Corso di Informatica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Informatica"

Transcript

1 Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre, il umero, la quatità da rappresetare i modo iequivocabile: V sistema romao sistema cueiforme sistema decimale Sistemi Numerici Posizioali No Posizioali A secoda che la relazioe fra umero e quatità dipeda dalla posizioe delle sigole cifre all itero del umero

2 Sistema Romao Il sistema Romao o è u sistema umerico posizioale, ifatti ogi cifra idetifica ua precisa quatità: XV MCMDXV Il valore di ogi cifra è fisso ed idipedete dalla sua posizioe all itero del umero I V X D C M Sistema Numerico i Base Il sistema umerico i base dieci è ache detto DECIMALE ed usa le cifre,,,, per rappresetare u qualsiasi valore itero positivo. Esso si basa sulla posizioe della sigola cifra ella striga di codifica: uità decie cetiaia migliaia = = = Idici della posizioe della sigola cifra Sistema Posizioale Base del sistema umerico Formula geerale d! d d = d +! + d + d = = d p p= p

3 Sistema Numerico i Base Il massimo valore rappresetabile da u umero a cifre el sistema decimale è evidetemete: Massimo valore rappresetabile dddd Metre il umero totale di valori rappresetabili soo uo i più del valore massimo perché bisoga teer coto ache dello zero: Numero massimo di valori rappresetabili Ua formula del tutto geerale per otteere il umero massimo di valori rappresetabili da u sistema umerico i base B è co solo N cifre: B N = Numero di cofigurazioi B N Numero di sequeze di N cifre che posso creare sulla base di B simboli differeti B N Esempio: B = {,,,,,,,,,} N = X X Teedo fissa la prima cifra e facedo variare la secodo su tutti i simboli possibili si ottegoo per ogua delle B cifre B differeti sequeze per u totale di: B B=B

4 Sistema Numerico i Base c Il sistema umerico i base due, detto ache BINARIO, usa solo le due cifre e per rappresetare u qualsiasi umero itero positivo = = = Idici della posizioe della sigola cifra Sistema Posizioale Base del sistema umerico Formula geerale d! d d = d +! + d + d = = d p p= p Sistema Numerico i Base Il massimo valore rappresetabile da u umero a cifre el sistema biario è evidetemete: Massimo valore rappresetabile dd! dd = Metre il umero totale di valori rappresetabili soo uo i più del valore massimo perché bisoga teer coto ache dello zero: umero massimo di valori rappresetabili massimo valore rappresetabile Numero massimo di valori rappresetabili N = = N - = - =

5 Sistemi Biario e Decimale SISTEMA BINARIO Numero Valori Base N = Massimo Base N - - = Numero Valori Base N = Massimo Base N - - = SISTEMA DECIMALE Sistema Numerico i Base Il sistema umerico i base sedici è ache detto ESADECIMALE ed usa le cifre,,,,,a,b,c,d,e,f per rappresetare u qualsiasi valore itero positivo: Idici della posizioe della sigola cifra FA = = = Sistema Posizioale Base del sistema umerico Formula geerale d! d d = d +! + d = d p= p = p

6 Sistema Numerico i Base Il massimo valore rappresetabile da u umero a cifre el sistema esadecimale è evidetemete: Massimo valore rappresetabile dddd FFFF Metre il umero totale di valori rappresetabili soo uo i più del valore massimo perché bisoga teer coto ache dello zero: FFFF Numero massimo di valori rappresetabili Usado la formula geerale si ottiee: Metre il valore massimo risulta: B N = B N = - = Cofroto Sistema Numerico FFFF ESADECIMALE DECIMALE BINARIO Il sistema umerico esadecimale è il più compatto, a parità del valore da rappresetare è quello che richiede il umero miore di cifre per rappresetarlo

7 Sistemi umerici e Calcolatore Sistema Numerico ESADECIMALE Utilizzo Idirizzameto memoria BINARIO Rappresetazioe Valori L uità di iformazioe: BIT Il sistema BINARIO è il sistema umerico utilizzato per rappresetare i valori umerici su di u calcolatore digitale. L uità di iformazioe è il BIT che può assumere gli stati o BIT Per rappresetare gli stati di u bit a secoda del supporto si possoo utilizzare diverse tecologie Elettrico Bassa Tesioe Alta Tesioe Magetico Orietazioe Orietazioe

8 BYTE I u computer i bit soo i realtà raggruppati i uità da elemeti dette BYTE BYTE = BIT KILOBIT MEGABIT Kb = Bits Mb = Kb = Bits KILOBYTE MEGABYTE KB = Bytes MB = KB = Bytes Numeri Iteri Positivi Per rappresetare i umeri iteri si usa direttamete il sistema biario ed a secoda del umero di bytes dedicati alla rappresetazioe si possoo descrivere itervalli umerici più o meo ampi massimo (N Bits) - BYTE = BIT valori Da a BYTE = BIT valori Da a BYTE = BIT valori Da a

9 Numeri Iteri Negativi Come per gli iteri positivi solo che il primo bit rappreseta il sego per cui il rage di valori è adesso a cavallo dello zero miimo (N Bits) - massimo (N Bits)- BYTE = BIT valori Da - a + BYTE = BIT valori Da - a BYTE = BIT valori Da - a Numeri razioali

10 Caratteri: codifica ASCII La codifica ASCII (che si proucia ASKI), prede il ome dal comitato di defiizioe: America Stadard Code for Iformatio Iterchage. Tale codifica si basa sull'utilizzo di bit per u totale di simboli rappresetabili. Esempio tabella ASCII Da otare che i caratteri dell'alfabeto e le cifre umeriche successive hao codice ach'esso successivo (ad esempio A ha codice, B codice, C codice, il umero ha codice, il umero codice, etc.) Tabella ASCII primi caratteri

11 Caratteri: codifica ASCII Le prime cofigurazioi del codice ASCII soo state uiversalmete accettate da tutti i costruttori. Le rimaeti cofigurazioi soo arbitrarie. Duque esistoo altri stadard di rappresetazioe che si differeziao per le ultime cofigurazioi. Tra questi stadard vi è il codice ANSI. Caratteri: codifica ANSI La codifica ANSI prede il ome dall'istituto di defiizioe: America Natioal Stadard Istitute. Tale codifica si basa ach'essa su bit e coicide co quella ASCII solo per le prime cofigurazioi.

Sperimentazioni di Fisica I mod. A Lezione 2

Sperimentazioni di Fisica I mod. A Lezione 2 La Rappresetazioe dei Numeri Sperimetazioi di Fisica I mod. A Lezioe 2 Alberto Garfagii Marco Mazzocco Cizia Sada Dipartimeto di Fisica e Astroomia G. Galilei, Uiversità degli Studi di Padova Lezioe II:

Dettagli

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10

13/10/16. Codice 1: Italiana 00. Macchina 00 Razzo 01 Aereo 10 Rappresetazioe dell'iformazioe I calcolatori elettroici soo macchie i grado di elaborare iformazioi trasformadole i altre iformazioi. Nel modo dell'iformatica, itediamo i modo più restrittivo per iformazioe

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Circuiti integrati. Il Livello Logico-Digitale. Usi caratteristici. Famiglie di circuiti integrati. Blocchi funzionali combinatori

Circuiti integrati. Il Livello Logico-Digitale. Usi caratteristici. Famiglie di circuiti integrati. Blocchi funzionali combinatori Circuiti itegrati Il Livello Logico-Digitale locchi fuzioali combiatori circuito itegrato è ua piastria di silicio (o chip), quadrata o rettagolare, sulla cui superficie vegoo realizzati e collegati trasistor

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

5. INDICI DI VARIABILITA'

5. INDICI DI VARIABILITA' UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso di Laurea i Scieze per l'ivestigazioe e la Sicurezza. INDICI DI VARIABILITA' Prof. Maurizio Pertichetti

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. Esercitazioi del corso: STATISTICA Sommario Esercitazioe : Matrice di dati Distribuzioi uivariate Rappresetazioi grafiche Idici di Posizioe Statistica a. a. - RICHIAMI MATEMATICI ) Approssimazioe

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Per approfondire: La rappresentazione delle informazioni all interno dei computer

Per approfondire: La rappresentazione delle informazioni all interno dei computer Per approfondire: La rappresentazione delle informazioni all interno dei computer Scelta della rappresentazione dati Di solito è una scelta convenzionale A volte vi sono vincoli da rispettare Nel caso

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

INFORMATICA PER BIOTECNOLOGIE Rappresentazione dell informazione negli elaboratori

INFORMATICA PER BIOTECNOLOGIE Rappresentazione dell informazione negli elaboratori INFORMATICA PER BIOTECNOLOGIE Rappresetazioe dell iformazioe egli elaoratori Il sistema di umerazioe comuemete impiegato è quello posizioale i ase 0 (decimale). Il termie posizioale idica che il valore

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e ecologie della Comuicazioe Lezioe 4: strato fisico: caratterizzazioe del segale i frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità

Lezione III: Variabilità. Misure di dispersione o di variabilità. Prof. Enzo Ballone. Lezione 3a- Misure di dispersione o di variabilità Lezioe III: Variabilità Cattedra di Biostatistica Dipartimeto di Scieze Biomediche, Uiversità degli Studi G. d Auzio di Chieti Pescara Prof. Ezo Balloe Lezioe a- Misure di dispersioe o di variabilità Misure

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

ESERCITAZIONI 1 (vers. 1/11/2013)

ESERCITAZIONI 1 (vers. 1/11/2013) ESERCITAZIONI 1 (vers. 1/11/2013 Daiela De Caditiis tutoraggio MAT/06 Igegeria dell Iformazioe - sede di Latia, prima qualche richiamo di teoria... CALCOLO COMBINATORIO Il pricipio fodametale del calcolo

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi

Approfondimento 3.3. Calcolare gli indici di posizione con dati metrici singoli e raggruppati in classi Chiorri, C. (201). Fodameti di psicometria - Approfodimeto. 1 Approfodimeto. Calcolare gli idici di posizioe co dati metrici sigoli e raggruppati i classi 1. Dati metrici sigoli Quado l iformazioe è a

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 AA Dott.ssa Sandra Lucente Successioni numeriche Corso di laurea i Matematica Corso di Aalisi Matematica -2 AA. 0809.. Cooscere. Dott.ssa Sadra Lucete. Successioi umeriche Defiizioe di successioe, isieme degli elemeti della successioe, successioe defiita

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R.

Radicali. Esistenza delle radici n-esime: Se n è pari: ogni numero reale non negativo (cioè positivo o nullo) ha esattamente una radice n-esima in R. Radicali Radici quadrate Si dice radice quadrata di u umero reale a, e si idica co a, il umero reale positivo o ullo (se esiste) che, elevato al quadrato, dà come risultato a. Esisteza delle radici quadrate:

Dettagli

Architettura di un elaboratore. Rappresentazione dell informazione digitale

Architettura di un elaboratore. Rappresentazione dell informazione digitale Architettura di un elaboratore Rappresentazione dell informazione digitale Rappresentazione dell informazione digitale L informatica è la scienza della rappresentazione e dell elaborazione dell informazione.

Dettagli

La Rappresentazione dell Informazione. Prof.Ing.S.Cavalieri

La Rappresentazione dell Informazione. Prof.Ing.S.Cavalieri La Rappresentazione dell Informazione Prof.Ing.S.Cavalieri Codifica dell Informazione Un sistema numerico è determinato da: Un insieme finito di cifre (simboli) Un insieme finito di regole: on posizionali:

Dettagli

Velocità della Luce e sua variazione. Nel passaggio dal vuoto ( cm/sec) ad un altro mezzo la velocità della luce diminuisce.

Velocità della Luce e sua variazione. Nel passaggio dal vuoto ( cm/sec) ad un altro mezzo la velocità della luce diminuisce. RIFRATTOMETRIA Defiizioe La rifrattometria è ua tecica strumetale che si basa sulla determiazioe di u parametro, l idice di rifrazioe, associato al feomeo della rifrazioe, cioè alla variazioe subita dalla

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

La rappresentazione delle informazioni in un computer. La numerazione binaria

La rappresentazione delle informazioni in un computer. La numerazione binaria La rappresentazione delle informazioni in un computer La numerazione binaria Per comprendere la numerazione binaria dobbiamo prima discutere di alcune caratteristiche della numerazione decimale La numerazione

Dettagli

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 29 Outlie 1 2 3 4 5 6 () Statistica 2 / 29 Importati disuguagliaze Variabili casuali co distribuzioi o

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 21 Misura della dipedeza di u carattere

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Mole e Numero di Avogadro

Mole e Numero di Avogadro Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

La rappresentazione delle informazioni

La rappresentazione delle informazioni Parte 8 La rappresentazione delle informazioni Scelta della rappresentazione Di solito è una scelta convenzionale Spesso ci sono vincoli da rispettare Nel caso dei computer il vincolo è la rappresentazione

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

Pag. 1. La Rappresentazione e la Codifica delle informazioni (parte 2) Tipi di dati. Informatica Facoltà di Medicina Veterinaria

Pag. 1. La Rappresentazione e la Codifica delle informazioni (parte 2) Tipi di dati. Informatica Facoltà di Medicina Veterinaria 1 Università degli studi di Parma Dipartimento di Ingegneria dell Informazione Informatica a.a. 2012/13 Tipi di dati Informatica Facoltà di Medicina Veterinaria La Rappresentazione e la Codifica delle

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Derivate delle funzioni di una variabile

Derivate delle funzioni di una variabile Pro Cirizzi Marco wwwelettroealtervistaor wwwproessoremypodcastcom Derivate delle uzioi di ua variabile Il cocetto di derivata di ua uzioe è uo dei più importati arometi della matematica pura, come di

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO Spesso bisoga cofrotare far di loro 2 o più dati statistici che si riferiscoo a feomei rilevati o i spazi/luoghi diversi o i tempi diversi o comuque i ambiti diversi e che quidi risetoo dell UNITÀ DI MISURA

Dettagli

Seconda lezione. Rivediamo un po di definizioni principali Proseguiremo con nuovi codici

Seconda lezione. Rivediamo un po di definizioni principali Proseguiremo con nuovi codici Seconda lezione Rivediamo un po di definizioni principali Proseguiremo con nuovi codici 1 Libri di testo Struttura, Organizzazione e progetto dei calcolatori, Patterson e Hennessy, (Jackson Libri) consigliato

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

LIMITI DI SUCCESSIONI

LIMITI DI SUCCESSIONI LIMITI DI SUCCESSIONI Formalmete, ua successioe di elemeti di u dato isieme A è u'applicazioe dall'isieme N dei umeri aturali i A: L'elemeto a della successioe è quidi l'immagie a = f) del umero secodo

Dettagli

Elettronica I Funzionamento del transistore MOS

Elettronica I Funzionamento del transistore MOS Elettroica I Fuzioameto del trasistore MOS Valetio Liberali Dipartimeto di Tecologie dell Iformazioe Uiversità di Milao, 26013 Crema e-mail: liberali@dti.uimi.it http://www.dti.uimi.it/ liberali Elettroica

Dettagli

L ultimo Teorema di Fermat

L ultimo Teorema di Fermat L ultimo Teorema di Fermat L ultimo teorema di Fermat afferma che l equazioe x + y = z o può avere soluzioi itere di x + y = z co x, y, z > 2 e > 2 itero. La dimostrazioe di questa cogettura è stata sviluppata

Dettagli

Per questi argomenti ti consiglio anche di effettuare questo collegamento:

Per questi argomenti ti consiglio anche di effettuare questo collegamento: Prof. Roberto Milizia, presso Liceo Scietifico E. Ferdiado Mesage BR) UNITA 8. IL CALCOLO COMBINATORIO.. Itroduzioe al calcolo combiatorio.. I raggruppameti. 3. Esercizi vari co i raggruppameti. 4. Il

Dettagli

Esame di Informatica. Facoltà di Scienze Motorie LE UNITA DI MISURA (1/4) LE UNITA DI MISURA (3/4) LE UNITA DI MISURA (2/4) Lezione 2

Esame di Informatica. Facoltà di Scienze Motorie LE UNITA DI MISURA (1/4) LE UNITA DI MISURA (3/4) LE UNITA DI MISURA (2/4) Lezione 2 LE UNITA DI MISURA (1/4) Facoltà di Scienze Motorie Esame di Informatica A.A. 2010/11 Lezione 2 La più piccola unità di misura usata in informatica è il bit (Binary digit), cioè numero binario. Due stati:

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

Codifica binaria dell informazione

Codifica binaria dell informazione Codifica binaria dell informazione Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 20 Marzo 2016 Un obiettivo per domarli tutti 2 Un obiettivo per domarli tutti 3 Obiettivi Rappresentazione

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli