Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli"

Transcript

1 Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m 3 ; 14,4kg/dm 3...kg/m 3 ; 14,4kg/m 3...g/mm 3 ; 234g/mm 3...kg/m 3 ; 3,8kg/dm 3...hg/cm 3 ;

2 Operazioni in notazione scientifica Moltiplicazione e divisione: Essenzialmente si applicano le regole delle potenze: due potenze con ugual base si moltiplicano sommando gli esponenti e si dividono sottraendo gli esponenti Qui possiamo moltiplicare i coefficienti separatamente dalle potenze di 10 e abbiamo (7 4) 10 (-5+42) = (notare che i coefficienti si moltiplicano mentre gli esponenti si sommano) Infine ricordiamo che la scrittura corretta della notazione scientifica prevede che il coefficiente sia un numero compreso tra 1 e 9, quindi dividiamo il coefficiente per 10 e nel contempo moltiplichiamo l'esponenziale per 10. Abbiamo 2, Quest'ultimo passaggio lo chiameremo normalizzazione della notazione scientifica. Per la divisione le regole sono analoghe: : = 0, = Addizione e sottrazione Diverse sono le regole per l'addizione e la sottrazione: due misure in notazione scientifica si possono sommare solo se le potenze di 10 hanno lo stesso esponente: si sommano i coefficienti e si scrive la stessa potenza di 10. Esempio: = = (al solito bisogna sempre normalizzare) = 1, Nel caso in cui le potenze di 10 non hanno lo stesso esponente si riducono allo stesso esponente Es.: = la prima misura si trasforma moltiplicando la potenza di 10 per 10 2 in modo da farla diventare 10 7, però affinché il numero non cambi di valore è necessario nel contempo dividere il coefficiente per 10 2 (cioè spostare la virgola di due posti verso sinistra) per cui diventa 0,04. Allora l'operazione diventa 0, = che adesso si può svolgere ed è uguale a 8, Esercizi Trasformare in notazione scientifica (ipotizza tre cifre significative): m/s - 0, Kg - 0, s m - 0, K - 0,125 A - 0, m Kg s. Eseguire le seguenti operazioni in notazione scientifica: 3, , =... ; 4, , =... ; 3, : 5, =... ; 2, , =... ; 6, , =... ; 3, , =... ; 7, , =... ; 5, , =... ; 9, , =... ; 5, , =... ; 4, , =... ; 4, : 7, =... ; 9, : 3, =... ; 5, , =... ; 6, : 2, =... ;

3 Ricavare dalle operazioni di misurazione diretta il valore più probabile di una grandezza col suo errore SI Ripetendo la misura ottieni sempre lo stesso risultato? NO Il valore della grandezza è la misura trovata con l'errore di sensibilità dello strumento (di solito un'unità sull'ultima cifra) Il valore della grandezza è la media aritmetica delle misure trovate, mentre l'errore si può calcolare con la formula dell'errore massimo oppure (volendo essere più precisi ) con lo scarto quadratico medio Esercizio 1: Ripetendo più volte la misura dello spessore di una lastra d'acciaio ottengo sempre il valore 23,5mm. Qual sarà lo spessore del tavolo? Risposta: Dalla misura data si intuisce che la sensibilità dello strumento è di 1/10 di mm, quindi la lastra sarà spessa (23,5±0,1) mm Esercizio 2: Ripetendo 5 volte la misura del periodo di un pendolo si ottengono i seguenti risultati: 1,45s, 1,35s, 1,48s, 1,62s, 1,14s. Quanto vale il periodo? Risposta A: Usiamo prima il metodo dell'errore massimo. La media aritmetica vale 1,43, mentre l'errore massimo vale: (1,72-1,14)/2= 0,29. Prendendo solo le cifre significative ed approssimando si ha: (1,4±0,3)s Risposta B: Usiamo lo scarto quadratico medio. La media vale sempre 1,43, mentre lo scarto quadratico medio vale 0,24. Prendendo solo le cifre significative ed approssimando si ha: (1,4±0,2)s, con un errore leggermente più piccolo del precedente. Esercizi: 1. La distanza fra i vertici di due tralicci dell alta tensione è misurata più volte, ottenendo i seguenti risultati: 86,8 m, 86,1 m, 85,9 m, 86,4 m. Calcola la loro distanza con l errore. 2. La lunghezza di un tavolo è stata misurata quattro volte, ottenendo i seguenti risultati: 1234 mm, 1235 mm, 1232 mm, 1231 mm. Quanto è lungo il tavolo? 3. Calcola l errore relativo e l errore percentuale della misura dell esercizio precedente. 4. Ripetendo 6 volte la misurazione del peso di un pacco di pasta con una bilancia da cucina (sensibilità 5g) otteniamo sempre 495g. Quanto pesa il pacco?

4 Errori sulle misurazioni indirette (propagazione degli errori) Spesso le grandezze fisiche si misurano mediante calcoli eseguiti su misure dirette (sono appunto grandezze derivate). Esempi: l'area si misura moltiplicando due lunghezze, il perimetro sommando più lunghezze, la densità dividendo una massa per un volume la velocità dividendo una distanza per un intervallo di tempo Come si calcola l'errore su tali misure? Esempio: calcolo l'area di un'aiuola rettangolare misurando i suoi lati e poi moltiplicandoli. Poiché i lati sono affetti da errore, lo sarà anche l'area, ma quando vale tale errore? Esistono due metodi di stima dell'errore: quello mediante il calcolo dell'errore assoluto (più preciso) e quello mediante l'uso delle cifre significative (meno preciso, ma più agevole da usare). Metodo dell'errore assoluto Somma sottrazione Si sommano gli errori assoluti Si sommano gli errori relativi Metodo delle cifre significative Somma sottrazione 1) si scrivono gli addendi con sole cifre significative 2) si approssimano gli addendi alla cifra che occupa lo stesso posto della cifra incerta più grande 3) si sommano gli addendi ottenuti 1) si scrivono i fattori con sole cifre significative 2) il prodotto avrà tante cifre significative quante sono quelle del fattore con meno cifre significative

5 Esempi di propagazione di errori: Esempio sulla somma: Calcolare il perimetro di un appezzamento di terreno rettangolare, avente i lati di (123,3±0,2)m e (56,76±0,05)m. I metodo: si sommano i lati (123,3+56,76)2=360,12m; si sommano gli errori (0,2+0,05)2=0,5m. Il perimetro vale (360,1±0,5)m II metodo: si scrivono le misure dei lati con sole cifre significative, 123,3 e 56,76; si approssimano ai decimi di metro, cioè 123,3 e 56,8; si sommano i lati: (123,3+56,8)2=360,2m. Esempio sul prodotto: Calcolare l'area di un appezzamento di terreno rettangolare, avente i lati di (80,0±0,2)m e (70,0±0,1)m. I metodo: la formula da usare è A=b h. Si moltiplicano i lati (80,0 70,0)=560,0m 2 ; si calcolano gli errori relativi sui lati: e r (b)=0,2/80,0= 0,0025 e r (h)=0,1/70,0= 0,0014. Poi si sommano ottenendo l'errore relativo sull'area e r (A)= 0, ,0014 = 0,0039. Quindi si ottiene l'errore assoluto moltiplicando per il valore di A, cioè: e(a)=a e r (A)= 560,0 0,0039 = 2m 2. L'area vale (560±2)m 2. II metodo: si scrivono le misure dei lati con sole cifre significative; si moltiplicano i lati lasciando nella somma solo tre cifre significative, perché entrambi i fattori hanno tre cifre significative, (80,0 70,0)=560m 2. L'errore in questo caso è sottostimato. ESERCIZI: 1. Determinare il peso netto della pasta contenuta in una confezione, sapendo che il peso lordo è (505±2)g ed il peso della confezione è (35±2)g. 2. Di un lingotto di ferro vengono misurati il volume, V= 29,8cm 3, e la massa, 235hg. Determinarne la densità in kg/m 3 con il corretto numero di cifre significative. 3. Una busta postale ha dimensioni (43±0,3) mm e (120±0,5) mm. Calcola la superficie della busta con l'errore. 4. Quando è scaldato da 20 C a 200 C, un parallelepipedo di metallo aumenta le sue dimensioni dello 0,1%. Stima l aumento percentuale del suo volume. 5. Una superficie di 40m 2 viene divisa in 1000 parti uguali. Ogni parte ha un'area di (una sola risposta è valida e spiega il perché): 1. 0,04 m 2, 2. 0,04000m 2, 3. 0,0400m ,040m 2? 6. Esegui le operazioni scrivendo il risultato con il numero di cifre significative corretto (spiegando il perché): 4 3,24cm =...; 65,13cm 6,4cm =...; 39,0 : (5cm 3 /g)=...; 32,32kg + 8kg =

6 ALTRI ESERCIZI 1. Fornire le seguenti definizioni: grandezza fisica, notazione decimale, definizione operativa, errore casuale, errore sistematico, ordine di grandezza, cifre significative, Sistema internazionale, metro, secondo, chilogrammo, legge di diretta proporzionalità, legge di inversa proporzionalità, legge di proporzionalità quadratica, legge di proporzionalità quadratica inversa, legge lineare, sensibilità, portata, prontezza. 2. Ordina le seguenti misure in ordine decrescente di precisione (dalla più precisa alla meno precisa): (8,70±0,02)Km (23,24±0,09)g (137,5±0,2)cm.

7 Esercizi sulle leggi fisiche Per i dati di ciascuna tabella individua il tipo di relazione che li lega (es. legge di diretta proporzionalità), quindi scrivine l'espressione matematica (es.: =54 ) , , , , , ,25 3 1,67 2 2,5 1,5 3, ,5-8,5 5,5-14, ,9 2 19,6 3 44,1 4 78, ,5 Esercizio guida: 3 1,11 6 0,28 9 0, , ,05 Dai dati in tabella si osserva preliminarmente che mentre i valori di crescono, quelli di decrescono, quindi escludiamo dall'analisi sicuramente le proporzionalità diretta e quadratica nonché la relazione lineare. Rimangono da analizzare le due proporzionalità inverse. Compilando le due colonne * ed * 2, si vede che la colonna meno variabile è l'ultima, per cui concludiamo che i dati seguono una legge di proporzionalità quadratica inversa, data da (approssimando k ad una sola cifra) = 10 2 * * 2 3 1,11 3,33 9,99 6 0,28 1,68 10,08 9 0,12 1,08 9, ,07 0,84 10, ,05 0,7 9,8

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

Errori di misura Teoria

Errori di misura Teoria Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori

Dettagli

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Quali sono le grandezze fisiche? La fisica si occupa solo delle grandezze misurabili. Misurare una grandezza significa trovare un numero che esprime quante

Dettagli

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2.

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2. Compito di Fisica Classe 1C 9/10/010 Alunno ispondi alle seguenti domande: 1) Cosa significa misurare isurare vuol dire confrontare una grandezza con un altra grandezza omogenea scelta come unità di misura.

Dettagli

Grandezze e Misure 1

Grandezze e Misure 1 Grandezze e Misure 1 Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Misure dirette e indirette Strumenti di misura Errori nelle

Dettagli

GLI ERRORI DI MISURA

GLI ERRORI DI MISURA Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Sintesi degli argomenti di fisica trattati (parte uno)

Sintesi degli argomenti di fisica trattati (parte uno) Sintesi degli argomenti di fisica trattati (parte uno) La grandezza fisica è una proprietà dello spazio o della materia che può essere misurata. Fare una misura vuol dire confrontare la grandezza fisica

Dettagli

Le quattro operazioni

Le quattro operazioni Le quattro operazioni L addizione Esegui le seguenti addizioni disponendo i numeri in colonna.. 25 þ 20 þ 543 ¼ 25þ 20þ 543¼ 869 307 þ 50 þ 22 ¼ 74 þ 209 þ 843 ¼ 2. 72 þ 8 þ 409 ¼ 79 þ 743 þ 394 ¼ 43 þ

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

TEORIA ELEMENTARE DEGLI ERRORI

TEORIA ELEMENTARE DEGLI ERRORI TEORIA ELEMENTARE DEGLI ERRORI GRANDEZZE FISICHE: DEF.: Si chiama grandezza fisica ciò a cui si può associare un numero, che dicesi misura della grandezza fisica. La misura è quasi sempre seguita dall

Dettagli

IE FISICA Verifica 10 gennaio 2015 tutti gli esercizi e tutte le domande

IE FISICA Verifica 10 gennaio 2015 tutti gli esercizi e tutte le domande 1) Per ciascuno dei due casi determinare: portata e sensibilità dello strumento di misura; grandezza fisica misurata, valore della misura, errore assoluto, errore relativo ed errore percentuale; quindi

Dettagli

Se misuriamo lo spessore di una moneta con un calibro ventesimale, 1 possiamo conoscere questo spessore con l errore di mm 0, 05mm

Se misuriamo lo spessore di una moneta con un calibro ventesimale, 1 possiamo conoscere questo spessore con l errore di mm 0, 05mm UNITÀ L ELABORAZIONE DEI DATI IN FISICA 1. Gli errori di misura. Sono gli errori che si commettono inevitabilmente quando si misura una qualunque grandezza fisica, utilizzando un qualunque strumento e

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

MATEMATICA BASE. Riferimento: un qualsiasi testo delle scuole superiori

MATEMATICA BASE. Riferimento: un qualsiasi testo delle scuole superiori MATEMATICA BASE Ovvero: le cose essenziali che non puoi non sapere! Equazioni Proporzioni Potenze Notazione scientifica Superfici e volumi Percentuale Funzioni Sistemi di riferimento Proporzionalità diretta

Dettagli

Grandezze e Misure.

Grandezze e Misure. Grandezze e Misure www.fisicaxscuola.altervista.org Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Strumenti di misura Misure dirette

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA Revisione del 20/7/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon LA NOTAZIONE SCIENTIFICA Richiami di teoria La notazione scientifica è uno strumento utile per

Dettagli

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni MATEMATICA LIGHT Ovvero: le cose essenziali che Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni in Infermieristica sede di Lodi Proporzioni Potenze Notazione

Dettagli

Lavoro estivo per studenti con giudizio sospeso. Libro di Testo: Parodi Ostili, Fisica Misure e Statica, LINX

Lavoro estivo per studenti con giudizio sospeso. Libro di Testo: Parodi Ostili, Fisica Misure e Statica, LINX ISO 9001 CERTIFIED ORGANISATION ISTITUTO Di ISTRUZIONE SUPERIORE MINISTERO dell Istruzione, dell Università e della Ricerca ISTITUTO di ISTRUZIONE SUPERIORE Carlo Alberto Dalla Chiesa 1018 Sesto Calende

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

N= a i b i. Numeri e numerali. Sistemi di Numerazione Binaria. Sistemi posizionali. Numeri a precisione finita

N= a i b i. Numeri e numerali. Sistemi di Numerazione Binaria. Sistemi posizionali. Numeri a precisione finita Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Sistemi di Numerazione Binaria Lo stesso numero è rappresentato da

Dettagli

GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA

GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA GRANDEZZE FISICHE Grandezze fisiche Proprietà di un sistema che possono essere misurate Dirette Derivate Grandezze fisiche Proprietà di un sistema

Dettagli

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE La misura delle grandezze fisiche

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria NB.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi: ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

APPUNTI delle lezioni prof. Celino PARTE 1

APPUNTI delle lezioni prof. Celino PARTE 1 APPUNTI delle lezioni prof. Celino PARTE 1 PREREQUISITI MATEMATICI per lo studio della fisica e della chimica... 2 NOTAZIONE SCIENTIFICA... 2 APPROSSIMAZIONE DEI NUMERI DECIMALI... 2 MULTIPLI e SOTTOMULTIPLI...

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Sistema Metrico Decimale Equivalenze Potenze di Notazione scientifica (o esponenziale) Ordine di Grandezza Approssimazioni Proporzioni

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

D. Sono cifre significative: *Le cifre di un numero diverse da zero.

D. Sono cifre significative: *Le cifre di un numero diverse da zero. 1. RICHIAMI DI MATEMATICA D. Per comprendere quanto studieremo insieme, è necessario richiamare alla memoria alcuni concetti di fisica e matematica, dimenticati o mai appresi. Si faccia coraggio. Si definiscono

Dettagli

a. s CLASSE 1 a CS Insegnante Rossi Vincenzo Disciplina Fisica

a. s CLASSE 1 a CS Insegnante Rossi Vincenzo Disciplina Fisica a. s. 2015-2016 CLASSE 1 a CS Insegnante Rossi Vincenzo Disciplina Fisica PROGRAMMA SVOLTO 1) Gli errori di misura: la misurazione delle grandezze fisiche; misurazioni dirette ed indirette; l incertezza

Dettagli

Incertezza sperimentale e cifre significative

Incertezza sperimentale e cifre significative Incertezza sperimentale e cifre significative q La fisica è una scienza sperimentale e le misure e l incertezza con cui vengono effettuate sono il fulcro di ogni esperimento. q Le misure possono essere

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica

Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica Liceo Scientifico Marconi Delpino Classi 1^ Materia: Fisica Compiti per le vacanze estive Gli alunni promossi devono svolgere soltanto gli esercizi del libro di testo, gli alunni con sospensione del giudizio

Dettagli

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due

Conversione di base. Conversione decimale binario. Si calcolano i resti delle divisioni per due Conversione di base Dato N>0 intero convertirlo in base b dividiamo N per b, otteniamo un quoto Q 0 ed un resto R 0 dividiamo Q 0 per b, otteniamo un quoto Q 1 ed un resto R 1 ripetiamo finché Q n < b

Dettagli

SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche.

SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche. 1. GRANDEZZE FONDAMENTALI SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche. Secondo il Sistema Internazionale (SI) ci sono sette grandezze fondamentali. 2.

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Esempio 1: virgola mobile

Esempio 1: virgola mobile Esempio 1: virgola mobile Rappresentazione binaria in virgola mobile a 16 bit: 1 bit per il (0=positivo) 8 bit per l'esponente, in eccesso 128 7 bit per la parte frazionaria della mantissa normalizzata

Dettagli

Calcolatori Elettronici Parte III: Sistemi di Numerazione Binaria

Calcolatori Elettronici Parte III: Sistemi di Numerazione Binaria Anno Accademico 2001/2002 Calcolatori Elettronici Parte III: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Numeri e numerali! Numero: entità astratta! Numerale: stringa di

Dettagli

Prepararsi alla Prova di matematica

Prepararsi alla Prova di matematica Scuola Media E. Fermi Prepararsi alla Prova di matematica Prove d esame di matematica Prof. Vincenzo Loseto 2013/ 2014 PROVA NUMERO 1 QUESITO 1 In un triangolo rettangolo la somma di un cateto e dell ipotenusa

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Strumenti Matematici per la Fisica.

Strumenti Matematici per la Fisica. Strumenti Matematici per la Fisica www.fisicaxscuola.altervista.org 2 Strumenti Matematici per la Fisica Potenze di Prefissi: Multipli e Sottomultipli Sistema Metrico Decimale Equivalenze Proporzioni e

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

Cifre significative. Andrea Bussani. 4 novembre 2012

Cifre significative. Andrea Bussani. 4 novembre 2012 Cifre significative Andrea Bussani 4 novembre 2012 Numero di cifre significative Valore misura Cifre significative Numero di cifre significative (evidenziate in rosso) 12 12 2 12,5 12,5 3 1,25 1,25 3 125

Dettagli

Sistemi di Numerazione Binaria

Sistemi di Numerazione Binaria Sistemi di Numerazione Binaria BIN.1 Numeri e numerali Numero: entità astratta Numerale : stringa di caratteri che rappresenta un numero in un dato sistema di numerazione Lo stesso numero è rappresentato

Dettagli

Precisione e accuratezza

Precisione e accuratezza Precisione e accuratezza Ogni misura comporta una stima! Accuratezza: quanto la misura è prossima al valore corretto Precisione: quanto le singole misure sono in accordo tra loro Le cifre significative

Dettagli

La misura e le incertezze

La misura e le incertezze 1. Gli strumenti di misura Gli strumenti di misura vengono utilizzati per effettuare la misura di una grandezza fisica. Esistono due tipologie di strumenti di misura: 1. strumenti analogici, in cui la

Dettagli

2 Andiamo subito alle conclusioni

2 Andiamo subito alle conclusioni 1 Misure indirette Per misura indiretta si intende la misura di una qualunque grandezza ottenuta attraverso operazioni matematiche su delle misure dirette. Ad esempio, se vogliamo ricavare una stima dell

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali NUMERI Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali N NUMERI Per contare i soldi del proprio conto in banca! 0,+1, 1,+2, 2,+3, 3,... Numeri interi Z NUMERI Per tagliare le torte! 0,1,-1,1/2,-1/2,2,-2,1/3,-1/3,2/3.-2/3,...

Dettagli

ANALISI CHIMICO FARMACEUTICA I

ANALISI CHIMICO FARMACEUTICA I Prof. Gianluca Sbardella : 089 969770 : gsbardella@unisa.it L INCERTEZZA E LE CIFRE SIGNIFICATIVE Tutte le misure sono affette da un certo grado di incertezza la cui entità può dipendere sia dall operatore

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: 1Byte = 8 bit 1K (KiB: KibiByte)

Dettagli

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE 2 ACCURATEZZA L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE La precisione descrive l accordo tra due o più misure replicate. 3 NOTAZIONE SCIENTIFICA

Dettagli

Codifica. Rappresentazione di numeri in memoria

Codifica. Rappresentazione di numeri in memoria Codifica Rappresentazione di numeri in memoria Rappresentazione polinomiale dei numeri Un numero decimale si rappresenta in notazione polinomiale moltiplicando ciascuna cifra a sinistra della virgola per

Dettagli

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI Via Clotilde Tambroni, RIMINI ( RN ) Anno scolastico 2016-2017 Classe I A Materia: FISICA Insegnante : Prof. GIUSEPPE

Dettagli

CAP. 1: LA MISURA DELLE GRANDEZZE

CAP. 1: LA MISURA DELLE GRANDEZZE GEOMETRIA 1 - AREA 1 CAP. 1: LA MISURA DELLE GRANDEZZE MISURARE UNA GRANDEZZA n Il sistema metrico decimale eá il sistema di misurazione delle grandezze in cui i multipli sono 10, 100, 1000... volte piuá

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

REGOLE FACILI ITALIANO e MATEMATICA

REGOLE FACILI ITALIANO e MATEMATICA REGOLE FACILI ITALIANO e MATEMATICA -classi 3, 4, 5 scuola primaria- A cura di www.imparaconpietro.altervista.org INDICE SCHEDE REGOLE DI ITALIANO: Monosillabi 1 Articoli partitivi 2 Preposizioni 3 Aggettivi

Dettagli

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO:

1. CALCOLARE LA FRAZIONE DI UNA GRANDEZZA O DI UN NUMERO: PROBLEMI FONDAMENTALI CON LE FRAZIONI/RAPPORTI Le frazioni hanno applicazioni in moltissimi problemi. I tipi di problemi più frequenti sono: 1. Calcolare la frazione di un numero 2. Calcolare un numero

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto

Rappresentazione di numeri relativi (interi con segno) Rappresentazione di numeri interi relativi (con N bit) Segno e Valore Assoluto Rappresentazione di numeri relativi (interi con segno) E possibile estendere in modo naturale la rappresentazione dei numeri naturali ai numeri relativi. I numeri relativi sono numeri naturali preceduti

Dettagli

Numeri interi relativi

Numeri interi relativi Numeri interi relativi 2 2.1 I numeri che precedono lo zero Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande

Dettagli

REGOLE FACILI ITALIANO e MATEMATICA

REGOLE FACILI ITALIANO e MATEMATICA REGOLE FACILI ITALIANO e MATEMATICA -classi 3, 4, 5 scuola primaria- A cura di www.imparaconpietro.altervista.org INDICE SCHEDE REGOLE DI ITALIANO: Monosillabi 1 Articoli partitivi 2 Preposizioni 3 Aggettivi

Dettagli

LE OPERAZIONI CON I NUMERI

LE OPERAZIONI CON I NUMERI ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Interi positivi e negativi

Interi positivi e negativi Definizioni: numerali e numeri Un numerale è solo una stringa di cifre Un numerale rappresenta un numero solo se si specifica un sistema di numerazione Lo stesso numerale rappresenta diversi numeri in

Dettagli

Esercizi sugli errori di misura

Esercizi sugli errori di misura Esercizi sugli errori di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi tipo, potete

Dettagli

3 Le grandezze fisiche

3 Le grandezze fisiche 3 Le grandezze fisiche Grandezze fondamentali e grandezze derivate Tra le grandezze fisiche è possibile individuarne alcune (fondamentali) dalle quali è possibile derivare tutte le altre (derivate) Le

Dettagli

CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N =

CONVERSIONE BINARIO DECIMALE NB: Convertire in decimale il numero binario N = N = NOTAZIONE BINARIA, OTTALE, ESADECIMALE CODIFICA DI NUMERI INTERI RELATIVI 1 CONVERSIONE BINARIO DECIMALE Convertire in decimale il numero binario N = 101011.1011 2 N = 1 2 5 + 0 2 4 + 1 2 3 + 0 2 2 + 1

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

Appendice 1: Verifiche scritte

Appendice 1: Verifiche scritte ANNO SCOLASTICO 2015-2016 CLASSE 1 LB DISCIPLINA: FISICA DOCENTE: Romio Silvana A. PROGRAMMA Le misure delle grandezze. Introduzione alla fisica: la Fisica come scienza, limiti e validità di una teoria

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Ripasso: le equazioni lineari. Ripasso: i prodotti notevoli. Ripasso: i sistemi lineari e il metodo della sostituzione. Ripasso: le

Dettagli

fenomeni na- turali grandezze fisiche principi leggi metodo scientifico modello

fenomeni na- turali grandezze fisiche principi leggi metodo scientifico modello La fisica è la scienza che studia i fenomeni naturali (ossia tutti gli eventi che possono essere descritti, o quantificati, attraverso grandezze fisiche opportune) al fine di stabilire principi e leggi

Dettagli

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre

Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria. Prof. Riccardo Torlone Università di Roma Tre Calcolatori Elettronici Parte II: Sistemi di Numerazione Binaria Prof. Riccardo Torlone Università di Roma Tre Unità di misura Attenzione però, se stiamo parlando di memoria: n 1Byte = 8 bit n 1K (KiB:

Dettagli

Unità aritmetica e logica

Unità aritmetica e logica Aritmetica del calcolatore Capitolo 9 Unità aritmetica e logica n Esegue le operazioni aritmetiche e logiche n Ogni altra componente nel calcolatore serve questa unità n Gestisce gli interi n Può gestire

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

1-Rappresentazione dell informazione

1-Rappresentazione dell informazione 1-Rappresentazione dell informazione Informazioni: testi, numeri, immagini, suoni, etc.; Come viene rappresentata l informazione in un calcolatore? Uso di tecnologia digitale: tutto ciò che viene rappresentato

Dettagli

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero.

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero. LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5

LA FRAZIONE. Una frazione può essere: propria: se il numeratore è minore del denominatore; Es: 3 5 LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

Strumenti e tecniche di calcolo

Strumenti e tecniche di calcolo Strumenti e tecniche di calcolo di Lidia Sorrentino Esercitazione di economia aziendale per gli alunni delle classi 1ª ITE e 1ª dei nuovi IPSC 1. Segna con una crocetta la risposta esatta (alcuni quesiti

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

Anno Scolastico Classe 1^BS

Anno Scolastico Classe 1^BS Anno Scolastico 2015-16 Classe 1^BS DISCIPLINA FISICA DOCENTE ZENOBI ANTONELLA Libro di testo in adozione: Fisica! Pensare l Universo, autori Caforio-Ferilli, ed. Le Monnier Introduzione alla fisica Introduzione

Dettagli

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo 51-53 /119) 1) Il concetto della radice di un numero. a) Concetto numerico. 3 = ;l operazione inversa è : qual è quel numero il cui quadrato è 9? Matematicamente

Dettagli

I Numeri Interi Relativi

I Numeri Interi Relativi I Numeri Interi Relativi Con i numeri naturali non sempre è possibile eseguire l operazione di sottrazione. In particolare, non è possibile sottrarre un numero più grande da un numero più piccolo, per

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi prime - Fisica Poiché la disciplina Fisica è parte dell Asse Scientifico Tecnologico, essa concorre, attraverso lo studio dei

Dettagli

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE

Matematica anno scolastico 2010/2011 II A COMPITI DELLE VACANZE Pagina di Matematica anno scolastico 00/0 II A COMPITI DELLE VACANZE - ARITMETICA -.Risolvi le seguenti espressioni sul foglio a protocollo. 0 0.. 0. 0. 0... 0. 0 0.... . 0. 0. Estrai le seguenti radici

Dettagli