Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2"

Transcript

1 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio di funzioni razionali fratte. Studiare le seguenti funzioni FINO alla derivata prima, tracciarne il grafico ed indicare gli eventuali punti di minimo e massimo (sono locali o assoluti?). Esercizio 1. f() = Esercizio 2. f() = Esercizio 3. f() = Esercizio 4. f() = Esercizio. f() = Esercizio 6. f() = Esercizio 7. f() = Esercizio 8. f() = Studio di funzioni logaritmiche. Studiare le seguenti funzioni FINO alla derivata seconda, tracciarne il grafico ed indicare gli eventuali punti di minimo, massimo(sono locali o assoluti?) e punti di flesso. Esercizio 9. f() = 3 (ln 1) Esercizio 10. f() = ln( 2 +1) Esercizio 11. f() = ln(2 ) Esercizio 12. f() = ln 2 Esercizio 13. f() = ln+1 1

2 2 ( 2+ ) Esercizio 14. f() = ln 4 ( 3 12 ) Esercizio 1. f() = ln 6 ( 4 ) Esercizio 16. f() = ln 2+6 Studio di funzioni irrazionali. Studiare le seguenti funzioni FINO alla derivata prima, tracciarne il grafico ed indicare gli eventuali punti di minimo, massimo (sono locali o assoluti?). Esercizio 17. f() = Esercizio 18. f() = Esercizio 19. f() = Esercizio 20. f() = 2 8 Studio di funzioni esponenziali. Studiare le seguenti funzioni FINO alla derivata prima, tracciarne il grafico ed indicare gli eventuali punti di minimo, massimo (sono locali o assoluti?). Esercizio 21. f() = 2 e 1 Esercizio 22. f() = e 1 2 Esercizio 23. f() = e Esercizio 24. f() = 3 e 3

3 3 Alcune soluzioni. Soluzione. Esercizio 1 f() = Classificazione. È una funzione razionale fratta, poiché la variabile indipendente compare anche al denominatore della frazione. Dominio. Poiché nella funzione compare una frazione, per determinarne il dominio bisogna porre la condizione che il denominatore sia diverso da zero, e pertanto si deve avere: ; 1. Il dominio della funzione è D f =] ; 2[ ] 2;1[ ]1;+ [. Intersezioni con gli assi. Con l asse y abbiamo: = 0 y = Con l asse abbiamo: 4 2 y = { 4 2 = 0 { 2 = 4 { = 0 y = = = 2 ; = 2 Pertanto la funzioneinterseca gli assi nei punti di coordinate A( 2 ;0), B( 2 ;0), C(0; 2). Segno. f() > > 0 Num. > > 0 2 < < 2 Den. > > 0 < 2; > 1

4 4 f() > 0 2 < < 2 ; 2 < < 1; ossia f() > 0 per ] 2; 2 [ ] 2 ;1[. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono 2, 1,, = (+2) ( 1) = 4 ( 2 + ) 2 ( ) ( 2 + 1) = = 16 (0 + ) ( 3) = 16 0 = = (+2) ( 1) = 4 ( 2 ) 2 ( 2 +2) ( 2 1) = 16 = (0 ) ( 3) = = Avendo ottenuto due risultati infiniti per tendente ad un valore finito (da destra e da sinistra), si può concludere che la retta di equazione = 2 è un asintoto verticale per la funzione = (+2) ( 1) = 4 (1 + ) 2 (1 + +2) (1 + 1) = = 1 3 (0 + ) = = = (+2) ( 1) = 4 (1 ) 2 (1 +2) (1 1) = = 1 3 (0 ) = 1 0 = + Avendo ottenuto due risultati infiniti per tendente ad un valore finito (da destra e da sinistra), si può concludere che la retta di equazione = 1 è un asintoto verticale per la funzione = +

5 forma indeterminata, che si risolve mettendo in evidenza 4 2 2( 4 ) = 2 + 2( ) = 2 Similmente si ha: = = Possiamo concludere che la funzione ammette come asintoto orizzontale la retta y =. Studio della derivata prima. f () = ( 10) (2 + 2) (4 2 ) (2+1) ( 2 + 2) 2 = ( 2 + 2) 2. Studiamo il segno della derivata prima: poniamo f () > 0, ossia ( 2 + 2) 2 > 0, poiché ( 2 + 2) 2 > 0 per ogni appartenente al dominio, è sufficiente porre > 0 2 < < 2. Possiamo concludere che la funzione f è strettamente crescente per ] 2 ;2[ D f = ] 2 ;1[ ]1;2[, mentre f è strettamente decrescente per ] ; 2[ ] 2; 2 [ ]2;+ [. Inoltre = 2 è un punto di minimo locale e = 2 è un punto di massimo locale. Il minimo locale della funzione vale f( 2 ) = 20 9, il massimo locale della funzione vale f(2) = 4. Grafico.

6 6 y 2 O 1 y = Soluzione. Esercizio 2 f() = Classificazione. È una funzione razionale fratta, poiché la variabile indipendente compare anche al denominatore della frazione. Dominio. Poiché nella funzione compare una frazione, per determinarne il dominio bisogna porre la condizione che il denominatore sia diverso da zero, e pertanto si deve avere: + 0. Il dominio della funzione è D f =] ; [ ] ;+ [. Intersezioni con gli assi. Con l asse y abbiamo: = 0 y = { = 0 y = 16

7 Con l asse abbiamo: y = { 2 16 = = 0 + { = 4; = 4 Pertanto la funzione interseca gli assi nei punti di coordinate C(0; 16 ), A( 4;0), B(4;0). 7 Segno. f() > > 0 Num. > > 0 < 4; > 4 Den. > 0 + > 0 > f() > 0 < < 4; > 4; ossia f() > 0 per ] ; 4[ ]4;+ [. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono,, = ( + ) = = = ( ) 2 16 = = Avendo ottenuto due risultati infiniti per tendente ad un valore finito (da destra e da sinistra), si può concludere che la retta di equazione = è un asintoto verticale per la funzione = + + forma indeterminata, che si risolve mettendo in evidenza ( 1 16 ) ( + + = ) ( + 1+ ) = = +

8 8 Similmente si ha: =. Calcolando i iti per tendente all infinito si sono ottenuti valori infiniti: di conseguenza si può affermare che la funzione non ammette asintoto orizzontale, allora vediamo se esiste l asintoto obliquo. La funzione ammette come asintoto obliquo la retta y = m+q se esistono finiti i seguenti iti: f() m = ± e q = ± (f() m). Abbiamo che = + + forma indeterminata, che si risolve mettendo in evidenza ( 1 16 ) = 2 + 2( 1+ ) = Similmente si ha: Dunque m = = Infine, abbiamo che ( 2 16 ) = = forma indeterminata, che si risolve mettendo in evidenza ( ) 16 = ( ) = + 1+ Similmente si ha: ( 2 16 ) + 16 = + = = 1 =. Dunque q =. Possiamo concludere che la funzione ammette come asintoto obliquo la retta y =. Studio della derivata prima. f () = (2) (+) (2 16) (1) (+) 2 = (+) 2.

9 Studiamo il segno della derivata prima: poniamo f () > 0, ossia (+) 2 > 0, poiché (+) 2 > 0 per ogni appartenente al dominio, è sufficiente porre > 0 < 8; > 2. Possiamo concludere che la funzione f è strettamente crescente per ] ; 8[ ] 2;+ [, mentre f è strettamente decrescente per ] 8; 2[. Inoltre = 2 è un punto di minimo locale e = 8 è un punto di massimo locale. Il minimo locale della funzione vale f( 2) = 4, il massimo locale della funzione vale f( 8) = 16. Grafico probabile. y 9 y = O =

10 10 Soluzione. Esercizio 9 f() = 3 (ln 1) Classificazione. È una funzione mista logaritmica intera. Dominio. Per determinarne il dominio bisogna porre la condizione che l argomento del logaritmo sia maggiore di zero, e pertanto: D f =]0;+ [. Segno e Intersezioni con gli assi. f() > 0 3 (ln 1) > 0. 3 > 0 > 0; ln 1 > 0 > e; < 0 o > e. Poiché il dominio è ]0;+ [, si ha che f() > 0 per > e. La funzione non interseca l asse y perché = 0 / D f, mentre interseca l asse nel punto di coordinate (e;0). Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono 0, +. (ln 1) = 0 ( ), 0 +3 forma indeterminata. Possiamo scrivere: ln 1 (ln 1) = = forma indeterminata che possiamo risolvere con la regola di De l Hospital: 1 ln 1 = = = 0. 4 Dunque la funzione non ammette asintoti verticali (ln 1) = +, la funzione non ammette asintoto orizzontale, allora vediamo se esiste l asintoto obliquo y = m+q. f() + = + 2 (ln 1) = +,

11 11 quindi possiamo concludere che non esiste neanche l asintoto obliquo. Studio della derivata prima. f () = 2 (3 ln 2). Studiamo il segno della derivata prima: ponendo f () > 0, otteniamo che 2 (3 ln 2) > 0 3 ln 2 > 0 ln > 2 3 > 3 e 2. Possiamo concludere che la funzione f è strettamente crescente per ] 3 e 2 ;+ [, mentre f è strettamente decrescente per ]0; 3 e 2 [. Inoltre = 3 e 2 è un punto di minimo locale. Il minimo della funzione vale f( 3 e 2 ) = 1 3 e2. Studio della derivata seconda. f () = (6 ln 1). Studiamo il segno della derivata seconda: ponendo f () > 0, otteniamo che e (6 ln 1) > 0. > 0 6 ln 1 > 0 ln > 1 6 > 6 e. Quindi, tenendo presente che D f =]0;+ [ f () > 0 > 6 e. Possiamo concludere che la funzione f è convessa per ] 6 e;+ [, mentre f è concava per ]0; 6 e[. Poiché f( 6 e) = ( e, abbiamo che F = 6 Grafico: 6 ) e; e è un punto di flesso. 6

12 12 y Soluzione. Esercizio 10 f() = ln( 2 +1) Classificazione. È una funzione logaritmica intera. Dominio. Per determinarne il dominio bisogna porre la condizione che l argomento del logaritmo sia maggiore di zero, e pertanto si deve avere: Il dominio della funzione è D f = R. Segno e Intersezioni con gli assi > 0 per ogni R. f() > 0 ln( 2 +1) > > 1 2 > 0 0. Dunque f() > 0 per ogni 0 e si annulla per = 0. La funzione interseca gli assi solo nell origine O(0; 0). Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono, +. In particolare, poiché il dominio è R non esistono asintoti verticali. ± ln(2 +1) = + Calcolando i iti per tendente all infinito si sono ottenuti valori infiniti: di conseguenza si può affermare che la funzione non ammette asintoto orizzontale, allora

13 vediamo se esiste l asintoto obliquo. La funzione ammette come asintoto obliquo la retta y = m+q se esistono finiti i seguenti iti: f() m = ± ( 0) e q = ± (f() m). Abbiamo che f() ± = ln( 2 +1) = + ± ± forma indeterminata che si risolve con la regola di De l Hospital: ln( 2 +1) ± = ± = ± Possiamo concludere che non esiste neanche l asintoto obliquo = 0. Studio della derivata prima. f () = Studiamo il segno della derivata prima: ponendo f () > 0, otteniamo che > 0 > 0. Possiamo concludere che la funzione f è strettamente crescente per ] ; 0[, mentre f è strettamente decrescente per ]0; + [. Inoltre = 0 è un punto di minimo assoluto. Il minimo della funzione vale f(0) = 0. Studio della derivata seconda. f () = ( 2 +1) 2. Studiamo il segno della derivata seconda: ponendo f () > 0, otteniamo che ( 2 > 0 1 < < 1. +1) 2 Possiamo concludere che la funzione f è convessa per ] 1;1[, mentre f è concava per ] ; 1[ ]1;+ [. Poiché f( 1) = f(1) = ln2, abbiamo che F 1 ( 1;ln2) e F 2 (1;ln2) sono punti di flesso. Grafico: 13

14 14 y O Osserviamo che il grafico della funzione è simmetrico rispetto all asse y, quindi la funzione è pari. Infatti: Soluzione. Esercizio 17 f( ) = ln(( ) 2 +1) = ln( 2 +1) = f(). f() = 1 +1 Classificazione. È una funzione irrazionale fratta. Dominio. Data la natura della funzione (radice con indice pari), per determinarne il dominio bisogna porre la condizione che il radicando sia maggiore o uguale a zero, quindi: +1 0 Num Den. > 0 +1 > 0 > 1 0 < 1; Il dominio della funzione è D f =] ; 1[ [0;+ [. Intersezioni con gli assi. Con l asse y abbiamo: = 0 = 0 y = 1 y = = 1

15 Con l asse abbiamo: y = 1 +1 { = = 0 +1 { = +1 { 0 = 1 = 1 +1 impossibile Pertanto la funzione interseca solo l asse y nel punto di coordinate(0, 1). L equazione irrazionale del secondo sistema è stata risolta senza porre la condizione di esistenza della radice, poiché essa era stata già considerata al momento della determinazione del dominio della funzione. Segno. f() > > 0 +1 < 1 +1 < < 0 < < > 0 Num. > 0 R. 1 Den. > 0 +1 > 0 > > 0 > 1. Ripetendo per la disequazione irrazionale le stesse considerazioni fatte per l equazione, bisogna rettificare parzialmente il risultato (tenendo presente il dominio della funzione), per cui f() > 0 solo se > 0, ossia f() > 0 per ]0;+ [. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali utile stabilire il comportamento della funzione, sono 1,, +. Per = 0 è già stato determinato l andamento, infatti la funzione è definita per = 0 e si ha f(0) = = = 1 0 = 1 + = Pertanto la retta di equazione = 1 è asintoto verticale sinistro per la funzione.

16 16 Inoltre, abbiamo che = 1 + forma indeterminata che si risolve mettendo in evidenza 1 + ( 1+ 1 ) = = = 1 1 = 0 + Analogamente 1 +1 = 0. Dunque la retta è un asintoto orizzontale per la funzione. Studio della derivata prima. f () = (+1) 2 Studiamo il segno della derivata prima: ponendo f () > 0, otteniamo che (+1) 2 > 0 1 (+1) 2 < 0 per nessun D f. Possiamo concludere che f () < 0 per ogni ] ; 1[ ]0;+ [, quindi che la funzione f è strettamente decrescente nel suo dominio. Inoltre, osserviamo che la derivata prima non è definita in = 0 e, poichè (+1) 2 = abbiamo che = 0 è un punto a tangente verticale per f. Grafico.

17 17 y 1 1 O Soluzione. Esercizio 21 f() = 2 e 1 Classificazione. È una funzione mista esponenziale fratta. Dominio. L unica condizione da discutere riguarda il denominatore dell esponenziale, ossia 0, quindi D f = R\{0}. Intersezioni con gli assi. Non vi sono intersezioni con l asse, né, tantomeno, con l asse y, visto che 0 / D f. Segno. Siccome la funzione è un prodotto di due termini, ossia l esponenziale e il quadrato, sempre strettamente positivi sul dominio fissato, si ha che f() > 0 per ogni D f. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono, 0, e 1 = 0 (+ ), forma indeterminata. Poniamo y = 1 ed otteniamo: 1 e y e = y y 2 e y = y y 2 = + +,

18 18 forma indeterminata che si può risolvere applicando due volte la regola di De l Hospital: e y y y 2 = e y y 2y e y = y 2 = +. Inoltre: 0 + e 1 = 0. Poiché solo ite per 0 risulta +, possiamo concludere che la retta = 0 è asintoto verticale sinistro. 2 e 1 = + e + 2 e 1 = + quindi la funzione non ammette asintoto orizzontale, allora vediamo se esiste l asintoto obliquo y = m+q. f() ± = ± e 1 = ±, dunque non esiste nemmeno l asintoto obliquo. Studio della derivata prima. La derivata é f () = 2 e e = 2 e 1 +e 1 che, raccogliendo a fattor comune il termine e 1, risulta (1) f () = e 1 (2+1). Analizziamo la monotonia della funzione attraverso la disequazione f () > 0, che, per la (1), equivale a 2+1 > 0 > 1 2. ] Pertanto, la funzione è decrescente su, 1 ], mentre è crescente sul resto del 2 dominio e quindi il punto 0 = 1 2 è di minimo locale (locale, perché f( 0) = 0.2 e , mentre f() 0 per 0 +, come visto in precedenza).

19 19 Grafico probabile. y O Soluzione. Esercizio 22 f() = e 1 2 Classificazione. È una funzione esponenziale fratta. Dominio. Per determinarne il dominio bisogna porre la condizione che il denominatore dell esponente sia diverso da zero, e pertanto si deve avere: Il dominio della funzione è D f =] ;0[ ]0;+ [. Segno e Intersezioni con gli assi. f() > 0 e 1 2 > 0 per ogni D f. Dunque f() > 0 per ogni appartenente al dominio, inoltre la funzione non è mai nulla, quindi non interseca l asse. Infine la funzione non interseca nemmeno l asse y perché 0 / D f. Comportamento della funzione in punti particolari del dominio. I punti importanti, per i quali è utile stabilire il comportamento della funzione, sono 0,, +.

20 20 e1 2 = e 1 (0 ) 2 = e = e + = + 0 e +e1 2 = e 1 (0 + ) 2 = e = e + = + ; 0 quindi possiamo concludere che la retta = 0 è un asintoto verticale. Inoltre, abbiamo che: e1 2 = e +, + forma indeterminata che si risolve mettendo in evidenza: e1 2 = e + + ( 1 1 ) 2 1 e 1 + = = e 1 + = e 0 = 1. In modo analogo si ha: e1 2 = e 0 = 1. + dunque possiamo concludere che la retta y = 1 è un asintoto orizzontale. Studio della derivata prima. f () = e Studiamo il segno della derivata prima: poniamo f () > 0, ossia e > 0, poiché e 1 2 > 0 per ogni appartenente al dominio, è sufficiente porre 2 3 > 0 da cui otteniamo f () > 0 < 0; > 2. Possiamo concludere che la funzione f è strettamente crescente per ] ; 0[ ]2; + [, mentre f è strettamente decrescente per ]0; 2[. Inoltre = 2 è un punto di minimo assoluto. Il minimo della funzione vale f(2) = e 1 4. Grafico:

21 21 y O

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi: lezione 2 novembre 2011 Studio di funzioni Studiare le seguenti funzioni FINO alla derivata prima,

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 8 novembre 20 Studio di funzione con indicazione degli asintoti e grafico probabile Studiare completamente

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 2 dicembre 20 Studio di funzioni. Studiare la seguente funzione FINO alla derivata seconda, con

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

= x 2ex +3 ( sinx) = = 3+ 4 x 2ex 3 sinx

= x 2ex +3 ( sinx) = = 3+ 4 x 2ex 3 sinx Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 013/014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 7: Derivata di una funzione

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Daniela TONDINI Parziale n. - Compito II A.

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Esercizio 1. lnx (1) f (x) > 0 ln2 x. t = ln x (3)

Esercizio 1. lnx (1) f (x) > 0 ln2 x. t = ln x (3) Esercizio Studio della funzione: f () = ln Soluzione Insieme di definizione La funzione è definita in X = (0, + ). Intersezioni con gli assi ln () f () = 0 ln ln = 0 () Per risolvere tale equazione poniamo:

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

4.3 Teoremi sulle funzioni derivabili

4.3 Teoremi sulle funzioni derivabili 4.3 Teoremi sulle funzioni derivabili Teorema (di Fermat) Sia : [, ] ℝ una funzione derivabile in (, ) e si un punto di massimo o minimo (relativo o assoluto) per. Allora 0 si dice anche che è un punto

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni Esercitazioni di Matematica Generale A.A. 06/07 Pietro Pastore Lezione del Dicembre 06 Dominio di Funzioni Determinare il dominio delle seguenti funzioni ) x +3x. fx) =. Il dominio si trova considerando

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2018/19 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

Funzioni continue. quando. se è continua x I.

Funzioni continue. quando. se è continua x I. Funzioni continue Definizione: f() si dice continua in 0 D f quando (*) 0 f () f ( 0 ) Definizione: f() si dice continua in I D f se è continua I. Avevamo già dato questa definizione parlando del f ().

Dettagli

Esercizi 6: limiti di funzioni e applicazioni. Calcolare i seguenti limiti. Esercizio 1. lim x x. 2 x. Soluzione. 0. Esercizio 2.

Esercizi 6: limiti di funzioni e applicazioni. Calcolare i seguenti limiti. Esercizio 1. lim x x. 2 x. Soluzione. 0. Esercizio 2. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Calcolare i seguenti limiti. Esercizio

Dettagli

Esercizi 5: Limiti, asintoti, studio parziale del grafico di una funzione e derivate. Limiti notevoli

Esercizi 5: Limiti, asintoti, studio parziale del grafico di una funzione e derivate. Limiti notevoli Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc. 2012/2013 docente: Giulia Giantesio, gntgli@unife.it Esercizi 5: Limiti, asintoti,

Dettagli

Matematica con elementi di statistica ESERCIZI sulle derivate Corso di Laurea in Biotecnologie - anno acc. 2014/2015

Matematica con elementi di statistica ESERCIZI sulle derivate Corso di Laurea in Biotecnologie - anno acc. 2014/2015 Matematica con elementi di statistica ESERCIZI sulle derivate Corso di Laurea in Biotecnologie - anno acc. 04/05 Esercizi 7: Derivata di una funzione e sue applicazioni Calcolare la derivata prima delle

Dettagli

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { } Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA II-A CORSO DI LAUREA IN FISICA Prova scritta del 9//00 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE Esercizio.(Punti 6) Calcolare il valore del seguente ite 0+ e cos. Esercizio.(Punti 6)

Dettagli

Appunti di Matematica

Appunti di Matematica Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 6 studio di funzione. esercizi Chi non risolve esercizi non impara la matematica. Traccia, se possibile, il grafico di una funzione che soddisfi le seguenti proprietà: a. è definita in R \ {, } b. ha come

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 ) ANALISI MATEMATICA I (Versione A) - 4 Novembre 000 RISOLUZIONE ESERCIZIO 1. Data la funzione = (e x 1) log(1 + 4x ) : 1. Calcolare lo sviluppo di ordine 3 di MacLaurin di. Scriviamo gli sviluppi di ordine

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

6 - Grafici di funzioni

6 - Grafici di funzioni 6 - Grafici di funzioni Dato una funzione reale di variabile reale f, si richiede di dare una rappresentazione (approssimata) del grafico di f, vale a dire delle coppie di punti di R 2 della forma (x,

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3(

FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio x x. calcolare i limiti: c) lim 3( FACOLTA' DI FARMACIA Corso di Laurea in CTF Prova scritta di Matematica e Informatica II appello Febbraio 0 Cognome e Nome: ) Calcolare il dominio e il segno delle funzioni: f( ) ( ) ln( ) Data la funzione:

Dettagli

0 + = + 3 x lim 1 + (log 2 x)100 = 0

0 + = + 3 x lim 1 + (log 2 x)100 = 0 (log a ) γ = 0, a, b > γ R. (log a ) γ = (log a ) γ a = +, a > β R. β a β = = β a 0 + = +. = 0 0 = 0 β = +, (log a ) γ a > β > 0, γ R. β (log a ) γ = (log a) γ = 0 + = +. β = +, a, b > γ R. (log a ) γ

Dettagli

3 5 x 25 5 x = 1 5 x (3 25) = x = 1. 5 x = x 8x 8 = 0 2 x (23 ) x. = x (2x ) 3. = x (2 x ) 3 = 0.

3 5 x 25 5 x = 1 5 x (3 25) = x = 1. 5 x = x 8x 8 = 0 2 x (23 ) x. = x (2x ) 3. = x (2 x ) 3 = 0. Anno Scolastico 014/15 - Classe 3B Soluzioni della verifica di matematica del 9 Maggio 015 Risolvere le seguenti equazioni esponenziali o logaritmiche. Dove è necessario, scrivere le condizioni di esistenza

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010

Massimi e minimi di una funzione razionale fratta Francesco Daddi - 18 maggio 2010 Francesco Daddi - 18 maggio 2010 Esempio 1. Studiare la funzione f x 4 x 8 x 2 3 x 3. R (si osservi che il denominatore non si annulla mai); la funzione ha uno zero in x 2. La funzione è positiva per x

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

LICEO CLASSICO ANDREA DA PONTEDERA

LICEO CLASSICO ANDREA DA PONTEDERA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classe 5A PROGRAMMA DI MATEMATICA svolto fino al 15 aprile (evidenziate in giallo le aggiunte rispetto al file precedente) Intervallo limitato

Dettagli

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0

Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) < 0 Linee guida da seguire per lo svolgimento dello studio di funzione Studiare la seguente funzione: Insieme di definizione: f(x) > 0 f(x) = 0 f(x) < 0 Limiti significativi per f: Equazione degli asintoti

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica classe quinta - Lo studio di funzione Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia Ing. Alessandro Pochì

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

PROGRAMMA DIDATTICO CONSUNTIVO CLASSE 4 DI UDA1: RICHIAMI E COMPLEMENTI UDA2: ESPONENZIALI E LOGARITMI. Docente Disciplina

PROGRAMMA DIDATTICO CONSUNTIVO CLASSE 4 DI UDA1: RICHIAMI E COMPLEMENTI UDA2: ESPONENZIALI E LOGARITMI. Docente Disciplina PROGRAMMA DIDATTICO CONSUNTIVO CLASSE 4 DI Docente Disciplina LEGATO ANTONELLA MATEMATICA UDA1: RICHIAMI E COMPLEMENTI Periodo: settembre Equazioni e disequazioni con i valori assoluti; Equazioni e disequazioni

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Capitolo 7. Studio di funzione

Capitolo 7. Studio di funzione Capitolo 7 Studio di funzione Consideriamo una funzione f : (a, b) R R. Abbiamo che 0 (a, b) è un punto di minimo relativo se esiste un intorno I( 0 ) (a, b) tale che f() f( 0 ) per ogni I( 0 ). massimo

Dettagli

x + 1 x = x2 1 x 2 = 1 1 x 2., l equazione equivale a ln(1 + 3x) < 1 ; 1 + 3x < e ; x < e 1 3

x + 1 x = x2 1 x 2 = 1 1 x 2., l equazione equivale a ln(1 + 3x) < 1 ; 1 + 3x < e ; x < e 1 3 A. Peretti Svolgimento dei temi d esame di Matematica A.A. 08/9 PROVA INTERMEDIA DI MATEMATICA I parte Vicenza, 05//08 Domanda. Trovare quoziente e resto della divisione di 3 + per + Possiamo usare la

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Limiti di funzioni 1 / 39

Limiti di funzioni 1 / 39 Limiti di funzioni 1 / 39 Comportamento agli estremi: operazione di ite 2 / 39 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Studio di funzione. numeri.altervista.org

Studio di funzione. numeri.altervista.org Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------

Dettagli

ESERCITAZIONE 6: STUDIO DI FUNZIONI

ESERCITAZIONE 6: STUDIO DI FUNZIONI ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Verifica di Matematica Classe Quinta

Verifica di Matematica Classe Quinta Verifica di Matematica Classe Quinta Valutazione Conoscenze. Fornisci la definizione di funzione continua in un punto x del dominio. Una funzione f(x) è continua in x 0 D se i iti destro e sinistro in

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 2 - Soluzioni Mercoledì 28 novembre 2018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x 3 3x 2 - Il dominio di denizione è l'insieme D = R

Dettagli

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì Insiemistica. Insiemistica. Gli insiemi e le operazioni tra insiemi. Le formule di De Morgan. Gli insiemi N, Q, R. L unione, l intersezion, la differenza tra insiemi, il complementare di un insieme. Addì

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Esercizi su studio di funzione

Esercizi su studio di funzione Esercizi su studio di funzione i. Studiare la seguente funzione 6 ) Dominio 6 ( ) { } ; R \ f Dom ) Intersezione con gli assi 6 6 ; 6 6 6 ; ; ) Positività 6 > < 6 6 asintoto verticale 6 6 asintoto verticale

Dettagli

Limiti di funzioni 1 / 41

Limiti di funzioni 1 / 41 Limiti di funzioni 1 / 41 Comportamento agli estremi: operazione di ite 2 / 41 Sia f (x) una funzione definita su R e supponiamo di voler studiare l andamento della funzione agli estremi del dominio: x

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Esame di Matematica e Abilità Informatiche - 12 Luglio Le soluzioni

Esame di Matematica e Abilità Informatiche - 12 Luglio Le soluzioni Esame di Matematica e Abilità Informatiche - Luglio 3 Le soluzioni. Data la funzione f ( ln( a. trova il dominio di f b. scrivi, esplicitamente e per esteso, quali sono gli intervalli in cui f( risulta

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Correzione dell appello del giorno 8 febbraio 2011

Correzione dell appello del giorno 8 febbraio 2011 Correzione dell appello del giorno 8 febbraio 2 Davide Boscaini Questa è la risol della versione del compito scritto di Analisi Matematica assegnata al gruppo B dell appello del giorno 8 febbraio 2. Invito

Dettagli

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni:

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni: Definizioni fondamentali Un intorno di un punto = 0 è un intervallo I che contiene 0. Un intorno destro per semplicità lo chiamiamo + 0 ) di 0 è un intervallo in cui l estremo sinistro è 0 : tutti i punti

Dettagli

ESERCITAZIONI PER ESAMI DI ANALISI MATEMATICA

ESERCITAZIONI PER ESAMI DI ANALISI MATEMATICA ESERCITAZIONI PER ESAMI DI ANALISI MATEMATICA SVOLTI DAL PROF. GIANLUIGI TRIVIA Eercise. Studia le caratteristiche della seguente funzione e tracciane il grafico 4 + y = Soluzione la funzione va studiata

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE Leonardo da Vinci Martina Franca ANNO SCOLASTICO 2015/2016 Disciplina: MATEMATICA APPLICATA Classe : 3 ^ A A.F.M. Docente : Prof. GIANGASPERO Francesco Testo :

Dettagli

una funzione mediante le altre. Risolvere triangoli. saper applicare la trigonometria sia a problemi geometrici che a casi pratici

una funzione mediante le altre. Risolvere triangoli. saper applicare la trigonometria sia a problemi geometrici che a casi pratici Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli