links utili:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "links utili:"

Transcript

1 dspensa d Govann Bachelet Meccanca de Sstem, maggo 2003 lnks utl:

2 Momento della quanttà d moto d un corpo rgdo rspetto al centro d massa Abbamo vsto che l moto d un corpo rgdo, nel rfermento del laboratoro S, s può scomporre nel moto d traslazone del suo centro d massa r c e nella sua rotazone rspetto a r c. Da questa scomposzone s ottene anche P c, momento della quanttà d moto rspetto al centro d massa : v = v c + ω ( r r c ) ; Pc = ( r r c ) v = { r r c 2 ω ω ( r r c )] ( r r c ) } Scomponendo l vettore r r c = d c + h c nella somma d due vettor, uno parallelo h c = h c ˆω = (h h c ) ˆω e l altro d c = ( d d c ) perpendcolare all asse d rotazone ˆω, ottenamo po: P c = { (d 2 c + h 2 c) ω ωh c ( d c + h c ˆω) } = { d 2 c ω ωh c dc } = Ic ω + P c, dove I c ω è un vettore parallelo ad ω, l coeffcente I c = d 2 c > 0 è detto momento d nerza assale rspetto all asse d rotazone ˆω passante per r c, e P c = ω h c dc è un vettore perpendcolare a ˆω. La relazone fra P c e ω è qund una relazone lneare (ad esempo ad una veloctà angolare doppa corrsponde un momento della quanttà d moto doppo), ma n generale P c 0: due vettor non sono parallel. Tensore d nerza d un corpo rgdo L equazone qu sopra esprme nfatt una relazone lneare d tpo tensorale fra vettor P c e ω. Questa relazone, una volta scelta arbtraramente una terna cartesana ˆxŷẑ nel rfermento del laboratoro, può essere espressa n termn delle component cartesane de due vettor n questone e degl element d una matrce 3 3; tale matrce è la rappresentazone cartesana, nel partcolare rfermento scelto, del tensore d nerza rspetto al centro d massa: P cα = Iαβ c ω β, per α = x, y, x. Ovvero : β=x,y,x Dove Ixx c = r r c 2 (x x c ) 2] = P cx Ixx c Ixy c I c xz ω x P cy = Iyx c Iyy c Iyz c ω y P cz Izx c Izy c Izz c ω z (y y c ) 2 + (z z c ) 2] I c yy = I c zz = r r c 2 (y y c ) 2] = r r c 2 (z z c ) 2] = (x x c ) 2 + (z z c ) 2] (x x c ) 2 + (y y c ) 2] I c xy = I c yx = I c xz = I c zx = I c yz = I c zy = (x x c ) (y y c ) (x x c ) (z z c ) (y y c ) (z z c ) 2

3 Il tensore d nerza è legato ad una propretà ntrnseca del corpo: la dstrbuzone spazale delle sue masse rspetto al polo (può essere anche dverso dal centro d massa scelto qu). Gl element d matrce I c αβ della sua rappresentazone cartesana, nvece, dpendono dal partcolare orentamento della terna ˆxŷẑ scelta n S, propro come succede alle component cartesane de vettor. NB: un tensore è defnto, come un vettore, dalle sue propretà d trasformazone; uno scalare è un tensore d rango 0, un vettore è un tensore d rango, l nostro tensore d nerza è d rango 2... come mparerete prma o po n altr cors.] Ass prncpal e ass central La matrce Iαβ c è smmetrca. Questo garantsce che, con un opportuna rotazone degl ass coordnat, coè con una dversa ed opportuna scelta d ass ˆx ŷ ẑ, l tensore d nerza d quello stesso corpo sa rappresentato da una matrce Iαβ c dagonale (una matrce 3 3 fatta tutta d zer salvo tre element dagonal, dett autovalor). Trovare quest nuov ass ˆx ŷ ẑ equvale a dagonalzzare la matrce, ovvero trovare tre ass prncpal d nerza del corpo, e tre corrspondent autovalor. Quest ultm sono n generale dvers fra loro, e tre ass corrspondent non sono equvalent. Se però due autovalor sono ugual fra loro (l che succede n presenza d partcolar smmetre del corpo), allora due de tre ass prncpal rsultano equvalent; n questo caso qualunque drezone, nel pano ndvduato da que due ass, è ancora un asse prncpale. L esempo del clndro Dato un clndro omogeneo d massa M, raggo R e altezza h, se scelgo un sstema d rfermento con orgne nel centro del clndro ed ass ˆxŷẑ orentat n modo non partcolarmente furbo rspetto alle sue smmetre (ved fgura, a snstra), la matrce smmetrca Iαβ c che ne rappresenta l tensore d nerza ha tutt gl element dvers da zero; dagonalzzandola trovo la nuova terna cartesana ˆx ŷ ẑ (ved fgura, a destra) tale che la nuova matrce Iαβ c che rappresenta l tensore d nerza è dagonale; per un clndro omogeneo è la matrce: 2 Mh2 + 4 MR Mh2 + 4 MR MR2 I due autovalor relatv agl ass ˆx e ŷ sono ugual; l terzo, relatvo all asse ẑ, è dverso. L uguaglanza de due autovalor esprme l fatto che, n un clndro omogeneo, tutt dametr passant per l centro sono equvalent fra loro: nel pano ˆx ŷ ogn asse che passa per l centro del clndro è ancora un asse prncpale. 3

4 Se addrttura tutt e tre gl autovalor sono ugual, tutt e tre gl ass prncpal sono equvalent: qualunque drezone nello spazo è un asse prncpale. Solo n quest ultmo caso (che corrsponde alla pú alta smmetra possble, ad esempo quella d una sfera omogenea) la matrce che rappresenta l tensore d nerza è proporzonale alla matrce denttà, e rsulta qund dagonale qualsas sa l orentamento degl ass cartesan. La propretà degl ass prncpal, faclmente verfcable sulla base delle defnzon fornte, è che, se l corpo rgdo ruota attorno ad uno d ess, l suo momento della quanttà d moto è parallelo alla veloctà angolare (ovvero rsulta P c = 0). Se nvece l corpo rgdo ruota attorno ad un asse che non corrsponde a nessun asse prncpale, allora l suo momento della quanttà d moto avrà sa una componente parallela al vettore veloctà angolare, sa una componente perpendcolare P c 0. Fnora abbamo parlato d momento angolare e tensore d nerza rspetto al centro d massa r c. Gl ass cosí determnat non sono solo ass prncpal d nerza, ma anche ass central del corpo rgdo n questone (ass prncpal passant per l suo centro d massa); sono dett anche, per motv che vedremo, ass lber d rotazone. Momento angolare e tensore d nerza s possono però defnre rspetto a un polo qualunque r o, anche dverso da r c : ad esempo, se l corpo è vncolato a ruotare attorno ad un asse che non contene r c, convene pazzare l polo r o lungo quell asse, non n r c. Graze al teorema d Koeng del momento angolare sarà po facle mettere n relazone quanttà angolar defnte rspetto a due dvers pol. Le smmetre spazal d un corpo rgdo, se omogeneo, autano a ndvduare gl ass central del suo tensore d nerza. E facle nfatt convncers, sulla base delle defnzon nzal d queste dspense, che, se un corpo rgdo ruota attorno ad un propro asse d smmetra (che per defnzone passa per l centro d massa), allora P c = 0: un asse d smmetra è dunque un asse centrale. Momento d nerza assale e teorema d Huygens-Stener Se corp rgd omogene hanno ass d smmetra rconoscbl a vsta, ch non ama matrc e tensor può accontentars dell equazone P c = I c ω + P c e dstnguere due cas: (a) l asse d rotazone ˆω concde con un asse d smmetra, e allora l momento della quanttà d moto rspetto al centro d massa è parallelo al vettore veloctà angolare ω; (b) l asse d rotazone passa per l centro d massa ma non concde con un asse d smmetra, e allora l momento della quanttà d moto rspetto al centro d massa ha anche una componente perpendcolare ad ω. Sa nel caso (a) che nel caso (b) la componente parallela alla veloctà angolare è data da I c ω, dove I c = d 2 c, somma delle masse che compongono l corpo rgdo pesate col quadrato della loro dstanza dall asse d rotazone, è l momento d nerza assale rspetto all asse d rotazone. Se nvece l asse d rotazone non passa per l centro d massa, convene rferre l momento della quanttà d moto ad un polo r o che sa sull asse, qund non pú al centro d massa r c ; ma graze al teorema d Koeng del momento angolare P o = P c + ( r c r o ) M v c possamo scrvere: P o = ( I c + Md 2 c) ω + ( Pc Mωh c dc ) = I o ω + P o, dove r c r o, vettore dstanza fra polo e centro d massa, è stato scomposto nella somma d due vettor, uno parallelo all asse d rotazone h c = h c ˆω = (h c h o ) ˆω e l altro perpendcolare all asse d rotazone d c = ( d c d o ). Ottenamo cosí per l momento d nerza assale l rsultato noto come 4

5 teorema d Huygens-Stener: I o = I c + Md 2 c. In altre parole, dat due ass parallel a quello d rotazone ˆω, l prmo passante per r o e l secondo passante per r c, che s trova a dstanza d c dal prmo, due corrspondent moment d nerza del corpo rgdo dfferscono per una quanttà data dalla massa totale del corpo moltplcata per l quadrato della dstanza fra gl ass (NB: d c, componente d r c r o perpendcolare a ω, è propro questa dstanza). Per la propretà transtva, questo tpo d relazone sussste fra moment d nerza assal rspetto a qualsas coppa d ass parallel a e a : I a = I a + Md 2 aa, un rsultato molto utle nel calcolo de moment d nerza assal. Rotazon rspetto a un punto fsso Ora mostramo che, per far ruotare un corpo rgdo rspetto a un punto fsso r o non concdente col centro d massa r c, c vuole una rsultante delle forze esterne dversa da zero nel seguto mettamo l punto fsso nell orgne: r o = (0, 0, 0)]; e che, per farlo ruotare con veloctà angolare ω non dretta secondo un asse prncpale, c vuole un momento complessvo delle forze esterne dverso da zero. Nel caso generale (asse non prncpale e punto fsso dverso da r c ) abbamo nfatt: Q = M v c = M ω r c d Q dt = M d ω dt r c + ω ( ω r c ) = F ext 0 P o = I o ω + P o d P o dt d ω = Io dt + dω P ω dt o + ω P o = M o ext 0; per la seconda equazone abbamo tenuto conto che P o = ωa ˆP o con A costante (A dpende solo dalla dstrbuzone spazale delle masse gacché P c = ω h c dc e P o = P c Mωh c dc ); l versore ˆP o ruota nel pano perpendcolare all asse d rotazone con veloctà ω. La prma equazone dce che, anche se d ω/dt è zero (coè anche se l asse d rotazone ˆω è fsso e la veloctà angolare ω è costante nel tempo), occorre una rsultante delle forze esterne, n partcolare una forza centrpeta, per mantenere n rotazone un corpo rgdo attorno a un punto che non sa l suo centro d massa. La seconda equazone dce che P o, non appena è dverso da zero, dpende per forza dal tempo: anche se ω è costante, P o ruota nel pano perpendcolare a ω con veloctà angolare ω; cosí anche l ntero vettore P o =I o ω+ P o dpende dal tempo (ruota descrvendo un cono, precedendo attorno all asse d rotazone); qund la dervata temporale del vettore P o non è zero, e occorre un momento rsultante delle forze esterne per mantenere l corpo n rotazone attorno a quell asse. Infne, sempre nell potes d ω costante, non è dffcle dmostrare, sulla base delle defnzon fornte n precedenza, che sa F ext, sa M ext o, sono proporzonal a ω 2. Dalle equazon precedent consegue che un corpo rgdo, n assenza d forze e moment estern, può ruotare solo ntorno ad uno de suo ass central; per questo ess sono anche chamat ass lber d rotazone. Per mantenere un corpo rgdo n rotazone costante ntorno a un asse non centrale (o perché non passa per l centro d massa, o perché la drezone non è quella d un asse centrale, o tutte e due le cose) occorrono nvece forze e moment estern, sempre pú grand man mano che aumenta la veloctà angolare ω. Per questo è mportante, ad esempo per l elca d un aereo o per la ruota d un automoble, una perfetta equlbratura : una dstrbuzone d masse 5

6 tale che l asse d rotazone (tpcamente realzzato con un vncolo, come l mozzo della ruota) non sa soggetto a forze e moment estern che dventano rapdamente molto grand con l aumentare della veloctà angolare. Senza equlbratura, oltre una certa veloctà angolare, s spacca tutto. Un struttvo eserczo da fare per conto propro è verfcare le drezon de vettor F ext e M o ext, e capre fscamente a quale tpo d sollectazone è sottoposto l vncolo responsable d mantenere fsso l asse d rotazone, se quest ultmo non concde con un asse centrale del corpo ruotante. Rotazon rspetto a un asse fsso Se l asse è fsso nel tempo, la drezone d ω è costante nel tempo e l angolo θ(t) d rotazone del corpo attorno all asse determna completamente l moto (un solo grado d lbertà). Convene sceglere la terna cartesana del rfermento S n modo che sa ω = (0, 0, ω), coè n modo che l asse ẑ concda con l asse d rotazone del corpo (che può passare o meno per l centro d massa: per esempo per una porta sceglamo l asse ẑ lungo cardn), e rferre P o e I o ad un polo r o che s trov lungo tale asse; nel seguto sceglamo l orgne r o = (0, 0, 0). Con queste scelte θ(t) ubbdsce all equazone dfferenzale dp oz dt = I o dω dt = Io d2 θ dt 2 = M ext z. Una volta nota la componente z del momento complessvo delle forze esterne e le condzon nzal θ(t=0) e ω(t=0), ntegrando l equazone dfferenzale, ottenamo θ(t). Notamo qu l orgne del nome momento d nerza assale : nel moto rotatoro I o goca, rspetto all accelerazone angolare, lo stesso ruolo che goca la massa rspetto all accelerazone nel moto traslatoro. In partcolare vale un prncpo d nerza angolare: se la componente z (coè la componente lungo l asse fsso d rotazone) del momento complessvo delle forze esterne è nulla, l corpo s mantene ndefntamente n uno stato d quete o d moto rotatoro unforme, coè conserva la componente del momento della quanttà d moto parallela all asse fsso d rotazone. Una volta nota θ(t) sono naturalmente determnat anche Q=M ω r c e P o = ω h c dc Mωh c dc. Energa cnetca Nel rfermento del laboratoro S è possble scomporre l energa cnetca K d un sstema qualunque nella somma K = 2 Mv2 c + K, dove l prmo termne è la cosddetta energa del centro d massa e l secondo termne K è l energa cnetca nel centro d massa, coè rspetto ad un rfermento S che trasla col centro d massa (ma senza ruotare rspetto ad S). Nel rfermento S l centro d massa è fermo e un corpo rgdo può solo ruotare con veloctà ω. Ovvero n S la veloctà delle vare masse che compongono l corpo rgdo è v = ω r = ω ( r r c ), e qund K = 2 v 2 = 2 ω r 2 = 2 ω 2 d 2 = 2 I c ω 2 dove d è la componente perpendcolare ad ω d r = r r c, coè la dstanza della massa dall asse d rotazone passante per l centro d massa: anche nell energa cnetca rotazonale l momento d nerza assale goca un ruolo analogo alla massa nell energa cnetca traslazonale. 6

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω

L = L E k 2 ENERGIA CINETICA DI ROTAZIONE. Espressione generica dell energia cinetica di rotazione: 1 ω NRGIA CINTICA DI ROTAZION k m R ) ( k R m R m spressone generca dell energa cnetca d rotazone: I k Se la rotazone aene ntorno ad un asse prncpale d nerza, allora: I L da cu: I L k NRGIA CINTICA DI ROTOTRASLAZION

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima avoro ed Energa F s Fs cos θ F// s F 0 0 se: s 0 θ 90 Il lavoro svolto da una orza costante è l prodotto scalare della orza per lo spostamento del punto d applcazone della orza medesma [] [M T - ] N m

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Rotazione di un corpo rigido intorno ad un asse fisso

Rotazione di un corpo rigido intorno ad un asse fisso INGEGNERIA GESTIONALE corso d Fsca Generale Prof. E. Puddu LEZIONE DEL 14 15 OTTOBRE 2008 Rotazone d un corpo rgdo ntorno ad un asse fsso 1 Cnematca rotazonale y Supponamo d osservare un corpo rgdo sul

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli

Fisica. Architettura

Fisica. Architettura Fsca Facoltà d Ingegnera, Archtettura e delle Scenze otore Lezone 9 aprle 03 Archtettura (corso magstrale a cclo unco qunquennale) Prof. Lanzalone Gaetano CORPO RIGIDO Il corpo rgdo È un partcolare sstema

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Determinazione del momento d inerzia di una massa puntiforme

Determinazione del momento d inerzia di una massa puntiforme Determnazone del momento d nerza d una massa puntorme Materale utlzzato Set d accessor per mot rotator Sensore d rotazone Portamasse e masse agguntve Statvo con base Blanca elettronca Calbro nteracca GLX

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Momento di forza su una spira immersa in un campo di induzione magnetica: il momento magnetico.

Momento di forza su una spira immersa in un campo di induzione magnetica: il momento magnetico. Momento d forza su una spra mmersa n un campo d nduzone magnetca: l momento magnetco. In precedenza abbamo vsto che la forza totale agente su una spra percorsa da una corrente mmersa n un campo d nduzone

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Turbomacchine. Un ulteriore classificazione avviene in base alle modalità con cui l energia viene scambiata:

Turbomacchine. Un ulteriore classificazione avviene in base alle modalità con cui l energia viene scambiata: 1/11 a) Classfcazone delle macchne draulche b) Element costtutv d una turbomacchna c) Trangol d veloctà d) Turbomacchna radale e) Turbomacchna assale f) Esempo d calcolo Turbomacchne S defnsce come macchna

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Fondamenti di meccanica classica: simmetrie e leggi di conservazione

Fondamenti di meccanica classica: simmetrie e leggi di conservazione Fondament d meccanca classca: smmetre e legg d conservazone d Marco Tulu A. A. 2005/2006 1 Introduzone Un corpo s dce omogeneo se ha n ogn suo punto ugual propretà fsche e chmche, ed è sotropo se n ogn

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1

ENERGIA CINETICA. T := 1 2 mv2. (1) T := N 1 2 m ivi 2. (2) i=1 ENERGIA CINETICA Teorema de energa cnetca Defnzone Per un punto P dotato d massa m e veoctà v, s defnsce energa cnetca a seguente quanttà scaare non negatva T := mv. () Defnzone Per un sstema dscreto d

Dettagli

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1)

Soluzione: Il campo generato da un elemento di filo dl è. db r = (1) 1 Eserco 1 - Un flo conduttore percorso da corrente ha la forma mostrata n fgura dove tratt rettlne sono molto lungh. S calcol l campo d nduone magnetca ( dreone, verso e modulo) nel punto P al centro

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sstem 7 Nel captolo precedente abbamo studato la cnematca e la dnamca d un punto materale. Questo captolo fornsce le bas per lo studo d sstem fsc pù complcat, o meglo, d sstem fsc per qual

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G.

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G. Problema 1 S consderno le funzon f e g defnte, per tutt gl x real, da: f ( x) = x 3 4 x, g( x) = sn( π x) 1. Fssato un convenente sstema d rfermento cartesano Oxy s studno le funzon f e g e se ne dsegnno

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

NATURA ATOMICA DELLA MATERIA

NATURA ATOMICA DELLA MATERIA NATURA ATOMICA DLLA MATRIA Un qualunque fludo è costtuto da un gran numero d partcelle (sa sngol atom che molecole) n un contnuo moto dsordnato defnto agtaone termca. Questo fenomeno sta alla base de cosddett

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Progetto di elementi strutturali:

Progetto di elementi strutturali: Progetto d element struttural: Gunto trave-colonna I gunt trave-colonna sono tra gl element fondamental della progettazone delle strutture n accao e possono essere realzzat n svarat mod collegando la trave

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Ing. Eugenio Ferrara Università degli Studi di Catania

Lezione PONTI E GRANDI STRUTTURE. Prof. Pier Paolo Rossi Ing. Eugenio Ferrara Università degli Studi di Catania Lezone PONTI E GRANDI STRUTTURE Prof. Per Paolo Ross Ing. Eugeno Ferrara Unverstà degl Stud d Catana de carch Engesser Guyon Courbon Introduzone L utlzzo d un metodo d rsoluzone rspetto ad un altro dpende

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Costruzioni in c.a. Metodi di analisi

Costruzioni in c.a. Metodi di analisi Corso d formazone n INGEGNERIA SISICA Verres, 11 Novembre 16 Dcembre, 2011 Costruzon n c.a. etod d anals Alessandro P. Fantll alessandro.fantll@polto.t Verres, 18 Novembre, 2011 Gl argoment trattat 1.

Dettagli

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO ( Il Magnetsmo La forze magnetca La forza Gà a temp d Talete (VI secolo a.c.), nell Antca Greca, era noto un mnerale d ferro n grado d attrare

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

MOTO DEI FLUIDI REALI: LE EQUAZIONI DI NAVIER-STOKES

MOTO DEI FLUIDI REALI: LE EQUAZIONI DI NAVIER-STOKES MOO EI FLUII REALI: LE EQUAZIONI I NAVIER-SOKES M. Capozz Copyrght AEPRON utt rtt Rservat - www.adepron.t MOO EI FLUII REALI: LE EQUAZIONI I NAVIER-SOKES Marco CAPOZZI * * Ingegnere Meccanco; Master n

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Thermodyne (articolo) 6pp

Thermodyne (articolo) 6pp CONCENTRATO DI TERMODINAMICA PHOENIX87 Thermodyne (artcolo) 6pp Zeroth: You must play the game. Frst: You can t wn. Second: You can t break even. Thrd: You can t qut the game. C. P. Snow Forma testuale:

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato lqudo Lo stato lqudo Lqud: energa de mot termc confrontable con quella delle forze coesve. Lmtata lbertà d movmento delle molecole, che determna una struttura

Dettagli

Il pendolo fisico. Se l asse è orizzontale, l equazione del moto è, trascurando gli attriti che causano lo smorzamento dell oscillazione, d Mgd 2

Il pendolo fisico. Se l asse è orizzontale, l equazione del moto è, trascurando gli attriti che causano lo smorzamento dell oscillazione, d Mgd 2 l pendolo fsco Un pendolo fsco è un corpo rgdo lbero d rotare attorno ad un asse fsso non passante per l suo centro d massa. l moto del pendolo è completamente descrtto dall angolo d rotazone θ(t), che

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

I balconi appoggiati su mensole

I balconi appoggiati su mensole 1 I balcon appoggat su mensole Con un sstema costruttvo ogg n dsuso, per l mpego d nuov metod che garantscono una maggore scurezza, nelle costruzon realzzate sno a crca un secolo fa balcon venvano ottenut

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

QUANTITA DI MOTO LEGGE DI CONSERVAZIONE DELLA QUANTITA DI MOTO. Kg m/s. p tot. = p 1. + p 2

QUANTITA DI MOTO LEGGE DI CONSERVAZIONE DELLA QUANTITA DI MOTO. Kg m/s. p tot. = p 1. + p 2 QUANTITA DI MOTO r p = r mv Kg m/s LEGGE DI CONSERVAZIONE DELLA QUANTITA DI MOTO La quanttà d moto totale n un sstema solato s conserva, coè rmane costante nel tempo p tot = p 1 + p 2 = m 1 v 1 + m 2 v

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per Captolo : IL METODO DEI MINIMI QUADRATI. La mglor retta Nel Captolo precedente c samo post l problema d determnare la mglor retta che passa per cert punt spermental, ed abbamo dscusso un metodo graco.

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Lezioni di Sismologia

Lezioni di Sismologia Antono Schettno Lezon d Ssmologa Unverstà d Camerno Stampato all Unverstà d Camerno Copyrght 7 Antono Schettno Tutt drtt rservat I Indce Stress e Stran. Il Tensore dello Stress. Il Tensore dello Stran

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

LA CAPACITÀ ELETTRICA DEI CORPI

LA CAPACITÀ ELETTRICA DEI CORPI Pagna 1 d 6 LA CAPACIÀ ELERICA DEI CORPI La capactà elettrca de corp rappresenta l atttudne de corp ad osptare sulla loro superfce una certa quanttà d carca elettrca. L U.I. d msura è l FARAD segue pertanto

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

Chimica Fisica 2 NMR

Chimica Fisica 2 NMR Chmca Fsca chmca ndustrale anno A.A. 009-0 MR Antono Toffolett Momento d spn de nucle umero d massa dspar =n/ H =/ 3 C =/ 3 a =3/... par =n =0 dspar par H = C =0 4 = 6 O =0...... umero atomco Rsonana magnetca

Dettagli

Analisi Dinamica di un Telaio Multipiano

Analisi Dinamica di un Telaio Multipiano CORSO DI DINAICA DELLE SRUURE DOCENE: PRO. ING. EDERICO PEROI Anals Dnamca d un elao ultpano A cura d Prof. ara Gabrella ulas Ing. aragraza D Plato . G. ulas e. D Plato Anals Dnamca elao IL SISEA SRUURALE

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

I simboli degli elementi di un circuito

I simboli degli elementi di un circuito I crcut elettrc Per mantenere attvo l flusso d carche all nterno d un conduttore, è necessaro che due estrem d un conduttore sano collegat tra loro n un crcuto elettrco. Le part prncpal d un crcuto elettrco

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

Si chiama periodo e si indica con T, il tempo impiegato da P a percorrere un giro intero nella traiettoria circolare; essendo t = α ω sarà T = 2π ω

Si chiama periodo e si indica con T, il tempo impiegato da P a percorrere un giro intero nella traiettoria circolare; essendo t = α ω sarà T = 2π ω LA ROTAZIONE DELLA TERRA E I MOTI DELL ASSE TERRESTRE Antono Melon (per gl student d Introduzone alla Fsca della Terra Solda d Roma Tre, AA 05/06) ) Introduzone Tutt panet del sstema solare ruotano ntorno

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli