la norma del residuo >> norm(a*y-b,inf)/norm(x,inf) e-06 >> % a conferma dalla teoria NOTA Per gli esercizi sulla rappresentazione in base, si suggerisce di usare la built-in funzione Matlab log2, [ mantissa,esponente]=log2( variabile numerica) per confermare ( dove è stata richiesta) la rappresentazione in base 2. Poiché l esponente, negli esercizi, è solitamente espresso in base 0, la conferma di esso è immediata. Negli esercizi la mantissa è espressa in cifre 0,, e si controlla l esattezza dopo aver trasformato tale mantissa in base 0.

Corso di Geometria e Algebra Lineare

Corso di Geometria e Algebra Lineare Prof. C. Vergara, Dott.ssa N. Franchina, Dr. A. Colombo Corso di Geometria e Algebra Lineare Laboratorio 3: sistemi lineari 25 29 Maggio 2015 Metodi diretti per sistemi lineari Si consideri il seguente

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A

Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A Complementi di Matematica e Calcolo Numerico C.L. Chimica Industriale A.A. 208-209 Laboratorio 4-4 aprile 209 Metodo delle sostituzioni in avanti per sistemi lineari con matrice triangolare inferiore Siano

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 205-206 Laboratorio 9 Metodo di Eliminazione Gaussiana per sistemi lineari Siano A R n n una matrice quadrata non singolare (det(a) 0) e b R n un vettore

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 206-207 Laboratorio Autovalori, raggio spettrale e norme di matrici Sia A una matrice quadrata di ordine n a valori reali o complessi, il numero λ C si

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 207-208 Laboratorio 5 Metodi diretti per sistemi lineari Siano A R n n una matrice quadrata non singolare (det(a) 0) e b R n un vettore assegnati, allora

Dettagli

Matrici. 3. Costruire le seguenti matrici, contarne gli elementi non nulli e visualizzarle con spy: . B 10x10 = ; D 7x7 =

Matrici. 3. Costruire le seguenti matrici, contarne gli elementi non nulli e visualizzarle con spy: . B 10x10 = ; D 7x7 = Matrici diag, tril, triu. Sia v il vettore colonna casuale di lunghezza. Calcolare: diag(v), diag (v,), diag (v,-), diag(v,), diag(v,-). Sia A la matrice magica x. Calcolare: tril(a), tril(a, ), tril(a,

Dettagli

Algebra Lineare Numerica A.A Lab.6

Algebra Lineare Numerica A.A Lab.6 Algebra Lineare Numerica A.A. 2005-2006 - Lab.6 Stabilità di algoritmi per la risoluzione di problemi ai minimi quadrati Si considerino la seguente matrice A e il seguente vettore b 1 1 2 A = 1 1.0001,

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Funzioni per l'algebra lineare Manipolare vettori Manipolare matrici

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 0-0 Laboratorio 9 Autovalori, raggio spettrale e norme di matrici Sia A una matrice quadrata di ordine n a valori reali o complessi, il numero λ C si dice

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 5

Laboratorio di Matematica Computazionale A.A Lab. 5 Laboratorio di Matematica Computazionale A.A. -8 Lab. Costruzione e Manipolazione di Matrici diag tril triu nnz find spy. Sia v il vettore colonna casuale di lunghezza. Calcolare: diag(v) diag (v) diag

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

1. Calcolo dell indice di condizionamento di una matrice

1. Calcolo dell indice di condizionamento di una matrice 1 Esercizi sul condizionamento con matlab laboratorio di Calcolo Scientifico per Geofisici Prof. A. Murli a.a. 2006/07 1. Calcolo dell indice di condizionamento di una matrice Determinare una function

Dettagli

SISTEMI LINEARI. Metodi diretti. Calcolo numerico 07/08 p. 1/1

SISTEMI LINEARI. Metodi diretti. Calcolo numerico 07/08 p. 1/1 SISTEMI LINEARI Metodi diretti Calcolo numerico 07/08 p. 1/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua det(a) 0 ( un unica soluzione) (Esercizio 1) Se det

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

4. Algoritmi per la soluzione di sistemi lineari.

4. Algoritmi per la soluzione di sistemi lineari. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 4. Algoritmi per la soluzione di sistemi lineari. 1 Sistemi triangolari inferiori Sia L triangolare inferiore.

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Fattorizzazione LU (lu)

Fattorizzazione LU (lu) Fattorizzazione LU (lu) Pivoting Esercizio Si consideri la matrice d A = / d d / d = LU; dove d è un parametro reale non nullo. Si utilizzi la fattorizzazione di A per risolvere il sistema Ax = b, con

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Sistemi di equazioni lineari. la soluzione è unica se det(a) 0 e vale

Sistemi di equazioni lineari. la soluzione è unica se det(a) 0 e vale Sistemi di equazioni lineari a 00 x 0 + a 01 x 1 + a 02 x 2 = b 0 a 10 x 0 + a 11 x 1 + a 12 x 2 = b 1 a 20 x 0 + a 21 x 1 + a 22 x 2 = b 2 Per N equazioni N 1 j=0 a ij x j = b i i = 0, N 1 la soluzione

Dettagli

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI

VETTORI E MATRICI. Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI AI SISTEMI DI TELECOMUNICAZIONI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 I VETTRORI E MATRICI (RICHIAMI) Ad ogni matrice quadrata a coefficienti reali è possibile associare un numero reale, detto determinante, calcolato

Dettagli

Calcolo Numerico (CdS in Matematica) A.A. 2012/13

Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Calcolo Numerico (CdS in Matematica) A.A. 2012/13 Esercitazione di Laboratorio sulla risoluzione di sistemi di equazioni lineari Parte 1. Fattorizzazione di matrici Scrivere una funzione Matlab che implementi

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari

Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari Laboratorio di Calcolo Numerico Laboratorio 11: Metodi diretti per la soluzione di sistemi lineari Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 17 Maggio 2017

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Esercizio. fattorizzazione QR? Quale è più conveniente dal punto di vista computazionale

Esercizio. fattorizzazione QR? Quale è più conveniente dal punto di vista computazionale Esercizio Si consideri, fissato n N, la matrice A M n(r) generata dal comando A = magic(n); e il sistema lineare Ax = b, dove il termine noto b R n é scelto in modo tale che la soluzione esatta sia x =

Dettagli

1 Risoluzione di sistemi lineari

1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari La presente nota è in parte ripresa dal testo D Bini M Capovani O Menchi Metodi numerici per l algebra lineare Zanichelli Editore Siano A una matrice non singolare di ordine

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari. MATLAB: Elementi di Algebra Lineare

Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari. MATLAB: Elementi di Algebra Lineare 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB: Elementi di Algebra Lineare 2 Elementi di Algebra Lineare. Una matrice è una tabella di numeri ordinata per righe

Dettagli

Algebra lineare numerica in Matlab

Algebra lineare numerica in Matlab Algebra lineare numerica in Matlab Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 3 gennaio 2019 Alvise Sommariva Algebra lineare numerica in Matlab 1/ 19

Dettagli

Complementi di Matematica e Calcolo Numerico A.A

Complementi di Matematica e Calcolo Numerico A.A Complementi di Matematica e Calcolo Numerico A.A. 20-206 Laboratorio 8. (punteggio 3/3/) Si consideri la funzione f(x) = sin(e x/2 ).. Si approssimi la radice α di f nell intervallo [0, 3.] utilizzando

Dettagli

PROVA PRATICA di CALCOLO NUMERICO Prof. S. De Marchi Verona, 19 dicembre 2006

PROVA PRATICA di CALCOLO NUMERICO Prof. S. De Marchi Verona, 19 dicembre 2006 PROVA PRATICA di CALCOLO NUMERICO Prof. S. De Marchi Verona, 9 dicembre 26 Il candidato dovrà scrivere su ogni foglio il cognome, nome, numero di matricola. I fogli saranno forniti da chi fa assistenza.

Dettagli

backslash (\): left matrix division

backslash (\): left matrix division backslash (\): left matrix division Calling sequence: X = A\B 1 Description: Backslash is the left matrix division: X = A\B is a solution to A*X = B. (1) L equazione AX = B potrebbe avere più di una soluzione.

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso Domanda 1 1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso x n+1 = x n f(x n), n = 0, 1, 2,... K dove x 0 è il punto iniziale, f(x) = x 3 cos(x) e K è una costante assegnata.

Dettagli

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2 1 1 1 1 1 1 3 2 x 1 x 2 x 3 = 2 1 0 n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b

Dettagli

Elementi di Calcolo Scientifico per l Ingegneria A.A

Elementi di Calcolo Scientifico per l Ingegneria A.A Elementi di Calcolo Scientifico per l Ingegneria A.A. 2017-2018 Ottobre 2017 (2 16) Indice 1 2 3 4 Rappresentazione dei numeri reali nel calcolatore l insieme dei numeri reali, R, contiene un numero infinito

Dettagli

Calcolo Numerico. Lab n. 8. Metodi diretti per la soluzione di sistemi lineari A.A

Calcolo Numerico. Lab n. 8. Metodi diretti per la soluzione di sistemi lineari A.A Calcolo Numerico A.A. 4-5 Lab n. 8 Metodi diretti per la soluzione di sistemi lineari 6 Novembre 4 Matrici Una matrice si può definire come un insieme di vettori riga separati da un punto e virgola oppure

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 6 Metodi iterativi per sistemi lineari Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 6 Metodi iterativi per sistemi lineari Dati una matrice A R N N non singolare e un vettore b R N, un metodo iterativo per la risoluzione

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici

Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 03 Maggio 2017 Richiami In MATLAB, ogni variabile

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 24 febbraio 2008 Outline 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori

Dettagli

Algebra matriciale. Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale

Algebra matriciale. Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale Algebra matriciale Algebra Un algebra è un sistema di segni in cui sono definite delle operazioni Algebra scalare Algebra dei vettori Algebra matriciale In algebra matriciale un numero è chiamato scalare

Dettagli

I sistemi lineari di n equazioni in n incognite

I sistemi lineari di n equazioni in n incognite I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Metodi diretti: eliminazione gaussiana

Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 1/1 SISTEMI LINEARI Metodi diretti: eliminazione gaussiana Calcolo numerico 08/09 p. 2/1 Sistemi lineari Ax = b, A R n n, b R n b INPUT x OUTPUT A relazione funzionale non ambigua

Dettagli

Sistemi lineari: metodi diretti II

Sistemi lineari: metodi diretti II Sistemi lineari: metodi diretti II Ana Alonso Dipartimento di Matematica - Università di Trento 8 ottobre 2015 Metodo di eliminazione di Gauss (senza pivotazione) U matrice triangolare superiore. for k

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Sistemi lineari. Lucia Gastaldi. 11 novembre Dipartimento di Matematica,

Sistemi lineari. Lucia Gastaldi. 11 novembre Dipartimento di Matematica, Sistemi lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 11 novembre 2007 Outline 1 Come risolvere un sistema lineare con MATLAB Il comando per risolvere i sistemi lineari

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 6

Laboratorio di Matematica Computazionale A.A Lab. 6 Laboratorio di Matematica Computazionale A.A. 2007-2008 Lab. 6 Risoluzione di sistemi triangolari Si scriva una function Matlab che, presa in ingresso una matrice triangolare inferiore L e un termine noto

Dettagli

Esercizi proposti di Analisi Numerica

Esercizi proposti di Analisi Numerica Esercizi proposti di Analisi Numerica Silvia Bonettini Dipartimento di Matematica, Università di Ferrara 30 gennaio 2012 1 Conversioni, operazioni di macchina e analisi dell errore 1. Convertire i numeri

Dettagli

0.1 Soluzioni esercitazione IV, del 28/10/2008

0.1 Soluzioni esercitazione IV, del 28/10/2008 1 0.1 Soluzioni esercitazione IV, del 28/10/2008 Esercizio 0.1.1. Risolvere, usando il teorema di Cramer, i seguenti sistemi lineari 2x + y + z = 0 x + 3z = 1 x y z = 1 kx + y z = 1 x y + 2z = 1 2x + 2y

Dettagli

Calcolo Numerico - Prova Matlab 19 luglio 2013

Calcolo Numerico - Prova Matlab 19 luglio 2013 9 luglio 0 () tempo a disposizione per completare la prova: ora; () lo svolgimento della prova deve essere salvato in file denominati cognomenome#m; () è fatto assoluto divieto di aprire applicazioni diverse

Dettagli

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm:

Problema. Sistemi lineari. Problema. Problema. Quali sono i potenziali in ogni nodo? Leggi di Kirkoff e di Ohm: Problema 4 Ω 3 3 Ω 2 2 Ω 40 V Sistemi lineari 2 Ω Ω 2 Ω Ω 5 6 7 8 Ω 4 Ω Ω 0 V Quali sono i potenziali in ogni nodo? 2 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 4 Ω Problema 3 3 Ω 2 2 Ω 40 V 2 Ω Ω 2 Ω Ω 2 Ω Ω 2 Ω Ω

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto METODI NUMERICI (A.A. 2007-2008) Prof. F.Pitolli Appunti delle lezioni sui sistemi lineari: metodi diretti; condizionamento Metodi diretti per la soluzione di sistemi lineari Metodi diretti Sono basati

Dettagli

Sistemi lineari: metodi diretti II

Sistemi lineari: metodi diretti II Sistemi lineari: metodi diretti II Ana Alonso Dipartimento di Matematica - Università di Trento 9 ottobre 2014 Metodo di eliminazione di Gauss (senza pivotazione) U matrice triangolare superiore. for k

Dettagli

Fattorizzazione LU ed eliminazione gaussiana

Fattorizzazione LU ed eliminazione gaussiana Fattorizzazione LU ed eliminazione gaussiana Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 3 maggio 2015 Alvise Sommariva Fattorizzazione LU ed eliminazione gaussiana 1/

Dettagli

Esercitazione 4 Sistemi lineari, pivoting

Esercitazione 4 Sistemi lineari, pivoting Esercitazione 4 Sistemi lineari, pivoting a.a. 218-19 Esercizio 1 (T) Quando viene utilizzato il pivoting parziale? La fattorizzazione ottenuta con il pivoting per colonne è unica? Si può applicare anche

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari a 00 x 0 + a 01 x 1 + a 02 x 2 = b 0 a 10 x 0 + a 11 x 1 + a 12 x 2 = b 1 a 20 x 0 + a 21 x 1 + a 22 x 2 = b 2 Per N equazioni N 1 j=0 a ij x j = b i i = 0, N 1 sono equivalenti

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 24 settembre 2007 Outline 1 M-file di tipo Script e Function Script Function 2 Elementi di programmazione

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO Mawell ESERCZ D CLCOLO NUMERCO Sistemi lineari Esercizio : Date e erminare la fattorizzazione LU applicando il pivoting parziale; usando la fattorizzazione LU, risolvere il sistema lineare. Svolgiamo l

Dettagli

+ Analisi Numerica (1 modulo) Docente: M.Gaviano; domande di ripasso a.a

+ Analisi Numerica (1 modulo) Docente: M.Gaviano; domande di ripasso a.a + Analisi Numerica ( modulo) Docente: M.Gaviano; domande di ripasso a.a. - Idee di base e richiami. Quale è lo scopo dell Analisi numerica. Attraverso quali fasi si passa nel risolvere un problema reale..

Dettagli

PreCorso di Matematica - PCM Corso M-Z

PreCorso di Matematica - PCM Corso M-Z PreCorso di Matematica - PCM Corso M-Z DOCENTE: M. Auteri Outline Docente: Auteri PreCorso di Matematica 2016 2 Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Problemi di Calcolo Numerico

Problemi di Calcolo Numerico Problemi di Calcolo Numerico Corso di Laurea in Ingegneria Elettronica a.a. 20/202 2 Sistemi di equazioni lineari In questa Sezione, le frasi (la procedura) XX termina su x e (la funzione) XX è definita

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Risoluzione di più sistemi con la stessa matrice

Risoluzione di più sistemi con la stessa matrice Risoluzione di più sistemi con la stessa matrice Data A R n n e b R n, calcolare x e z : Ax = b, Az = c costo del MEG ( 2 3 n3 + n 2) + ( 2 3 n3 + n 2) costo totale = 4 3 n3 + 2n 2 Obiettivo: separare

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2015 Rossi Algebra Lineare 2015 1 / 41 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Laboratorio computazionale numerico Lezione 2

Laboratorio computazionale numerico Lezione 2 Laboratorio computazionale numerico Lezione 2 f.poloni&sns.it 2008-11-05 1 Fattorizzazione LU ed eliminazione di Gauss 1.1 Matrice di test Esercizio 1 (di riscaldamento). Scrivere una funzione testmatrix(n)

Dettagli

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari

Calcolo Numerico I - a.a Laboratorio 9 - Sistemi lineari Calcolo Numerico I - a.a. 200-20 Laboratorio 9 - Sistemi lineari Fattorizzazione di Cholesky Se A R n n è una matrice simmetrica definita positiva, allora esiste una matrice R R n n triangolare superiore

Dettagli

Algoritmi per la soluzione di sistemi lineari

Algoritmi per la soluzione di sistemi lineari Capitolo Algoritmi per la soluzione di sistemi lineari. Sistemi triangolari inferiori Le matrici L con n righe ed n colonne ed elementi uguali a zero al di sopra della diagonale principale: l, 0... 0.

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori

Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Soluzione Sistemi Lineari. Soluzione sistemi triangolari La seguente funzione risolve i sistemi triangolari inferiori

Dettagli

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij Recupero. 2, Determinanti. 1. Determinanti Consideriamo una matrice A = a 11... a 1n.. a n1... a nn quadrata di ordine n ad elementi in R. Sappiamo che sono equivalenti la affermazioni 1- tutti i sistemi

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi Dipartimento di Matematica, http://lucia-gastaldi.unibs.it page 1 Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo

Dettagli

Vettori e Matrici. Corso di Calcolo Numerico. 24 Aprile 2018

Vettori e Matrici. Corso di Calcolo Numerico. 24 Aprile 2018 Vettori e Matrici 24 Aprile 2018 Richiami In MATLAB, ogni variabile ha una struttura di tipo vettoriale o array. Un array è un insieme di valori ordinati, cioè memorizza più dati all interno di una struttura

Dettagli