dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso"

Transcript

1 Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo individuati dai vettoi i, deteminae il moto del cento di massa (te paameti) e la otazione del copo attono ad un asse pe il cento di massa (te paameti). Valgono le due equazioni cadinali: F e = Fi = d P (1) dt d J dt totale = N esteno (2) dove pe i simboli si sono adottate le seguenti notazioni: N i i F i momento della foza; P M V c quantità di moto del copo; V c velocità del cento di massa; J totale = J c.m. + R c.m. P ; J c.m. momento della quantità di moto ispetto al cento di massa; R c.m. P momento della quantità di moto del cento di massa ispetto all oigine abitaia; i detemina il punto di applicazione della geneica foza F i ispetto all oigine abitaia. 2 Copo gievole attono ad un asse fisso Pe un copo che può solo uotae attono ad un asse fisso passante pe il cento di massa è conveniente scegliee come oigine O del sistema di ifeimento il cento di massa pe cui la (2) si iduce a: d dt J c.m. = N esteno (3) ed i gadi di libetà si iducono ad uno: l angolo α che fissa ad ogni istante la posizione del vettoe i = OP i e quindi la posizione di tutti i punti del copo. 1

2 3 T R T µ a m g Figua 1: Volano Pe deteminae l equazione oaia α(t) si ichiede l applicazione delle due equazioni cadinali ed è conveniente poiettae i momenti ifeiti all asse fisso lungo l asse stesso. Con ifeimento al disegno di Fig. (1) tenendo pesente che la velocità v con cui cade la massa m è legata alla velocità angolae ω del disco dalla elazione v = ω, possiamo scivee il seguente sistema: M a = I dω dt M a = T M p (4) ma = mg T a = dω dt dove si è indicato con I il momento d inezia del disco, con M p una quantità non negativa che compende i momenti delle foze passive, con M a il momento delle foze attive e con T la tensione del filo. La soluzione del sistema di equazioni pemette di deteminae l acceleazione a con cui cade la massa m: a = mg2 M p m 2 (5) + I 2

3 che è legata all angolo di cui uota il disco dalla elazione: α(t) = α 0 + ω 0 t + at2 2 in cui i pimi due temini a desta appesentano l angolo e la velocità angolae al tempo t = 0. 3 Mateiale a disposizione Il volano a disposizione è costuito in modo da consentie di taguadae su di un sostegno veticale la caduta di un cilindo di ottone vincolato mediante un filo avvolto ad una puleggia solidale con il disco. Il cilindo è scomponibile in quatto pezzi: il pimo, che funge anche da sostegno pe gli alti, ha una massa di 198 ± 1 gammi mente gli alti e te 185 ± 1 gammi ciascuno. Petanto nell espeienza a M p = costante si potanno deteminae quatto coppie (m, a). Il disco del volano è pedisposto inolte pe l applicazione di 20 bulloni disposti a simmetia adiale ciascuno di massa µ = 53 ± 0.5 gammi, che consentono di vaiae in maniea nota il momento di inezia del sistema. È inolte possibile l applicazione al disco di due palette pe modificae il momento delle foze passive. Pe le misue di tempo e di spazio si ha a disposizione un conometo al centesimo di secondo ed un meto di sensibilità di un millimeto. 4 Misua dell acceleazione a L acceleazione data dalla espessione (5) può essee misuata taguadando la caduta della massa m legata al filo che fa uotae il disco del volano. Fissando un oientamento veso il basso ed una quota di patenza h 0 a cui al tempo t = 0 si abbia una velocità v 0, dall integazione della (5) otteniamo: h(t) = h 0 + v 0 t at2 Se poi pe t = 0 v 0 = 0 la elazione da consideae si iduce a: h(t) = h at2 (6) che può essee lineaizzata gaficando h in funzione di t 2 ottenendo una etta di coefficiente angolae a/2 e intecetto h 0. Il contollo gafico della dipendenza funzionale di h(t) da t può essee eseguito solo una volta; pe le misue successive delle acceleazioni, pe ispamiae tempo, si possono calcolae pe ogni coppia (h i, t i ) i appoti: a i = 2 h i h 0 t 2 i e pendee pe a il valoe medio delle a i. 3

4 5 Caso in cui M p = costante L acceleazione a con cui cade la massa m data dalla (5) isulta costante se il momento M p delle foze passive esta costante duante il moto in quanto tutte le alte gandezze ovviamente lo sono. In seguito applicheemo un metodo specifico pe veificae tale ipotesi; adesso illustiamo una pocedua che pemette di misuae contempoaneamente il momento M p, che assumiamo costante, e il momento di inezia I del disco eseguendo misue di a pe divesi valoi della massa m. Risciviamo la (5) nel modo seguente: m(g a) = I 2 a + M p (7) ed osseviamo peliminamente che al pimo membo compae la diffeenza (g a) dove sicuamente a < g; ciò che non è veo in geneale è che a << g in quanto dipende dalla costuzione del volano. Anticipiamo che il volano a disposizione è stato pogettato in modo da avee appoti a/g 0.01 pechè ciò ende più agevoli le misuazioni; alloa si potebbe tascuae il temine a che compae al pimo membo della (7) ed ottenee immediatamente la elazione lineae ta m ed a: m = I g 2 a + M p (8) g Gaficando m in funzione di a si ottiene una etta del tipo Y = px + q da cui icavae I = pg 2 e M p = gq. In geneale la (7) può essee utilizzata allo stesso scopo gaficando m(g a) in funzione di a; in questo caso, sempe ifeendoci alla etta del tipo Y = px + q si avà che I = p 2 e M p = q. 6 Dipendenza di a dal momento di inezia del disco Ci poponiamo adesso di studiae la dipendenza dell acceleazione data dalla elazione (5)in funzione del momento di inezia I che compae al denominatoe; lo studio consentià inolte un ulteioe misua del momento delle foze passive M p. Il momento di inezia ispetto all asse baicentale può essee vaiato aggiungendo in modo simmetico delle masse µ (dei bulloni) alla peifeia del disco che costituisce il volano. Indicando con I 0 il momento di inezia iniziale avemo: I = I 0 + 2nµR 2 dove n è il numeo di coppie di bulloni aggiunti e µ è la massa di ciascun bullone. In questo caso l acceleazione è data da a = mg 2 M p m 2 + I 0 + 2nµR 2 4

5 che dopo alcuni aangiamenti pemette di scivee una dipendenza funzionale n = f(1/a) di tipo lineae: avendo indicato con n = 1 a K K 0 K = mg2 M p 2µR 2 (9) K 0 = m2 + I 0 2µR 2 (10) Ripotando in un gafico n in funzione di 1/a si ottiene una etta il cui coefficiente angolae ed il cui intecetto sono K e K 0 ; dalla conoscenza di queste due costanti si possono calcolae M p e I 0 in funzione di tutte le alte gandezze note 7 Lavoo delle foze dissipative M p = mg 2µ R2 K (11) I 0 = 2µR 2 K 0 m 2 (12) Se il momento delle foze dissipative M p è indipendente dalla velocità, (come si è supposto fino ad oa), la massa m, patendo dalla quota h 0, dopo ave svolto completamente il filo con moto unifomemente acceleato, isale fino ad una ceta altezza h 1 con moto unifomemente itadato. La pedita di enegia pai a U = mg(h 0 h 1 ) è uguale al lavoo delle foze dissipative dato da L = α 0 M p dα = M p α Poichè l angolo complessivo di cui ha uotato il disco in un ciclo è avemo ed infine M p (h 0 + h 1 ) α = h 0 + h 1 = mg(h 0 h 1 ) M p mg = (h 0 h 1 ) (h 0 + h 1 ) (13) Da ciò si può icavae un metodo pe contollae la validità dell ipotesi fatta sulla costanza di M p. Se M p è costante, deve essee costante anche il appoto 5

6 che compae alla desta dell espessione (13) e questa quantità deve essee costante pe tutte le discese e le successive isalite, cioè deve essee (h i h i+1 ) = costante (14) (h i + h i+1 ) Nell esecuzione dell espeienza bisogneebbe evitae che l enegia cinetica posseduta dal sistema quando la massa è a fine cosa sia dissipata da oscillazioni smozate del filo dovute alla sua estensibilità. Ciò può essee eso tascuabile utilizzando la massa più piccola lasciata cadee da un altezza agionevole. 8 Caso in cui M p non è costante Passiamo adesso a consideae il caso in cui il momento delle foze dissipative M p non è costante, ma dipende lineamente dalla velocità M p = M 0 + Kv Il momento delle foze dissipative si ende dipendente dalla velocità applicando al volano due palette. Il temine M 0 è, con buona appossimazione l attito pesente già nel caso pecedente ed il temine Kv è dato dalla esistenza dell aia alle palette. Ripetendo le consideazioni pecedenti l acceleazione a data dall equazione (5) possiamo iscivela come a dv dt = mg2 M 0 Kv m 2 + I (15) che con semplici aangiamenti diventa dv mg M 0 Kv = Integando pe sepaazioni di vaiabili m 2 + I dt 1 K v v 0 d(mg M 0 Kv) mg M 0 Kv = t m 2 dt + I 0 otteniamo ( ) mg M0 Kv ln = Kt mg M 0 Kv 0 m 2 + I e quindi icaviamo la velocità di caduta della massa m v(t) = mg M 0 K mg M 0 Kv 0 K ( exp Kt ) m 2 + I (16) 6

7 Questa espessione ha un temine costante ed un temine decescente e tendente a zeo pe t ossia lim v(t) = mg M 0 t K che viene indicata come velocità limite, mente lim t 0 v(t) = v 0 v l cioè la velocità iniziale. Si ossevi che v l dipende dalla diffeenza ta il momento della foza attiva e M 0 ma non dipende dal momento di inezia I del disco e quindi neanche dal numeo di coppie di bulloni aggiunti; dipende da I, invece, il tempo necessaio pe aggiungee la velocità limite. Indicando con τ una costante di tempo pai a τ = m2 + I K possiamo iscivee sinteticamente la (16) (17) v(t) = v l (v l v 0 )e t/τ che nel caso paticolae in cui v 0 = 0 si iduce a il cui gafico in unità τ è mostato in Fig. (2) v(t) = v l (1 e t/τ ) (18) 8.1 Calcolo dello spazio in funzione del tempo L equazione (18) si intega immediatamente da cui ed infine h = t dh = v l (1 e t/τ )dt 0 t v l dt v l e t/τ dt + h c h(t) = v l t + v l τe t/τ + h c Pe deteminae la costante di integazione h c notiamo che pe t = 0 abbiamo che h(0) = h 0 e petanto La soluzione diventa alloa 0 h c = h 0 v l τ h(t) = h 0 + v l [t + τ(e t/τ 1)] (19) 7

8 v l v(t) τ 2τ 3τ t Figua 2: Velocità asintotica 8.2 Veifica speimentale del egime asintotico L analisi dell equazione oaia (19) mosta che pe t >> τ h(t) h 0 v l (t τ) ossia che la tangente asintotica alla cuva h(t) h 0 ha pendenza pai a v l ; inolte la tangente inteseca l asse delle ascisse pe t = τ (Fig. 3). Petanto un gafico di h(t) h 0 in funzione del tempo pemette di deteminae la tangente asintotica e quindi la velocità limite v l e la costante di tempo τ. Utilizzando poi la elazione (17) è possibile deteminae il valoe della costante che compae nel momento delle foze passive: K = m2 + I τ (20) 8

9 h(t) h 0 τ 2τ 3τ t Figua 3: Regime asintotico 9

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Lezione mecc n.13 pag 1

Lezione mecc n.13 pag 1 Lezione mecc n.3 pag Agomenti di questa lezione Intoduzione alla dinamica dei sistemi Definizione di cento di massa Foze estene ed intene ad un sistema Quantità di moto e sue vaiazioni (pima equazione

Dettagli

Elementi di Dinamica

Elementi di Dinamica Elementi di Dinamica ELEMENTI DI DINAMICA Mente la cinematica si limita allo studio delle possibilità di movimento di un ceto sistema ed alla elativa descizione matematica, la dinamica si occupa delle

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

M = 1500 kg. m 9 m 3 m M F

M = 1500 kg. m 9 m 3 m M F 1) La figua descive un copo di assa appoggiato ad un piano inclinato di un angolo ispetto all oizzontale, con un coefficiente di attito dinaico fa copo e piano µ. Il copo è collegato, pe ezzo di una fune,

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI POLITECNICO DI TORINO Facoltà di Ingegneia I Anno accademico xxxx/xxxx Coso di COSTRUZIONE DI MACCHINE Elettix1 STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI

Dettagli

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli.

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli. Ogani di tasmissione Ogani flessibili Nelle macchine tovano numeose applicazioni tanto ogani flessibili popiamente detti (cinghie e funi), quanto ogani costituiti da elementi igidi ta loo aticolati (catene).

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r Yui Geelli, uca Fontanesi, Riccado Campai ab. Elettomagnetismo INDUZIONE Scopo dell espeimento è duplice: dappima la misuazione dell induttanza di un solenoide, poi del coefficiente di mutua induzione

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E.

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E. Univesità La Sapienza - Ingegneia Infomatica e Automatica Coso i Fisica Geneale: MOTI RELATIVI A. Bosco, F. Pettazzi e E. Fazio Consieiamo un punto mateiale P che si muove i moto abitaio all inteno i un

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Macchina di Atwood. Serve a studiare i moti accelerati nel campo gravitazionale terrestre variando a piacimento l accelerazione di gravità g.

Macchina di Atwood. Serve a studiare i moti accelerati nel campo gravitazionale terrestre variando a piacimento l accelerazione di gravità g. acchina di Atwood E costituita da due asse attacate l una all alta da una fune ideale (inestendibile e di assa tascuabile) e sospese taite una caucola anch essa ideale (attito e assa tascuabili). Seve

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

Concetti fondamentali

Concetti fondamentali Accescimento Concetti fondamentali Una paticella in un campo gavitazionale podotto da una massa puntifome, con una qualsiasi velocita e posizione iniziali (puche V 0 R 0 =0) NON cade sulla massa centale

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

0.5 s a. 100 m. Sapienza Università di Roma Facoltà di Medicina e Chirurgia A.A. 2017/18 Prova d esonero di Fisica Medica 4 dicembre A -

0.5 s a. 100 m. Sapienza Università di Roma Facoltà di Medicina e Chirurgia A.A. 2017/18 Prova d esonero di Fisica Medica 4 dicembre A - Sapienza Univesità di Roma Facoltà di Medicina e Chiugia A.A. 2017/18 Pova d esoneo di Fisica Medica 4 dicembe 2017 - A - Esecizio 1 Due atleti si sfidano nei 100 m piani. Il loo moto è, semplificando

Dettagli

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo:

di Enzo Zanghì pag 1 applichiamo il teorema di Pitagora e otteniamo: m@th_cone di Enzo Zanghì pag Distanza di due punti Pe deteminae la distanza ta i punti ( ; ) ( ; ) applichiamo il teoema di Pitagoa e otteniamo: = ( ) + ( ) Punto medio di un segmento M O M + Osseviamo

Dettagli

Parte II (Il Condizionamento)

Parte II (Il Condizionamento) Pate II (Il Cicuiti di condizionamento dei sensoi esistivi I sensoi basati sulla vaiazione della esistenza sono molto comuni. Ciò è dovuto al fatto che molte gandezze fisiche poducono la vaiazione della

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Lunghezza della circonferenza e area del cerchio

Lunghezza della circonferenza e area del cerchio Come possiamo deteminae la lunghezza di una ciconfeenza di aggio? Poviamo a consideae i poligoni egolai inscitti e cicoscitti alla ciconfeenza: è chiao che la lunghezza della ciconfeenza è maggioe del

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

LEZIONE 09 MOMENTO DI UNA FORZA Torque

LEZIONE 09 MOMENTO DI UNA FORZA Torque LEZIONE 09 OENO DI UNA ORZA oque Nella dinamica del punto mateiale, fissata la massa e la foa, si deduce una sola acceleaione lineae. Nelle otaioni, la stessa foa applicata sulla stessa massa, può invece

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Integrazione indefinita di funzioni irrazionali

Integrazione indefinita di funzioni irrazionali Esecizi di iepilogo e complemento Integazione indefinita di funzioni iazionali 0.5 setgay0 0.5 setgay Denotiamo con R(,,..., n ) una funzione azionale delle vaiabili indicate. Passiamo in assegna alcuni

Dettagli

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo.

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo. 1 I POTENZIAE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende dalla

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi Capitolo 7 Costi e minimizzazione dei costi Soluzioni dei Poblemi 7.1 a) 500 b) 30% di 500, ossia 150 c) Senza idue il pezzo e posto che l impesa non possa vendee alte stampanti, il meglio che essa può

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180.

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180. CORPO RIGIDO EX Un pofilo igido è costituito da un tatto ettileo AB e da una semiciconfeenza di aggio R=0cm come figua. Dal punto A viene lanciata una moneta di aggio =cm. Calcolae la mima velocità che

Dettagli

Regola di Ruffini - Wikipedia

Regola di Ruffini - Wikipedia Pagina 1 di 7 Regola di Ruffini Da Wikipedia, l'enciclopedia libea. In matematica, la egola di Ruffini pemette la divisione veloce di un qualunque polinomio pe un binomio della foma x a. È stata descitta

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

18.6 Esercizi. 470 Capitolo 18. Disequazioni Determina la scrittura corretta per il seguente grafico. A x < 3 B x > 3 C x 3 D x 3

18.6 Esercizi. 470 Capitolo 18. Disequazioni Determina la scrittura corretta per il seguente grafico. A x < 3 B x > 3 C x 3 D x 3 70 Capitolo 8 Disequazioni 8 Esecizi 8 Esecizi dei singoli paagafi 8 - Intevalli sulla etta eale 8 Detemina la scittua coetta pe il seguente gafico A x < B x > C x D x 8 Detemina la scittua coetta pe il

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale:

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale: Facoltà di Ingegneia Pova Scitta di Fisica I - Luglio 005 Quesito n. Dalla soità di uno scivolo, liscio, descitto in figua, viene fatto patie, a quota e da feo, un copo puntifoe di assa. aggiunto il fondo

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAICA DI SISTEI AEROSPAZIAI Tema d esame 8-9 - 6 Esecizio. Si considei un aeofeno di massa unifome, osto nel iano veticale. a sueficie dell aeofeno è ettangolae, di lunghezza e ofondità in diezione eendicolae

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

Equilibrio del corpo rigido e vincoli

Equilibrio del corpo rigido e vincoli Equilibio del copo igido e vincoli Gadi di libetà nello spazio Punto mateiale e copo igido z z z' P α P z α P' θ ' α O z P O z P P P ' P P Gadi di libetà nel piano Punto mateiale e copo igido P P P' P

Dettagli

Attività didattica Determinazione della massa di Giove tramite le osservazioni dei satelliti galileiani

Attività didattica Determinazione della massa di Giove tramite le osservazioni dei satelliti galileiani Piazza. Ungaetti, 1 81100 Caseta tel. 08/44580 - www.planetaiodicaseta.it, info@planetaiodicaseta.it Attività didattica Deteminazione della massa di iove tamite le ossevazioni dei satelliti galileiani

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana Fisica pe Medicina Lezione 22 - Campo magnetico D. Cistiano Fontana Dipatimento di Fisica ed Astonomia Galileo Galilei Univesità degli Studi di Padova 1 dicembe 2017 ndice Elettomagnetismo Campo magnetico

Dettagli

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE Fisica Geneale- Modulo Fisica II secitazione OTNZIL LTTRICO D NRGI OTNZIL Ba. Una caica elettica mc si tova nell oigine di un asse mente una caica negativa 4 mc si tova nel punto di ascissa m. Sia il punto

Dettagli

Le equazioni di Maxwell.

Le equazioni di Maxwell. Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis 1 Un punto di vista euistico elativo alla evoluzione del Sistema Solae Paolo Allievi Albeto Totta Convegno Mathesis Tento,3,4 Novembe 006 Ipotesi di base: ogni copo emette natualmente e continuamente enegia

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

Si considerino le rette:

Si considerino le rette: Si consideino le ette: Eseciio (tipo tema d esame) : s : + () ) Si dica pe quali valoi del paameto eale le ette e s isultano sghembe, paallele o incidenti. ) Nel caso paallele si emino i paameti diettoi

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

Momento di una forza:

Momento di una forza: Univesità olitecnica delle ache, acoltà di gaia C.d.L. Scienze oestali e mbientali,.. 2008/2009, isica 1 omento di una foza: d 1 d 2 d C In quale situazione la pesona sente di piu il peso del copo? o?

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Nicola De Rosa maturità 2015

Nicola De Rosa maturità 2015 www.matematicamente.it Nicola De Rosa matuità 5 Esame di stato di istuzione secondaia supeioe Indiizzi: LI SCIENTIFICO LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica (Testo valevole anche

Dettagli