Campionamento casuale da popolazione finita (caso senza reinserimento )

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Campionamento casuale da popolazione finita (caso senza reinserimento )"

Transcript

1 Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori x, x 2,, x su tutta la popolazioe, ossia X : Ω R w x w 2 x 2 w k x k w x dove ci possoo essere ache valori ripetuti Assumiamo che P (X = x k ) =, per ogi k =,, Ioltre µ = x k, k= σ 2 = (x k µ) 2 k= Ci soo due tipi di campioameto casuale: campioameto casuale semplice cioè co ripetizioe, el quale le estrazioi soo tra loro idipedeti e ogi uità può essere estratta più volte; ogi uità della popolazioe ha la stessa probabilità di essere selezioata, pari a / Questo tipo di campioameto produce gli stessi risultati ache el caso di popolazioe ifiita I questo caso i possibili campioi soo campioameto casuale seza ripetizioe, el quale ogi uità ha probabilità / di essere selezioata alla prima estrazioe, le rimaeti uità hao probabilità / ( ) alla secoda estrazioe (sapedo che cosa è stato estratto alla prima estrazioe) e così via I questo caso i possibili campioi soo ( ) se o si cota! l ordie, se si cota l ordie ( )! Aalizziamo el dettaglio il campioameto casuale seza ripetizioe Siao quidi X, X 2,, X variabili aleatorie campioarie corrispodeti alle varie estrazioi campioarie Procediamo co alcue osservazioi che servirao per dimostrare i prossimi risultati

2 Lemma Valgoo le segueti relazioi: i) E ( X i ) = µ; ii) E ( ) j=,i j X i X j = ( ) k= h=,h k x ( ) h x k Dimostrazioe: Abbiamo che per h k si ha che { j i ( ) P (X i = x k, X j = x h ) = 0 j = i e quidi P (X i = x k ) = h=,k h = P (X j = x h )P (X i = x k X j = x h ) ( ) = ossia P (X i = x k ) = P (X = x k ) per ogi i =,, Da questo segue che E (X i ) = = x k P (X i = x k ) k= x k P (X = x k ) = E(X) k= Ioltre si ha così che ( ) E X i = E (X i ) = E (X) = E (X) = x k = µ k= Calcolado esplicitamete la quatità E (X i X j ) = = k= h=,h k ( ) x h x k P (X i = x h, X j = x k ) k= h=,h k x h x k, si ha che E ( ) j=,i j X i X j = j=,i j E (X i X j ) = j=,i j k= h=,h k x ( ) k x h h= k=,h k x h x k = ( ) ( ) () Lemma 2 ( i a i ) 2 = i a 2 i + i,j,j i a i a j

3 La dimostrazioe di questo lemma è ua semplice applicazioe di procedimeti algebrici Proposizioe 3 Sia X è ua variabile aleatoria; allora X è stimatore o distorto di µ e la sua variaza è V ar ( X ) = σ2 Ua sua stima si ottiee sostituedo σ 2 co S 2 ; se X è ormale, u itervallo di cofideza per µ è ( ) X t α S ( ), X + t αs ( ) Dimostrazioe: Lo stimatore X di µ è o distorto, ifatti: E ( X ) = ( ) E X i = µ = µ Utilizzado i risultati otteuti elle osservazioi precedeti, si riesce a calcolare la variaza di X el seguete modo: V ar ( X ) ( ) = V ar X i = ( ) V ar X 2 i = V ar (X 2 i ) + 2 = V ar (X 2 i ) + 2 = V ar (X 2 i ) + 2 Ora utilizzado () e il Lemma 2, abbiamo che j=,j i j=,j i j=,j i Cov (X i, X j ) (E(X i X j ) E(X i )E(X j )) E(X i X j ) µ2 V ar ( X ) = σ2 + ( ) x h x k ( ) k= h=,h k µ2 = σ2 + ( ( ) ) 2 x 2 k + x k ( ) k= k= µ2 = σ2 + ( ) ( σ 2 µ µ 2) ( ) µ2 = σ2

4 L itervallo di cofideza si ottiee co ua costruzioe aaloga al caso i cui X,, X soo idipedeti I questo cotesto X è acora ua va ormale, perché combiazioe di va ormali (ache se o idipedeti) Per gradi campioi la Proposizioe 3 si può estedere ache al caso i cui X o è ormale Se la umerosità della popolazioe è molto più grade di quella del campioe ( >> ), il coefficiete è circa e quidi può essere trascurato, otteedo così lo stesso risultato del caso di campioameto casuale semplice, cioè co ripetizioe Ioltre se allora V ar(x) = 0 perchè il campioe coicide co tutta la popolazioe, cosa che o può avveire el caso di campioe co ripetizioe, i cui avremo V ar(x) = σ 2 σ2 Ioltre avremo che V ar(x seza rip ) < V ar(x co rip ) i quato gli elemeti aomali el campioameto seza ripetizioe vegoo cotati solo ua volta Vediamo u applicazioe el caso dello studio della frequeza di ua caratteristica ella popolazioe, partedo da u campioe Idichiamo i questo caso co ˆx i la realizzazioe della i esima variabile campioaria X i Avremo che ˆx i sarà uguale a (si verifica il carattere) o 0 (o si verifica) ell i esima estrazioe Avremo che il parametro da stimare sarà k= x k p = e, dato u campioe X, X 2,, X, lo stimatore da utilizzare sarà P = X i Proposizioe 4 Sia X ua va co distribuzioe di Beroulli di parametro p Valgoo i segueti fatti: i) P è uo stimatore o distorto di p Si può quidi stimare p co ˆp = ˆx i ; ii) V ar (P ) = p( p) iii) U itervallo di cofideza per p è ; ua sua stima si ottiee sostituedo p co ˆp; P z α P ( P ) P ( P ), P + z α

5 ESEMPIO : I ua scatola ci soo 5 pallie, di cui tre ere idicate co, 2 e 3 e due biache idicate co B e B 2 La frequeza relativa di pallie ere della scatola è 3 = 0, 60 Si vuole stimare tale valore attraverso campioi di umerosità 5 = 2 Idichiamo co X la variabile aleatoria corrispodete alla prima estrazioe e co X 2 la variabile aleatoria corrispodete alla secoda estrazioe Si ha che = 5, = 2 e p = 0, 6 Si vuole cercare la stima della proporzioe, cioè ˆp Usiamo come stimatore i etrambi i campioameti P = S 2 = X + X 2 2 Costruiamo ua tabella co tutti i possibili campioi e i relativi valori della stima della proporzioe Campioameto co ripetizioe Il umero dei possibili campioi (ordiati) è = Sia S = X + X 2 e sia s il rispettivo valore campioario La tabella co tutti i possibili campioi e i relativi valori della stima della proporzioe è la seguete: umero campioe Campioe va campioarie Proporz camp Somma s (, ) (, ) 2 2 (, 2 ) (, ) 2 3 (, 3 ) (, ) 2 4 (, B ) (, 0) /2 5 (, B 2 ) (, 0) /2 6 ( 2, ) (, ) 2 7 ( 2, 2 ) (, ) 2 8 ( 2, 3 ) (, ) 2 9 ( 2, B ) (, 0) /2 ( 2, B 2 ) (, 0) /2 ( 3, ) (, ) 2 2 ( 3, 2 ) (, ) 2 3 ( 3, 3 ) (, ) 2 4 ( 3, B ) (, 0) /2 5 ( 3, B 2 ) (, 0) /2 6 (B, ) (0, ) /2 7 (B, 2 ) (0, ) /2 8 (B, 3 ) (0, ) /2 9 (B, B ) (0, 0) (B, B 2 ) (0, 0) (B 2, ) (0, ) /2 22 (B 2, 2 ) (0, ) /2 23 (B 2, 3 ) (0, ) /2 24 (B 2, B ) (0, 0) 0 0 (B 2, B 2 ) (0, 0) 0 0 Campioameto seza ripetizioe I questo caso il umero dei possibili campioi o ordiati è ( ( ) ) = 5 2 = e quelli ordiati è 5! = 20 La tabella co tutti i possibili 3!

6 campioi (ordiati) e i relativi valori della stima della proporzioe è la seguete: umero campioe Campioe va campioarie Proporz camp Somma s (, 2 ) (, ) 2 2 (, 3 ) (, ) 2 3 (, B ) (, 0) /2 4 (, B 2 ) (, 0) /2 5 ( 2, ) (, ) 2 6 ( 2, 3 ) (, ) 2 7 ( 2, B ) (, 0) /2 8 ( 2, B 2 ) (, 0) /2 9 ( 3, ) (, ) 2 ( 3, 2 ) (, ) 2 ( 3, B ) (, 0) /2 2 ( 3, B 2 ) (, 0) /2 3 (B, ) (0, ) /2 4 (B, 2 ) (0, ) /2 5 (B, 3 ) (0, ) /2 6 (B, B 2 ) (0, 0) (B 2, ) (0, ) /2 8 (B 2, 2 ) (0, ) /2 9 (B 2, 3 ) (0, ) /2 20 (B 2, B ) (0, 0) 0 0 Calcoliamo ora la legge di X, cioè quate volte X vale rispetto al umero dei campioi, e la di X 2 Campioameto co ripetizioe Le leggi di X e X 2 soo rispettivamete P (X = ) = 5 = 3 5 P (X = 0) = 3 5 = 2 5 P (X 2 = ) = 5 = 3 5 P (X 2 = 0) = 3 5 = 2 5 Campioameto seza ripetizioe Le leggi di X e X 2 soo soo rispettivamete P (X = ) = 3 5 P (X 2 = ) = P (X 2 = X = 0)P (X = 0) + P (X 2 = X = )P (X = ) = = 3 5 e di cosegueza P (X = 0) = 3 5 = 2 5, P (X 2 = 0) = 3 5 = 2 5

7 Gli stessi calcoli si otteevao utilizzado la tabella precedete; ifatti P (X = ) = 2 20 = 3 5 P (X 2 = ) = = 3 5 Di cosegueza X e X 2 hao la stessa distribuzioe di probabilità Calcoliamo la distribuzioe, la media e la variaza dello stimatore P, utilizzado i dati della tabella precedete Campioameto co ripetizioe La desità di P è metre la sua media è P 0 /2 f P 4 E (P ) = 0 = = 0, 6 = p Quidi P è stimatore o distorto di p Calcoliamo ora la variaza dello stimatore della proporzioe: Si ha che quidi V ar (P ) = E ( P 2) E 2 (P ) E ( P 2) ( ) 4 2 = = 2, V ar (P ) = 2 ( ) 3 2 = 3 5 = 0, 2, che coicide co la formula V ar(p ) = p( p) Campioameto seza ripetizioe La desità di P è metre la sua media è: P 0 /2 f P E (P ) = = 3 = 0, 6 = p 5

8 e E ( P 2) = quidi = 9 20 V ar(p ) = = 0, 09, che coicide co la formula V ar(p ) = p( p) Quidi P è acora uo stimatore o distorto di p, ma come ci aspettiamo la variaza el campioameto seza ripetizioe (0,09) è miore che el campioameto co ripetizioe (0,2) ESEMPIO 2: Ua scatola cotiee = 3 pallie di colore rosso e di colore blu Si estraggoo = pallie Idichiamo co p la proporzioe di pallie blu coteute ella scatola e co ˆp la proporzioe di pallie di colore blu coteute el campioe Determiiamo lo stimatore P di p, la media e la variaza di P, ei casi di campioameto co e seza ripetizioe Campioameto co ripetizioe Se B è il umero di pallie blu estratte, allora lo stimatore P di p è di media e variaza P = X + + X E (P ) = p e V ar (P ) = p ( p) = 0, 02p( p) e la stima putuale è B Campioameto seza ripetizioe Se B è il umero di pallie blu estratte, allora lo stimatore P di p è acora di media e variaza E (P ) = p e V ar (P ) = P = X + + X p ( p) 3 3 = 0, 07 p ( p) e la stima putuale è B Suppoiamo che il campioe cotega 30 pallie di colore blu; costruiamo l itervallo di cofideza per p a livello 95%, sempre ei casi di campioameto co e seza ripetizioe Campioameto co ripetizioe Siccome B = 30, abbiamo che ˆp = B = 30 = 0, 6

9 U itervallo di cofideza per p a livello di sigificatività del 95% è: 0, 6 z 0,05, 0, 6 + z 0,05 Per ua ormale stadardizzata si trova che z 0,05 =, 96, quidi l itervallo cercato è 0, 6, 96, 0, 6 +, 96 = (0, 46, 0, 74) Campioameto seza ripetizioe Per quato visto i precedeza, poiché ˆp = 0, 6 e z α =, 96, si ha che u itervallo di cofideza per p a livello di sigificatività del 95% è 0, 6, , 0, 6 +, = (0, 47, 0, 73) 349 Osserviamo che i etrambi i tipi di campioameto P è uo stimatore o distorto della proporzioe p el caso di campioameto seza ripetizioe, la variaza di P è miore rispetto alla variaza di P el caso di campioameto co ripetizioe Ioltre l itervallo di cofideza el campioameto seza ripetizioe ha ampiezza miore ella pratica, l estrazioe co ripetizioe viee adottata raramete: è ituitivo che, fissata la dimesioe del campioe, l osservazioe ripetuta di ua o più uità rappreseti ua perdita di iformazioe La distizioe tra estrazioe co e seza ripetizioe perde gradualmete di importaza all aumetare della dimesioe della popolazioe di rilevazioe

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli

Titolo della lezione. Dal campione alla popolazione: stima puntuale e per intervalli Titolo della lezioe Dal campioe alla popolazioe: stima putuale e per itervalli Itroduzioe Itrodurre il cocetto di itervallo di cofideza Stima di parametri per piccoli e gradi campioi Stimare la proporzioe

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Anemia. Anemia - percentuali

Anemia. Anemia - percentuali 1 emia emoglobia 1-13 Data la distribuzioe dell emoglobia i u gruppo di pazieti maschi sottoposti a trattameto: - Circa u paziete su 3 era fortemete aemico (emogl. meo di 1) - La mediaa era fra 13 e 14

Dettagli

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0

TEST STATISTICI. indica l ipotesi che il parametro della distribuzione di una variabile assume il valore 0 TEST STATISTICI I dati campioari possoo essere utilizzati per verificare se ua certa ipotesi su ua caratteristica della popolazioe può essere riteuta verosimile o meo. Co il termie ipotesi statistica si

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

6 Stima di media e varianza, e intervalli di confidenza

6 Stima di media e varianza, e intervalli di confidenza Si può mostrare che, per ogi fissato α, t,α z α, e t,α z α per + I pratica t,α e z α soo idistiguibili per 200. 6 Stima di media e variaza, e itervalli di cofideza Lo scopo esseziale della Statistica ifereziale

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S.

Argomenti trattati: Capitolo 12 libro di testo. Statistica - Metodologie per le scienze economiche e sociali A. Di Ciaccio, S. 1 GLI INTERVALLI DI CONFIDENZA Argometi trattati: Stima per itervallo Aalogie tra la stima putuale e per itervallo Itervallo di cofideza per la media Itervallo di cofideza per la proporzioe Itervallo di

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z)

Università di Napoli Federico II, DISES, A.a , CLEC, Corso di Statistica (L-Z) Lezione 22 La verifica delle ipotesi. Corso di Statistica (L-Z) Uiversità di Napoli Federico II, DISES, A.a. 215-16, CLEC, Corso di Statistica (L-Z) Corso di laurea i Ecoomia e Commercio (CLEC) Ao accademico 215-16 Corso di Statistica (L-Z) Maria Mario Lezioe: 22 Argometo:

Dettagli

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizi di Probabilità e Statistica della 2 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizi di Probabilità e Statistica della 2 a settimaa (Corso di Laurea i Matematica, Uiversità degli Studi di Padova). Esercizio. Sia (Ω, A, P) uo spazio probabilizzato e B A o trascurabile. Dimostrare

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

TEORIA DEI CAMPIONI. Psicometria 1 - Lezione 10 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

TEORIA DEI CAMPIONI. Psicometria 1 - Lezione 10 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek TEORIA DEI CAMPIONI Psicometria 1 - Lezioe 10 Lucidi presetati a lezioe AA 000/001 dott. Corrado Caudek 1 Nella teoria statistica per popolazioe si itede la totalità delle uità poteziali d'osservazioe.

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di tatistica A-Di Prof. M. Romaazzi 27 Geaio 2015 ogome e Nome..................................... N. Matricola.......... Valutazioe l puteggio massimo teorico di questa prova

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli

Esercitazioni di Statistica Dott. Danilo Alunni Fegatelli Esercitazioi di Statistica Dott. Dailo Alui Fegatelli dailo.aluifegatelli@uiroma.it Esercizio. Su 0 idividui soo stati rilevati la variabile X (geere) e (umero di auto possedute) X F F M F M F F M F M

Dettagli

ELEMENTI DI STATISTICA INFERENZIALE (versione preliminare) Barbara Torti, Mario Abundo

ELEMENTI DI STATISTICA INFERENZIALE (versione preliminare) Barbara Torti, Mario Abundo ELEMENTI DI STATISTICA INFERENZIALE (versioe prelimiare) Barbara Torti, Mario Abudo Idice 1 Richiami di Probabilità e Statistica 3 1.1 Spazi di Probabilità e variabili aleatorie.................... 3 1.

Dettagli

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136 Esercitazioe 0 ESERCIZIO arco e Giulio hao due egozi i viale dei Giardii. arco vede libri, Giulio vede elettroica, tra cui tablet. arco e Giulio, avedo a disposizioe il umero di libri veduti ed il umero

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio

Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 12 Febbraio Matematica e Statistica: Modulo di Statistica - Prof. Federico Di Palma - Appello del 1 Febbraio 014 - Esercizio 1) I ua ricerca si è iteressati a verificare le dimesioi i micrometri di u graulocita eutrofilo.

Dettagli

Parametri, stimatori e stime, aspetti esplicativi dell'inferenza Statistica 1

Parametri, stimatori e stime, aspetti esplicativi dell'inferenza Statistica 1 Parametri, stimatori e stime, aspetti esplicativi dell'ifereza Statistica 1 Maria Felicia Adriai Fracesco Maria Dellisati Orozo Filippi Suto: I questa esperieza vegoo aalizzati gli aspetti sematici e algebrici

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Soluzioni Esercizi Capitolo 3

Soluzioni Esercizi Capitolo 3 Soluzioi Esercizi Capitolo 3 Esercizio 1 a. I u mazzo di carte fracesi lo spazio campioario è costituito da 52 elemeti. Nel caso dell'estrazioe di u fate, il umero di eveti favorevoli è 4, per cui la probabilità

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Scheda n.6: legame tra due variabili; correlazione e regressione

Scheda n.6: legame tra due variabili; correlazione e regressione Scheda.6: legame tra due variabili; correlazioe e regressioe October 26, 2008 Covariaza e coefficiete di correlazioe Date due v.a. X ed Y, chiamiamo covariaza il umero Cov (X, Y ) = E [(X E [X]) (Y E [Y

Dettagli

Carte di controllo per attributi

Carte di controllo per attributi Carte di cotrollo per attributi Il cotrollo per variabili o sempre è effettuabile misurazioi troppo difficili o costose troppe variabili che defiiscoo qualità di u prodotto le caratteristiche dei prodotti

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

RAPPRESENTAZIONE PROBABILISTICA DI UN CAMPIONE CASUALE SEMPLICE

RAPPRESENTAZIONE PROBABILISTICA DI UN CAMPIONE CASUALE SEMPLICE INFERENZA STATISTICA La Statistica Ifereziale studia come estedere i risultati e le coclusioi che provegoo dall aalisi di u campioe di osservazioi alla popolazioe a cui il campioe appartiee. Vi soo molteplici

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2.

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2. 60 Cotare sequeze e collezioi Passiamo ad ua formula meo semplice dato che o sembra avere ua facile iterpretazioe combiatoria. Proposizioe. Siao r, s, m, N. Allora r s + s m ( ) =( ) m + r+m. (.) r Z Osservazioe.

Dettagli

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3

Calcolo delle Probabilità 2012/13 Foglio di esercizi 3 Calcolo delle Probabilità 01/13 Foglio di esercizi 3 Probabilità codizioale e idipedeza. Esercizio 1. Sia B u eveto fissato di uo spazio di probabilità (Ω, A, P), co P(B) > 0. Si mostri che P( B) è l uica

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 4 Teoremi limite classici I Teoremi limite classici, la Legge dei Gradi Numeri e il Teorema Limite Cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 5 luglio 2012

Politecnico di Milano - Scuola di Ingegneria Industriale. II Prova in Itinere di Statistica per Ingegneria Energetica 5 luglio 2012 Politecico di Milao - Scuola di Igegeria Idustriale II Prova i Itiere di Statistica per Igegeria Eergetica 5 luglio 2012 c I diritti d autore soo riservati. Ogi sfruttameto commerciale o autorizzato sarà

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

MEDIE ALGEBRICHE E DI POSIZIONE

MEDIE ALGEBRICHE E DI POSIZIONE MEDIE ALGEBRICHE E DI POSIZIONE 0 Itroduzioe Tra le elaborazioi matematiche effettuate sui dati statistici rivestoo particolare importaza quelle che hao il compito di esprimere i diversi valori delle itesità

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA $! %! """ # &' ( )* &' + %, -. / %,! 0 -$ 34! % 3 3 3 3 )5* 3$&6 ( &7'* / $& : 3; / ( 8/ &* &')&56 &/ * : 5'9 $ : x A > x B I risultati del trial ci permettoo di decidere

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X.

Serie numeriche. Paola Rubbioni. 1 Denizione, serie notevoli e primi risultati. i=0 a i, e si indica con il simbolo +1X. Serie umeriche Paola Rubbioi Deizioe, serie otevoli e primi risultati Deizioe.. Data ua successioe di umeri reali (a ) 2N, si dice serie umerica la successioe delle somme parziali (S ) 2N, ove S = a +

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4

Quarto Compito di Analisi Matematica Corso di laurea in Informatica, corso B 5 Luglio Soluzioni. z 2 = 3 4 i. a 2 b 2 = 3 4 Quarto Compito di Aalisi Matematica Corso di laurea i Iformatica, corso B 5 Luglio 016 Soluzioi Esercizio 1 Determiare tutti i umeri complessi z tali che z = 3 4 i. Soluzioe. Scrivedo z = a + bi, si ottiee

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Distribuzioni per unità

Distribuzioni per unità Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa ota si occupa dell illustrazioe

Dettagli

Cenni di Calcolo di probabilità e. Il concetto di probabilità

Cenni di Calcolo di probabilità e. Il concetto di probabilità Cei di Calcolo di probabilità e Statistica Dario Maio http://www.csr.uibo.it/~maio/ dmaio@deis.uibo.it 1 Il cocetto di probabilità Il termie probabilità è usato el liguaggio quotidiao per deotare casi

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Teoria degli insiemi : alcuni problemi combinatorici.

Teoria degli insiemi : alcuni problemi combinatorici. Teoria degli isiemi : alcui problemi combiatorici. Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota l ordie. Questo può dar luogo ad iteressati e utili applicazioi. Premettiamo

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n

converge in probabilità alla v.a. X e si scrive: converge in media quadratica alla v.a. X e si scrive: m n 98 Covergeza i probabilità Si dice che la successioe X coverge i probabilità alla v.a. X e si scrive: se, per qualsiasi ε > 0, si ha: X p X oppure plim X = X limp( X X < ε)= Covergeza i media quadratica

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Statistica inferenziale e mercati azionari

Statistica inferenziale e mercati azionari Statistica ifereziale e mercati azioari Di Cristiao Armellii, cristiao.armellii@alice.it Dalla statistica ifereziale sappiamo che se m = media del campioe s = scarto quadratico medio del campioe = umerosità

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli