Ricapitoliamo. Ricapitoliamo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ricapitoliamo. Ricapitoliamo"

Transcript

1 Ricapitoliamo Finora ci siamo concentrati sui processi computazionali e sul ruolo che giocano le procedure nella progettazione dei programmi In particolare, abbiamo visto: Come usare dati primitivi (numeri) e operazioni primitive (operazioni aritmetiche) Come combinare procedure per formare altre procedure composte Come astrarre procedure usando define Ricapitoliamo Abbiamo visto inoltre che: che una procedura può essere usata come uno schema per l evoluzione locale di un processo Una semplice analisi algoritmica di alcuni schemi procedurali (lineare, logaritmica, ) Che procedure di ordine superiore (cioè procedure che manipolano altre procedure) aumentano il potere espressivo del linguaggio, permettendoci di astrarre metodi generali di computazione 1

2 Astrazione Procedurale Il processo di astrazione procedurale Definire i parametri formali, scrivere il processo nel corpo della procedura Dare alla procedura un nome Nascondere i dettagli dell implementazione all utente, che usa solo il nome per applicare la procedura Input procedura Dettagli dell implementazione Output Richiamiamo l esempio: sqrt Per trovare un approssimazione della radice quadrata di x Dare una proposta G Migliorare la proposta facendo la media tra G and x/g Continuare a migliorare la proposta fino a che è sufficiente (define sqrt-iter (lambda (guess x) (if (good-enough? guess x) guess (sqrt-iter (improve guess x) x)))) (define improve (lambda (guess x) (average guess (/ x guess)))) (define average (lambda (a b) (/ (+ a b) 2))) (define good-enough? (lambda (guess x) (< (abs (- (square guess) x)) 0.001))) (define sqrt (lambda (x) (sqrt-iter 1.0 x))) 2

3 L universo delle procedure per sqrt sqrt-iter average improve good-enough? sqrt L universo delle procedure per sqrt average sqrt improve sqrt-iter good-enough? 3

4 sqrt - struttura a blocchi (define (sqrt x) (define (good-enough? guess) (< (abs (- (square guess) x)) 0.001)) (define (improve guess) (average guess (/ x guess))) (define (sqrt-iter guess) (if (good-enough? guess) guess (sqrt-iter (improve guess)))) (sqrt-iter 1.0)) sqrt x: numero good-enough? improve sqrt-iter x: numero In sintesi Astrazione procedurale: Isola i dettagli del processo dal suo uso Il progettista sceglie quali idee isolare Uso eventuale di procedure di ordine superiore 4

5 Costruire astrazioni con i dati Ora cominceremo a considerare dati più complessi I programmi devono modellare fenomeni complessi e quindi dobbiamo costruire oggetti computazionali che hanno molte parti, per poter modellare fenomeni del mondo che hanno molti aspetti Indroduciamo quindi i mezzi che un linguaggio di programmazione ha per formare tipi di dato composti Costruire astrazioni con i dati Vedremo che costruire tipi di dato composti: Accresce la modularità Aumenta il potere espressivo del linguaggio di programmazione Esempio: Il compito di progettare un sistema che realizzi operazioni sui numeri razionali (es. 1/2, 3/4, ecc ) Avere un operazione add-rat che prende due numeri razionali e restituisce la loro somma 5

6 Tipi di dato composti: es. i numeri razionali In termini di tipi di dato semplici, un numero razionale può essere visto come due numeri interi: un numeratore e un denominatore E auspicabile vedere questi due numeri interi come un oggetto unico E un tipo di dato composto che i nostri programmi possono manipolare come una entità unica Data abstraction La data abstraction è una tecnica generale di progettazione che separa: le parti di un programma che considerano come i tipi di dato sono rappresentati dalle parti che trattano come gli oggetti vengono usati La data abstraction rende i programmi più semplici da progettare, mantenere, e modificare 6

7 Esempio Consideriamo l idea di calcolare una combinazione lineare a x + b y e scriviamo una procedura che accetta come argomenti a, b, x e y e ritorna il valore calcolato ax+by. Se gli argomenti sono numeri interi è facile: (define (linear-combination a b x y) (+ (* a x) (* b y))) Esempio Se però vogliamo esprimere il concetto di combinazione lineare in generale, anche per numeri razionali, complessi, polinomi, ecc dovremmo scrivere (define (linear-combination a b x y) (generic+ (generic* a x) (generic* b y))) Dove generic+ e generic* non sono le procedure primitive + e *, ma procedure più complesse che realizzano somma ed moltiplicazione qualunque sia il tipo di dato di a, b, x e y Il linguaggio deve essere capace di manipolare oggetti complessi come fossero un entità unica 7

8 Tipi di dati composti Il linguaggio deve fornire una sorta di colla con cui combinare tipi di dato semplice in tipi di dati più complessi In Scheme questa colla è data da alcune procedure Non c è nessuna operazione speciale per combinare i dati Nelle prossime lezioni Alcune tecniche per rappresentare sequenze ed alberi Introdurremo le espressioni simboliche: simboli arbitrari piuttosto che solo numeri Esploreremo varie alternative per rappresentare insiemi di oggetti Come implementare operazioni generiche, che devono essere in grado di trattare differenti tipi di dato Tecnica di programmazione guidata dai dati (datadriven programming) 8

9 Introduzione alla data abstraction La data abstraction è una metodologia che separa come un tipo di dato complesso viene usato dai dettagli di come viene costruito in termini di tipi di dato più semplici I programmi usano un tipo di dato astratto e non si devono preoccupare di come il tipo di dato viene implementato Allo stesso tempo una rappresentazione concreta del tipo di dato viene definita indipendentemente dai programmi che usano il tipo di dato Introduzione alla data abstraction L interfaccia tra queste due parti è un insieme di procedure chiamate selettori e costruttori I selettori e costruttori implementano il tipo di dato astratto in termini di rappresentazione concreta Come esempio vediamo un insieme di procedure che ci permettono di manipolare i numeri razionali 9

10 Operazioni aritmetiche per i numeri razionali Supponiamo di voler far aritmetica con i razionali. Vogliamo: Addizionare Moltiplicare Sottrarre Dividere Test di uguaglianza Assumiamo di avere già il costruttore, cioè la procedura che costruisce un razionale partendo da numeratore e denominatore (make-rat <n> <d>) con <n> e <d> numeri interi Operazioni aritmetiche per i numeri razionali Supponiamo di avere già anche i selettori: cioè dato un numero razionale, avere il modo di estrarre (o selezionare) il suo numeratore o il suo denominatore (numer <x>) (denom <x>) dove <x> è un numero razionale Wishful thinking: non abbiamo ancora detto come sono rappresentati i razionali, né come dovrebbero essere implementate make-rat, numer, denom. Se però avessimo queste procedure, potremmo iniziare a scrivere le operazioni aritmetiche sui razionali 10

11 Operazioni aritmetiche per i numeri razionali Addizionare n 1 + n 2 d 2 = n 1 d 2 + n 2 d 2 Sottrarre Moltiplicare Dividere!!! Test di uguaglianza! n 1 " n 2 d 2 = n 1d 2 " n 2 d 2 n 1 " n 2 d 2 = n 1n 2 d 2 n 1 n 2 d 2 = n 1d 2 n 2 n 1 = n 2 d 2 " n 1 d 2 = n 2! Operazioni aritmetiche per i numeri razionali Possiamo scrivere le procedure (define (add-rat x y) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (sub-rat x y) (make-rat (- (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y)))) (define (div-rat x y) (make-rat (* (numer x) (denom y)) (* (denom x) (numer y)))) (define (equal-rat? x y) (= (* (numer x) (denom y)) (* (numer y) (denom x)))) 11

12 Operazioni aritmetiche per i numeri razionali Abbiamo scritto le procedure aritmetiche sui razionali usando costruttori e selettori (anche senza averli ancora definiti) Abbiamo considerato i razionali come un tipo di dato astratto Vediamo ora una possibile rappresentazione concreta dei numeri razionali Coppie (pairs) Scheme fornisce una struttura complessa, chiamata coppia (pair), che può essere costruita con la procedura cons cons prende due argomenti e restituisce un oggetto che contiene i due argomenti come parti Data una coppia possiamo estrarre le parti usando le procedure primitive car e cdr 12

13 Coppie (pairs) (define x (cons 1 2)) (car x) 1 (cdr x) 2 Una coppia è un oggetto cui può venire dato un nome e manipolato come fosse un oggetto primitivo. E un oggetto di prima classe. Posso formare coppie di coppie, ecc (define x (cons 1 2)) (define y (cons 3 4)) (define z (cons x y)) (car (car z)) 1 (car (cdr z)) 3 Coppie (pairs) Vedremo che i pairs possono costituire il mattone per costruire ogni sorta di strutture dati complesse I pairs sono l unica colla di cui abbiamo bisogno I dati costruiti con i pairs sono detti dati strutturati a lista 13

14 Rappresentare i numeri razionali Le coppie offrono un modo naturale di rapresentare i numeri razionali come coppie di interi (define (make-rat n d) (cons n d)) (define (numer x) (car x)) (define (denom x) (cdr x)) Rappresentare i numeri razionali Per visualizzare i razionali possiamo definire (define (print-rat x) (display (numer x)) (display "/") (display (denom x))) (define un-mezzo (make-rat 1 2)) (print-rat un-mezzo) 1/2 (print-rat (add-rat un-mezzo un-mezzo)) 4/4 14

15 Rappresentare i numeri razionali Osserviamo che la nostra implementazione non riduce i razionali ai minimi termini Possiamo rimediare modificando il costruttore make-rat, usando la procedura mcd che calcola il massimo comun divisore Ricordiamo che abbiamo già definito mcd (define (make-rat n d) (let ((g (mcd n d))) (cons (/ n g) (/ d g)))) (define (mcd a b) (if (= b 0) a (mcd b (remainder a b)))) NOTA: Abbiamo modificato solo il costruttore, senza toccare le procedure aritmetiche che usano i razionali come tipo di dato astratto Barriere di astrazione Abbiamo definito le operazioni sui razionali in termini di Costruttore (make-rat) Selettori (numer, denom) Data abstraction consiste nell identificare per ciascun tipo di dato un insieme di operazioni di base, tramite le quali esprimere tutte le manipolazioni degli oggetti di quel tipo Poi si usano solo le operazioni di base per manipolare i dati 15

16 Barriere di astrazione sui razionali Programmi che usano i numeri razionali Numeri razionali nei problemi, visti come entità uniche add-rat sub-rat mul-rat div-rat equal-rat? Numeri razionali visti come numeratore e denominatore make-rat numer denom Numeri razionali visti come coppie cons car cdr Barriere di astrazione Comunque siano implementate le coppie Interfacce tra i livelli di astrazione Le barriere di astrazione isolano i vari livelli del sistema Barriere di astrazione Vantaggi: i programmi sono molto più facili da mantenere e da modificare Esempio: Possiamo ridurre ai minimi termini un razionale o quando questo viene costruito (come abbiamo visto prima), oppure quando si accede alle parti del numero Proviamo ad implementare questa seconda strada: (define (make-rat n d) (cons n d)) (define (numer x) (let ((g (mcd (car x) (cdr x)))) (/ (car x) g))) (define (denom x) (let ((g (mcd (car x) (cdr x)))) (/ (cdr x) g))) 16

17 Semplificazione dei razionali durante la costruzione (define (make-rat n d) (let ((g (mcd n d))) (cons (/ n g) (/ d g)))) (define (numer x) (car x)) durante la selezione (define (make-rat n d) (cons n d)) (define (numer x) (let ((g (mcd (car x) (cdr x)))) (/ (car x) g))) (define (denom x) (cdr x)) (define (denom x) (let ((g (mcd (car x) (cdr x)))) (/ (cdr x) g))) La differenza tra le due implementazioni sta dove calcolare il massimo comun divisore Qual è meglio? Dipende Per es. se nel nostro uso accediamo molte volte a numeratore e denominatore, allora conviene clacolare mcd a livello di costruzione Qualunque sia la scelta, notiamo che le procedure add-rat, ecc. non vengono modificate Vantaggi della data abstraction Flessibilità nel considerare implementazioni alternative dei dati Per esempio, all inizio potremmo non essere in grado di decidere quando è meglio fare il mcd La metodologia della data abstraction ci permette di rimandare la decisione senza perdere la possibilità di continuare a sviluppare l intero sistema 17

18 Esercizio: punti e segmenti Punti e segmenti nel piano, con data abstraction 18

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP)

12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) 12 - Introduzione alla Programmazione Orientata agli Oggetti (Object Oriented Programming OOP) Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica,

Dettagli

Brevissima introduzione al Lisp

Brevissima introduzione al Lisp Brevissima introduzione al Lisp Versione preliminare Giorgio Ausiello, Luigi Laura May 16, 2001 Queste pagine costituiscono un riferimento per gli studenti del corso di Informatica Teorica e non hanno

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

EVOLUZIONE DEI LINGUAGGI DI ALTO LIVELLO

EVOLUZIONE DEI LINGUAGGI DI ALTO LIVELLO EVOLUZIONE DEI LINGUAGGI DI ALTO LIVELLO Linguaggi di programmazione classificati in base alle loro caratteristiche fondamentali. Linguaggio macchina, binario e fortemente legato all architettura. Linguaggi

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Introduzione a Classi e Oggetti

Introduzione a Classi e Oggetti Introduzione a Classi e Oggetti Oggetto: concetto astratto Entità di un programma dotata di tre proprietà caratteristiche stato informazioni conservate nell oggetto condizionano il comportamento dell oggetto

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

MATEMATICA CLASSE PRIMA

MATEMATICA CLASSE PRIMA CLASSE PRIMA L alunno/a si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Contare oggetti o eventi, a voce e mentalmente,

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Corso di Esercitazioni di Programmazione

Corso di Esercitazioni di Programmazione Corso di Esercitazioni di Programmazione Introduzione Dott.ssa Sabina Rossi Informazioni Pagina web del corso: News Orari Mailing list Lezioni Esercitazioni Date esami Risultati esami.. http://www.dsi.unive.it/~prog1

Dettagli

Programmi. Algoritmi scritti in un linguaggio di programmazione

Programmi. Algoritmi scritti in un linguaggio di programmazione Programmi Algoritmi scritti in un linguaggio di programmazione Sistema operativo:programma supervisore che coordina tutte le operazioni del calcolatore Programmi applicativi esistenti Sistemi di videoscrittura

Dettagli

Identificare le classi in un sistema

Identificare le classi in un sistema 3.7 (Caso di studio facoltativo) Pensare a oggetti: identificare le classi nella specifica del problema Cominciamo ad affrontare la progettazione del simulatore di ascensore introdotto nel capitolo. Iniziamo

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

Esercitazioni in Maple

Esercitazioni in Maple Esercitazioni in Maple 6 giugno 2007 Capitolo 1 Prima esercitazione 1.1 Anelli di polinomi Per cominciare bisogna dichiarare un anello di polinomi. Possiamo lavorare con un qualsiasi anello di tipo dove

Dettagli

Analisi di programmi: Crittografia

Analisi di programmi: Crittografia Analisi di programmi: Crittografia Come caso concreto di sistema, proviamo ad abbozzare e a vedere una prima implementazione di un sistema di crittografia a chiave pubblica La crittografia studia le tecniche

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

Struttura logica di un programma

Struttura logica di un programma Struttura logica di un programma Tutti i programmi per computer prevedono tre operazioni principali: l input di dati (cioè l inserimento delle informazioni da elaborare) il calcolo dei risultati cercati

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

MATEMATICA. UNITA DI APPRENDIMENTO 1 Numeri. Obiettivi specifici di apprendimento

MATEMATICA. UNITA DI APPRENDIMENTO 1 Numeri. Obiettivi specifici di apprendimento UNITA DI 1 Numeri. MATEMATICA Conoscenze: Rappresentazione dei numeri in base dieci, entro il 100: il valore posizionale delle cifre. Le quattro operazioni tra numeri naturali entro il 100. Il significato

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

Come costruire una distribuzione di frequenze per caratteri quantitativi continui

Come costruire una distribuzione di frequenze per caratteri quantitativi continui Come costruire una distribuzione di frequenze per caratteri quantitativi continui Consideriamo i dati contenuti nel primo foglio di lavoro (quello denominato dati) del file esempio2.xls. I dati si riferiscono

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

Vince il più piccolo. Contenuti

Vince il più piccolo. Contenuti Vince il più piccolo Livello scolare: 4 a classe Competenze interessate Contenuti Nuclei coinvolti Collegamenti esterni Comprendere il significato e l uso dello zero e della virgola. Comprendere il significato

Dettagli

Ing. Paolo Domenici PREFAZIONE

Ing. Paolo Domenici PREFAZIONE Ing. Paolo Domenici SISTEMI A MICROPROCESSORE PREFAZIONE Il corso ha lo scopo di fornire i concetti fondamentali dei sistemi a microprocessore in modo semplice e interattivo. È costituito da una parte

Dettagli

DATABASE IN RETE E PROGRAMMAZIONE LATO SERVER

DATABASE IN RETE E PROGRAMMAZIONE LATO SERVER DATABASE IN RETE E PROGRAMMAZIONE LATO SERVER L architettura CLIENT SERVER è l architettura standard dei sistemi di rete, dove i computer detti SERVER forniscono servizi, e computer detti CLIENT, richiedono

Dettagli

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo INPUT: dati iniziali INPUT: x,y,z AZIONI esempio: Somma x ed y

Dettagli

Sviluppo Applicazioni Mobile Lezione 7. Dr. Paolo Casoto, Ph.D - 2011

Sviluppo Applicazioni Mobile Lezione 7. Dr. Paolo Casoto, Ph.D - 2011 + Sviluppo Applicazioni Mobile Lezione 7 Dr. Paolo Casoto, Ph.D - 2011 + Credits I lucidi di questa lezione sono stati preparati da: Professor Stefano Mizzaro Professor Paolo Coppola e sono stati modificati

Dettagli

MODULO 3. Microsoft Excel. TEST ED ESERCIZI SU: http://www.informarsi.net/ecdl/excel/index.php

MODULO 3. Microsoft Excel. TEST ED ESERCIZI SU: http://www.informarsi.net/ecdl/excel/index.php MODULO 3 Microsoft Excel TEST ED ESERCIZI SU: http:///ecdl/excel/index.php Foglio Elettronico - SpreadSheet Un foglio elettronico (in inglese spreadsheet) è un programma applicativo usato per memorizzare

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA TRAGUARDI DI COMPETENZA NUCLEI FONDANTI OBIETTIVI DI APPRENDIMENTO CONOSCITIVA IL NUMERO CARATTERISTICHE Quantità entro il numero 20 Cardinalità Posizionalità RELAZIONI

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

Istituto Comprensivo Perugia 9 Anno scolastico 2014/2015 Programmazione delle attività educativo didattiche MATEMATICA

Istituto Comprensivo Perugia 9 Anno scolastico 2014/2015 Programmazione delle attività educativo didattiche MATEMATICA Istituto Comprensivo Perugia 9 Anno scolastico 2014/2015 Programmazione delle attività educativo didattiche MATEMATICA CLASSE:PRIMA DISCIPLINA: MATEMATICA AMBITO OBIETTIVI DI APPRENDIMENTO/ABILITÀ CONOSCENZE

Dettagli

Object Oriented Programming

Object Oriented Programming OOP Object Oriented Programming Programmazione orientata agli oggetti La programmazione orientata agli oggetti (Object Oriented Programming) è un paradigma di programmazione Permette di raggruppare in

Dettagli

Architettura di un computer

Architettura di un computer Architettura di un computer Modulo di Informatica Dott.sa Sara Zuppiroli A.A. 2012-2013 Modulo di Informatica () Architettura A.A. 2012-2013 1 / 36 La tecnologia Cerchiamo di capire alcuni concetti su

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

Elementi di semantica operazionale

Elementi di semantica operazionale Elementi di semantica operazionale 1 Contenuti sintassi astratta e domini sintattici un frammento di linguaggio imperativo semantica operazionale domini semantici: valori e stato relazioni di transizione

Dettagli

INDICATORI REGISTRO DI LINGUA ITALIANA

INDICATORI REGISTRO DI LINGUA ITALIANA INDICATORI REGISTRO DI LINGUA ITALIANA -Saper ascoltare e comprendere messaggi, testi e consegne -Sapersi esprimere oralmente in modo chiaro e corretto -Saper leggere e comprendere vari tipi di testo -Saper

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

Descrizione di un algoritmo

Descrizione di un algoritmo Descrizione di un algoritmo Un algoritmo descrive due tipi fondamentali di oper: calcoli ottenibili tramite le oper primitive su tipi di dato (valutazione di espressioni) che consistono nella modifica

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

* Ricordati la BILANCIA Qualunque cosa facciamo ad un lato dell'equazione (piatto della bilancia), dobbiamo farlo anche per l'altro lato.

* Ricordati la BILANCIA Qualunque cosa facciamo ad un lato dell'equazione (piatto della bilancia), dobbiamo farlo anche per l'altro lato. Cominciamo con una facile: : E intuitivo che: x = 10... infatti 10 3 = 7 Ecco il trucco? aggiungere 3 ad entrambe le parti (membri)! * Ricordati la BILANCIA Qualunque cosa facciamo ad un lato dell'equazione

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

Dispensa 3. 1.1 YACC: generalità

Dispensa 3. 1.1 YACC: generalità Dispensa 3 1.1 YACC: generalità Il tool Yacc (acronimo per Yet Another Compiler Compiler) è uno strumento software che a partire da una specifica grammaticale context free di un linguaggio scritta in un

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012

Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Implementazione del gioco del Bantumi Corso di Intelligenza Artificiale 2012 Nicola Febbrari Università degli Studi di Verona Facoltà MM.FF.NN. nicola.febbrari@studenti.univr.it 22 gennaio 2013 1 Introduzione

Dettagli

IMSV 0.8. (In Media Stat Virtus) Manuale Utente

IMSV 0.8. (In Media Stat Virtus) Manuale Utente Introduzione IMSV 0.8 (In Media Stat Virtus) Manuale Utente IMSV è una applicazione che calcola che voti può'prendere uno studente negli esami che gli mancano per ottenere la media che desidera. Importante:

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Questa nota consiste perlopiù nella traduzione da Descriptive statistics di J. Shalliker e C. Ricketts, 2000, University of Plymouth Consideriamo come esempio il data set contenuto nel foglio excel esercizio2_dati.xls.

Dettagli

Introduzione alla tecnica di Programmazione Dinamica

Introduzione alla tecnica di Programmazione Dinamica Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/37 Sommario della lezione Introduzione alla tecnica di Programmazione Dinamica Esempio di applicazione n. 1:

Dettagli

LEZIONE: Pensiero Computazionale. Tempo della lezione: 45-60 Minuti. - Tempo di preparazione: 15 Minuti.

LEZIONE: Pensiero Computazionale. Tempo della lezione: 45-60 Minuti. - Tempo di preparazione: 15 Minuti. 3 LEZIONE: Pensiero Computazionale Tempo della lezione: 45-60 Minuti. - Tempo di preparazione: 15 Minuti. Obiettivo Principale: Introdurre il modello del Pensiero Computazionale come metodo per la risoluzione

Dettagli

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Basi di dati. L Algebra Relazionale. K. Donno - L Algebra Relazionale

Basi di dati. L Algebra Relazionale. K. Donno - L Algebra Relazionale Basi di dati L Algebra Relazionale Introduzione all Algebra Relazionale Una volta definito lo schema logico di un database, partendo da un Diagramma E-R, e dopo aver inserito le tabelle nel database, eventualmente

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Esercizi su. Funzioni

Esercizi su. Funzioni Esercizi su Funzioni ๒ Varie Tracce extra Sul sito del corso ๓ Esercizi funz_max.cc funz_fattoriale.cc ๔ Documentazione Il codice va documentato (commentato) Leggibilità Riduzione degli errori Manutenibilità

Dettagli

Introduzione ai tipi di dato astratti: applicazione alle liste

Introduzione ai tipi di dato astratti: applicazione alle liste Universitàdegli Studi di L Aquila Facoltàdi Scienze M.F.N. Corso di Laurea in Informatica Corso di Laboratorio di Algoritmi e Strutture Dati A.A. 2005/2006 Introduzione ai tipi di dato astratti: applicazione

Dettagli

Programmazione in Java (I modulo) Lezione 3: Prime nozioni

Programmazione in Java (I modulo) Lezione 3: Prime nozioni Programmazione in Java (I modulo) Lezione 3: Prime nozioni La volta scorsa Abbiamo avuto un primo assaggio! Abbiamo visto come usare l editor per scrivere un programma Java. Abbiamo analizzato riga per

Dettagli

Informatica Generale (Prof. Luca A. Ludovico) Presentazione 5.1 Operazioni aritmetiche nel sistema binario

Informatica Generale (Prof. Luca A. Ludovico) Presentazione 5.1 Operazioni aritmetiche nel sistema binario Operazioni aritmetiche nel sistema binario Operazioni aritmetiche basilari Le regole da imparare nel caso di una base b sono relative alle b 2 possibili combinazioni delle cifre da 0 a b- 1. Ad esempio,

Dettagli

Introduzione all Algebra Relazionale

Introduzione all Algebra Relazionale Basi di dati L Algebra Relazionale Introduzione all Algebra Relazionale Una volta definito lo schema logico di un database, partendo da un Diagramma E-R, e dopo aver inserito le tabelle nel database, eventualmente

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Obiettivi Specifici di apprendimento MATEMATICA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr.

Obiettivi Specifici di apprendimento MATEMATICA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr. Classe I Sc.Primaria Obiettivi Specifici di apprendimento MATEMATICA CURRICOLO VERTICALE DI ISTITUTO (Cl. I Sc.Primaria Cl. III Sc.Second. 1 gr.) NUMERO - Confrontare e ordinare raggruppamenti di oggetti

Dettagli

Fondamenti di Informatica 1. obiettivo: introduzione a conoscenze di base dell informatica

Fondamenti di Informatica 1. obiettivo: introduzione a conoscenze di base dell informatica Università di Roma Tor Vergata L1-1 obiettivo: introduzione a conoscenze di base dell informatica informatica come metodologia di risoluzione di problemi con l ausilio di una macchina definire un metodo

Dettagli

Questua: aste online social

Questua: aste online social UNIVESITÁ DEGLI STUDI DI MILANO LAUREA TRIENNALE IN COMUNICAZIONE DIGITALE RETI DI CALCOLATORI Questua: aste online social Matteo Zignani 14 giugno 2013 1 PRESENTAZIONE DEL PROBLEMA Lo studente deve sviluppare

Dettagli

PROGETTO SCUOLE DELL INFANZIA A.S. 2012-2013

PROGETTO SCUOLE DELL INFANZIA A.S. 2012-2013 ISTITUTO COMPRENSIVO SASSUOLO 2 NORD PROGETTO SCUOLE DELL INFANZIA San Carlo Borromeo e H. C. Andersen A.S. 2012-2013 (Laboratorio di logico-matematica) Siamo nati per contare, abbiamo dei circuiti incorporati

Dettagli

Progettazione : Design Pattern Creazionali

Progettazione : Design Pattern Creazionali Progettazione : Design Pattern Creazionali Alessandro Martinelli alessandro.martinelli@unipv.it 30 Novembre 2010 Progettazione : Design Pattern Creazionali Aspetti generali dei Design Pattern Creazionali

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

CURRICOLO MATEMATICA CLASSE 1^

CURRICOLO MATEMATICA CLASSE 1^ CURRICOLO CLASSE 1^ COMPETENZE CHIAVE: Competenze di base in matematica Classe 1^ Contare oggetti o eventi, a voce e mentalmente Leggere e scrivere i numeri naturali in notazione decimale avendo consapevolezza

Dettagli

LABORATORIO DI PROGRAMMAZIONE 2012 2013 EDIZIONE 1, TURNO B

LABORATORIO DI PROGRAMMAZIONE 2012 2013 EDIZIONE 1, TURNO B LABORATORIO DI PROGRAMMAZIONE 2012 2013 EDIZIONE 1, TURNO B 23.XI.2012 VINCENZO MARRA Indice Esercizio 1 1 Menu 1 Tempo: 35 min. 2 Commento 1 2 Esercizio 2 2 Ordinamento e ricerca binaria con la classe

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

CURRICOLO VERTICALE DI MATEMATICA. Istituto comprensivo di Castell Arquato

CURRICOLO VERTICALE DI MATEMATICA. Istituto comprensivo di Castell Arquato CURRICOLO VERTICALE DI MATEMATICA Istituto comprensivo di Castell Arquato Scuola dell infanzia Campi di esperienza Traguardi per lo sviluppo delle competenze Abilità Conoscenze Immagini, suoni, colori

Dettagli