L'algebra Booleana. Generalità. Definizioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L'algebra Booleana. Generalità. Definizioni"

Transcript

1 L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati possono essere 1 e 0. Scopo della logica è quello di verificare la correttezza di un ragionamento, per far questo la logica trasforma ogni frase in una formula matematica in modo che si possa convertire tutto il ragionamento in un calcolo matematico dal quale si può quindi stabilire se è corretto oppure no. Definizioni Proposizione è un enunciato per il quale è possibile stabilire se è vero o falso. Tautologia è un enunciato sempre vero, e contraddizione un enunciato sempre falso. Connettivi logici sono operazioni che possono legare una o più proposizioni. Siano A, B, C, delle proposizioni Esempi: A= è un gatto B= è un animale nero La negazione di una proposizione si indica con A A= non è un gatto B= non è un animale nero Una proposizione ammette tre principi fondamentali: Principio di identità: Ogni proposizione deve mantenere sempre lo stesso significato durante il discorso. Principio di non contraddizione: Una proposizione non può essere contemporaneamente vera e falsa. Principio del terzo escluso: Una proposizione può essere vera o falsa e non esiste una terza possibilità.

2 Connettori Connettore O (v) 1 Connettore E (^) A B A v B A B A ^ B V V V V V V V F V V F F F V V F V F F F F F F F L'affermazione (A ^ B) vuol dire che è un gatto ed è anche un animale nero. Se una delle due condizioni non fosse vera l'affermazione sarebbe falsa. Per esempio se cercassi un gatto nero e trovassi un gatto bianco o un cane nero non me ne farei niente. L'affermazione (A v B) vuol dire che è un gatto o un animale nero. Se una delle due condizioni non fosse vera l'affermazione sarebbe comunque vera. Per esempio se cercassi un gatto o un qualsiasi animale nero e trovassi un gatto bianco o un cane nero la cosa mi andrebbe comunque bene. Alcune leggi Si può dimostrare che valgono le seguenti leggi di De Morgan (A v B) = A ^ B (A ^ B) = A v B dove = sta ad indicare è equivalente. Esempi: La frase non è vero che Giulia ama Aldo o Bruno ( (A v B)) è equivalente a: Giulia non ama Aldo e non ama Bruno ( A ^ B) La frase: non è vero che Giulia ama Aldo e Bruno ( (A ^ B)) è equivalente a: Giulia non ama Aldo o non ama Bruno ( A v B). Altri leggi: La proposizione (A v A) è sempre vera (è una tautologia) Connettore di implicazione ( ) La congiunzione proposizionale Se... Allora... è un connettivo logico che lega in una implicazione due variabili, e si indica di solito con una freccia puntata verso destra: A B. Quindi: se si verifica A allora si verifica anche B; tale relazione vale sempre in un solo senso ma non vale in generale in senso opposto, cioè non è commutativa, quindi se succede B non è detto che succeda A. Facciamo un esempio: Se io sono nato a Roma (A) allora sono italiano (B); ma in generale non vale il viceversa: se io sono italiano non è detto che sia nato a Roma. Le variabili e la tabella logica relativa a tale connettivo sono i seguenti: 1 Corrisponde al vel latino e non all' aut

3 A B A B 1) V V V 2) V F F 3) F V V 4) F F V La riga 1) che dice che se sono nato a Roma allora sono italiano, L'implicazione è vera. La riga 2) dice che se sono nato a Roma allora non sono italiano, l'implicazione è falsa. La riga 3) e 4) iniziano con A che indica che non sono nato a Roma, quindi sono ambedue possibili i casi che sia italiano o no, di conseguenza le implicazioni sono sempre vere. Altro esempio. Se io affermo se piove (A) sto a casa (B) dico il falso sole se piove e non sto a casa, non nel caso in cui non piove e sto a casa. La contronominale Un equivalente di questa relazione è la cosiddetta contronominale, ovvero la possibilità di invertire l'implicazione diretta negando le due variabili ovvero: A B = Quindi se non sono italiano allora non sono nato a Roma. B A. Questa è una delle forme della dimostrazione per assurdo in cui la negazione della tesi implica la negazione dell'ipotesi 2. Condizione necessaria e sufficiente In modo equivalente l'implicazione si può voltare introducendo il concetto di necessario e sufficiente. Quindi possiamo dire che è sufficiente (ma non necessario) che si verifichi A affinché si verifichi anche B; oppure: è necessario (ma non sufficiente) che si verifichi B affinché si verifichi anche A. Altri esempi Altri esempi che fanno uso di tale connettivo si possono costruire utilizzando per esempio il verbo essere oppure il verbo avere nel discorso: Mario ha i capelli neri e Luca è un contadino sono frasi dove non vale il viceversa, quindi: Luca Contadino ; Mario Capelli neri. Un altro interessante caso dell'implicazione diretta è il seguente (A B)=A ^ B Per esempio la frase non è vero che se Aldo suda (A) allora si ammala (B) è equivalente a Aldo suda (A) e non si ammala ( B). 2 Le altre forme di dimostrazione per assurdo sono le seguenti: - l'ipotesi e la negazione della tesi implica la negazione dell'ipotesi - l'ipotesi e la negazione della tesi implica la tesi - l'ipotesi e la negazione della tesi implica un assurdo

4 Si possono usare anche i quantificatori ( tutti, qualunque, ed esiste) per esempio con frasi del tipo: non è vero che se tutti gli studenti ( A) fanno ricreazione allora fanno baccano (B) che è equivalente a esistono studenti ( A ) che fanno ricreazione senza fare baccano ( B).

5 Esercizi 1) Paolo è così amico di Giuseppe e di Claudio che quando lui va alle feste ci vanno anche i suoi due amici. Data la frase precedente, quale delle seguenti affermazioni è certamente vera? (implicazione) Paolo ieri è andato ad una festa, quindi sicuramente c erano anche Giuseppe e Claudio Ieri Claudio è andato ad una festa, quindi c è andato anche Paolo Giuseppe e Claudio ieri erano ad una festa, quindi c era anche Paolo Ieri c era una festa alla quale Paolo non è andato, quindi anche Giuseppe e Claudio non c erano Giuseppe ieri era ad una festa, quindi sicuramente c è andato anche Claudio 2) Sara afferma che tutti gli studenti di medicina hanno frequentato il liceo scientifico. Quale delle seguenti condizioni è NECESSARIO si verifichi affinché l affermazione di Sara risulti falsa? (implicazione o negazione) Deve esistere almeno uno studente di medicina che non ha frequentato il liceo scientifico Deve esistere almeno uno studente di medicina che ha frequentato il liceo classico Nessuno studente di medicina deve aver frequentato il liceo scientifico Deve esistere almeno uno studente che ha frequentato il liceo scientifico ma che non è iscritto a medicina Tutti gli studenti che non sono iscritti a medicina devono aver frequentato il liceo scientifico 3) Per superare il provino ed entrare in una squadra di calcio è necessario, ma non sufficiente, saper giocare bene e non avere più di 14 anni. Determinare quale delle seguenti situazioni è NON compatibile con la frase precedente. (implicazione) Elena non sa giocare bene a calcio, ha meno di 14 anni, e supera il provino Elena sa giocare bene a calcio, ha meno di 14 anni e supera il provino Elena sa giocare bene a calcio, ha meno di 14 anni e non supera il provino Elena non sa giocare bene a calcio, ha meno di 14 anni e non supera il provino Elena ha meno di 14 anni e non supera il provino 4) Condizione sufficiente, ma non necessaria, affinché al Liceo Pitagora l'anno scolastico si concluda con una festa è che le interrogazioni terminino entro la fine del mese di maggio. Determinare quale delle seguenti situazioni è INCOMPATIBILE con l'affermazione precedente. (implicazione) Nel 2008 le interrogazioni sono terminate a marzo, e poi non c'è stata la festa Nel 2006 uno studente è stato interrogato il 4 giugno, e poi c'è stata la festa Nel 2003 uno studente è stato interrogato il 4 giugno, e poi non c'è stata la festa Nel 2010 uno studente è stato interrogato il 3 aprile, e poi non c'è stata la festa Da quando esiste il Liceo Pitagora la festa c'è stata ad anni alterni

6 5) L'affermazione "a nessuna ragazza sono antipatici tutti i ragazzi" è equivalente alla seguente affermazione: (negazione) c'è un ragazzo che è simpatico a tutte le ragazze per ogni ragazza c'è almeno un ragazzo che le è simpatico c'è una ragazza alla quale sono simpatici tutti i ragazzi 6) L'esatta negazione della frase "i miei amici sono tutti buoni e belli" è (De Morgan) qualcuno dei miei amici è brutto oppure è cattivo qualcuno dei miei amici è brutto qualcuno dei miei amici è cattivo i miei amici sono tutti brutti e cattivi i miei amici sono tutti brutti o cattivi 7) Qual è l'esatta negazione della proposizione: "Tutte le ragazze in quest'aula sono bionde"? (negazione) Esiste una ragazza non bionda in quest'aula In qualche posto esiste una ragazza bruna Nessuna ragazza in quest'aula è bionda 8) Quale tra le seguenti frasi è logicamente equivalente alla proposizione "se vieni tu, non vengo io" (contronominiale) se non vieni tu, io vengo io vengo se e solo se tu non vieni se io vengo, tu non vieni nessuna delle precedenti 9) L'affermazione "se A è giallo allora B è verde" ha come conseguenza: (contronominiale) se A è blu, allora B non è verde se B è verde, allora A è giallo se B è blu, allora A non è giallo nessuna delle precedenti 10) L'esatta negazione della proposizione Tutti gli studenti sono promossi è (negazione) Nessuno è promosso Qualcuno è promosso Qualcuno è bocciato Nessuna delle precedenti affermazioni è corretta

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: andrea@di.unipi.it, francesca.levi@unipi.it A. Corradini e

Dettagli

NOZIONI DI LOGICA. Premessa

NOZIONI DI LOGICA. Premessa NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una

Dettagli

CALCOLO PROPOSIZIONALE

CALCOLO PROPOSIZIONALE CALCOLO PROPOSIZIONALE UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che: Se Corrado va al cinema, allora ci va anche

Dettagli

Logica: materiale didattico

Logica: materiale didattico Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

DI CHE COSA SI OCCUPA LA LOGICA

DI CHE COSA SI OCCUPA LA LOGICA Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione

Dettagli

Ricordando che: = si ha:

Ricordando che: = si ha: Logica matematica Esempi 1. Stailisci il grado di verità delle seguenti proposizioni logiche: :" è h 2 è " :"5 è 2 3 è 6" :" è h : è è " :" h h " :" h è " :" è, è " F 2. Data la proposizione p:" " la sua

Dettagli

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

Informatica. Logica e Algebra di Boole

Informatica. Logica e Algebra di Boole Informatica Logica e Algebra di Boole La logica è la scienza del corretto ragionamento e consiste nello studio dei principi e dei metodi che consentono di individuare il corretto ragionamento. Lo studioso

Dettagli

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini CALCOLO PROPOSIZIONALE Corso di Logica per la Programmazione Andrea Corradini andrea@di.unipi.it UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti

Dettagli

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l

Dettagli

George BOOLE ( ) L algebra booleana. (logica proposizionale)

George BOOLE ( ) L algebra booleana. (logica proposizionale) George BOOLE (1815-64) L algebra booleana. (logica proposizionale) La logica e George BOOLE George BOOLE nel 1847 pubblicò il libro Mathematical Analysis of Logic, nel quale presentava ciò che oggi si

Dettagli

La logica matematica. Si ringraziano per il loro contributo gli alunni della classe IB Lic. Sc. A.S

La logica matematica. Si ringraziano per il loro contributo gli alunni della classe IB Lic. Sc. A.S La logica matematica Si ringraziano per il loro contributo gli alunni della classe IB Lic. Sc. A.S. 2010-2011 La logica studia le proposizioni logiche e le relazioni tra esse. Una proposizione logica è

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 1 Calcolo Proposizionale: sintassi e semantica Tautologie Esempi di Formalizzazione di Enunciati pag.

Dettagli

Cenni di logica e calcolo proposizionale

Cenni di logica e calcolo proposizionale Cenni di logica e calcolo proposizionale Corso di Laurea in Informatica Università degli Studi di Bari (sede Brindisi) Analisi Matematica S.Milella (sabina.milella@uniba.it) Cenni di logica 1 / 10 Proposizioni

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

Prerequisiti Matematici

Prerequisiti Matematici Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica settembre 008 Elementi di Logica 1. Nozioni preliminari La logica studia come funziona il pensiero e il ragionamento espresso attraverso degli enunciati Il ragionamento è un sistema di enunciati che permette

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Fondamenti di Informatica 2 Linguaggi e Complessità : Lezione 1 Corso Fondamenti di Informatica 2 Marco Schaerf, 2009-2010 Linguaggi e Complessità : Lezione 1 1 Logica proposizionale Linguaggio matematico

Dettagli

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2 Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2: Logica Indice degli argomenti Introduzione: Motivazioni, Prove,

Dettagli

Logica di Base. Docente: Francesca Benanti. 27 Gennaio 2007

Logica di Base. Docente: Francesca Benanti. 27 Gennaio 2007 Logica di Base Docente: Francesca Benanti 27 Gennaio 2007 1 Logica Formale La logica è la disciplina filosofica che studia le forme del ragionamento corretto. Da Aristotele al secolo scorso la logica è

Dettagli

Logica proposizionale

Logica proposizionale Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta

BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta corretto e vero. Un ragionamento è corretto se segue uno

Dettagli

Prof. Roberto Capone. Negazioni e deduzioni

Prof. Roberto Capone. Negazioni e deduzioni Prof. Roberto Capone Negazioni e deduzioni Negazioni Tutti fanno qualcosa; Tutti sono qualcosa Qualcuno non fa qualcosa; Almeno uno non è qualcosa Tutti gli italiani sono intelligenti Almeno un Italiano

Dettagli

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità Proposizioni e tavole di verità Una proposizione è un enunciato (dichiarazione, frase) che può essere vero o può essere falso, ma non può essere contemporaneamente sia vero che falso. Essere vera o falsa

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 7 marzo 2005 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

2. Quesiti dell area scientifica e scientifico-tecnologica

2. Quesiti dell area scientifica e scientifico-tecnologica 2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

non V V V V F F F V F F F F

non V V V V F F F V F F F F 1. Un pò di storia Logica Il primo studioso che si occupò di logica fu il filosofo greco Aristotele (384-322 a.c.). ino al Cinquecento la logica restò sostanzialmente entro i confini tracciati da Aristotele;

Dettagli

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

Marta Capiluppi Dipartimento di Informatica Università di Verona

Marta Capiluppi Dipartimento di Informatica Università di Verona Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Algebra di Boole Opera con i soli valori di verità 0 o 1 (variabili booleane o logiche) L'algebra booleana risulta

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1C 22.11.2012 prof. Mimmo Corrado 1. Dato l insieme universo U= x N x

Dettagli

Logica e fondamenti di matematica

Logica e fondamenti di matematica Logica e fondamenti di matematica Docente: Prof. Roberto Giuntini (giuntini@unica.it) Logica proposizionale Logica e teoria dell argomantazione. Cap. 1: Enunciati. Enunciato: Non ogni discorso è dichiarativo

Dettagli

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE TAVOLE DI VERITÀ, COLETEZZA VERO-FUNZIONALE Esercizio 1. Calcola le tavole

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica I.2 Logica Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Logica 1 Logica 2 3 Logica Si occupa dello studio delle strutture e delle regole

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 15 aprile 2005 Esercizi Nota importante. In questa dispensa sono stati raccolti, senza alcun ordine particolare, alcuni esercizi che possono

Dettagli

Logica: nozioni di base

Logica: nozioni di base Fondamenti di Informatica Sistemi di Elaborazione delle Informazioni Informatica Applicata Logica: nozioni di base Antonella Poggi Anno Accademico 2012-2013 DIPARTIMENTO DI SCIENZE DOCUMENTARIE LINGUISTICO

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

terzo incontro Caravaggio

terzo incontro Caravaggio terzo incontro Francesco Scarri 25 gennaio 2018 L implicazione a b Quando due proposizioni sono combinate poneno la parola se prima della prima, ed interponendo la parola allora tra loro, allora si ha

Dettagli

184 Capitolo 6. Logica di base

184 Capitolo 6. Logica di base 184 Capitolo 6. Logica di base 6.5 Esercizi 6.5.1 Esercizi dei singoli paragrafi 6.1 - Le proposizioni 6.1. Quali delle seguenti frasi sono proposizioni logiche? a ) I matematici sono intelligenti; b )

Dettagli

Calcolo proposizionale

Calcolo proposizionale 1 Il calcolo delle proposizioni Una proposizione logica si dice semplice o atomica se contiene soltanto un predicato. Due o più proposizioni semplici collegate mediante l'uso di connettivi formano proposizioni

Dettagli

Percorso 2010: Introduzione alla Logica Proposizionale

Percorso 2010: Introduzione alla Logica Proposizionale Percorso 2010: Introduzione alla Logica Proposizionale Francesca Poggiolesi Facoltà di Medicina e Chirurgia 26 Agosto 2010, Firenze Dal test alla logica Alcuni esempi di test 1 Dal test alla logica Alcuni

Dettagli

Una Breve Introduzione alla Logica

Una Breve Introduzione alla Logica Una Breve Introduzione alla Logica LOGICA La LOGICA è la disciplina che studia le condizioni di correttezza del ragionamento Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti

Dettagli

Linguaggio della Matematica

Linguaggio della Matematica Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi

Dettagli

Proposizioni Algebra di Boole Condizioni Operatori di relazione

Proposizioni Algebra di Boole Condizioni Operatori di relazione Proposizioni Algebra di Boole Condizioni Operatori di relazione Proposizione ( o Asserzione) Una frase con valore di verità Mario è andato al cinema I pinguini volano Oggi è domenica Una proposizione può

Dettagli

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini DIMOSTRAZIONI E TAUTOLOGIE, IPOTESI NON TAUTOLOGICHE Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini INFERENZE CORRETTE E TAUTOLOGIE Il Calcolo Proposizionale permette di formalizzare

Dettagli

La matematica non è un opinione, lo è oppure...?

La matematica non è un opinione, lo è oppure...? La matematica non è un opinione, lo è oppure...? Giulio Giusteri Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore Brescia 26 Febbraio 2010 Vecchie conoscenze Dedurre... dedurre...

Dettagli

Linguaggio della Matematica

Linguaggio della Matematica Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi

Dettagli

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica Semantica proposizionale Unit 2, Lez 3 e 4 Corso di Logica Sommario Semantica dei connettivi Costruzione delle tavole di verità Tautologie, contraddizioni e contingenze Semantica delle forme argomentative

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 13 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 13 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 13 Gennaio 2011 1 DOVE TROVIAMO I TEST Facoltà di Scienze MM FF NN Corsi di laurea

Dettagli

A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket.

A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket. Logica La logica si occupa della correttezza del ragionamento, un ragionamento è formato da un insieme di proposizioni (enunciati di cui è possibile stabilire se sono veri o falsi) Carlo è un alunno di

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 3 Dimostrazione di Tautologie e Sintassi del Calcolo osizionale Antonio, Corrado e Bruno... formalmente Tautologie: dimostrazioni e controesempi Sintassi del Calcolo

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 3 Dimostrazione di Tautologie e Sintassi del Calcolo osizionale Antonio, Corrado e Bruno... formalmente Tautologie: dimostrazioni e controesempi Sintassi del Calcolo

Dettagli

Proposizione logica Argomento/i Predicato Roma è la capitale d Italia Roma è la capitale d Italia 2>3 2 e 3 è maggiore di

Proposizione logica Argomento/i Predicato Roma è la capitale d Italia Roma è la capitale d Italia 2>3 2 e 3 è maggiore di 1. Un pò di storia Logica Il primo studioso che si occupò di logica fu il filosofo greco Aristotele (384-322 a.c.). Fino al Cinquecento la logica restò sostanzialmente entro i confini tracciati da Aristotele;

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 02 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Esercizi di Riepilogo e Autovalutazione

Esercizi di Riepilogo e Autovalutazione Esercizi di Riepilogo e Autovalutazione Marcello D Agostino Corso di Logica Filosofica 2014/2015 27 maggio 2015 Copyright c 2015 Marcello D Agostino Classificazione delle domande * = difficoltà bassa **

Dettagli

Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4

Corso di Calcolatori Elettronici I A.A Algebra di Boole Lezione 4 Corso di Calcolatori Elettronici I A.A. 2010-2011 Algebra di Boole Lezione 4 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Segnali in circuiti elettronici digitali da: G. Bucci. Calcolatori

Dettagli

DIMOSTRAZIONI DI TAUTOLOGIE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella

DIMOSTRAZIONI DI TAUTOLOGIE. Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella DIMOSTRAZIONI DI TAUTOLOGIE Corso di Logica per la Programmazione A.A. 2010/11 Andrea Corradini, Paolo Mancarella DIMOSTRAZIONE DI TAUTOLOGIE Abbiamo detto che: Per dimostrare che p è una tautologia possiamo:

Dettagli

Introduzione alla logica

Introduzione alla logica Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine

Dettagli

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità Proposizioni e tavole di verità Una proposizione è un enunciato (dichiarazione, frase) che può essere vero o può essere falso, ma non può essere contemporaneamente sia vero che falso. Essere vera o falsa

Dettagli

LOGICA PER LA PROGRAMMAZIONE

LOGICA PER LA PROGRAMMAZIONE LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Occorre dire, anzitutto, quale oggetto riguardi ed a quale disciplina spetti la presente indagine, che essa cioè riguarda la dimostrazione

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Sulla deduzione e la teoria degli insiemi. Claudio Sacerdoti Coen

Sulla deduzione e la teoria degli insiemi. Claudio Sacerdoti Coen Sulla deduzione e la teoria degli insiemi Claudio Sacerdoti Coen http://www.cs.unibo.it/~sacerdot Chi sono e cosa faccio? Ricercatore presso il Dipartimento di Scienze dell'informazione Docente del corso

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 1 Un test problematico Sapendo che in questo test una sola risposta

Dettagli

4. Logica. Insegnamento di Informatica. Elisabetta Ronchieri. I semestre, anno Corso di Laurea di Economia, Universitá di Ferrara

4. Logica. Insegnamento di Informatica. Elisabetta Ronchieri. I semestre, anno Corso di Laurea di Economia, Universitá di Ferrara 4. Logica Insegnamento di Informatica Elisabetta Ronchieri Corso di Laurea di Economia, Universitá di Ferrara I semestre, anno 2014-2015 Elisabetta Ronchieri (Universitá) Insegnamento di Informatica I

Dettagli

Nozioni di logica matematica

Nozioni di logica matematica MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA LICEO STATALE P. E. IMBRIANI Linguistico - Scientifico - Scientifico delle Scienze Applicate Via S. Pescatori, 155 83100 Avellino Tel. (2 linee)

Dettagli

Maiuscole e minuscole

Maiuscole e minuscole Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e

Dettagli

Tutte queste frasi hanno due caratteristiche fondamentali: Sono frasi semplici perché non contengono altra frase come componente;

Tutte queste frasi hanno due caratteristiche fondamentali: Sono frasi semplici perché non contengono altra frase come componente; Il linguaggio della logica Proposizioni semplici e composte Le frasi che formano i discorsi del nostro linguaggio naturale possono essere dichiarative, descrittive, esclamative, interrogative, possono

Dettagli

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A

ESEMPIO Un esempio di insieme vuoto è l insieme dei numeri reali di quadrato 4. B A TEORI DEGLI INSIEMI GENERLIT Un insieme è un ente costituito da oggetti. Il concetto di insieme e di oggetto si assumono come primitivi. Se un oggetto a fa parte di un insieme si dice che esso è un suo

Dettagli

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni. 1 Cenni di logica. 2 Elementi di teoria degli insiemi

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni. 1 Cenni di logica. 2 Elementi di teoria degli insiemi Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Cenni di logica Dispongo queste quattro carte da gioco davanti a voi, due coperte e due scoperte

Dettagli

Intelligenza Artificiale I

Intelligenza Artificiale I Intelligenza Artificiale I - AA 27/28 Intelligenza Artificiale I Logica formale Introduzione Marco Piastra Logica formale - Introduzione - Intelligenza Artificiale I - AA 27/28 Sistematicità del linguaggio

Dettagli

R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli

R. De Leo 9 Febbraio Liceo Scientifico L.B. Alberti. Invito alla Logica Matematica. attraverso gli Indovinelli Liceo Scientifico L.B. Alberti 9 Febbraio 2010 1 / 40 Outline 2 / 40 La come gioco da tavolo Quali sono gli elementi fondamentali di un gioco da tavolo? I Pezzi 3 / 40 La come gioco da tavolo Quali sono

Dettagli

Algebra di Boole ed elementi di logica

Algebra di Boole ed elementi di logica Algebra di Boole ed elementi di logica Marco D. Santambrogio marco.santambrogio@polimi.it Ver. aggiornata al 10 O0obre 2013 Obiettivi Algebra di Boole Algebra di boole a due valori: algebra di commutazione

Dettagli

LA CLASSIFICAZIONE DEI VIVENTI

LA CLASSIFICAZIONE DEI VIVENTI LA CLASSIFICAZIONE DEI VIVENTI Cinque regni (Robert Whittaker-1959): Ø Regno animale (eucarioti pluricellulari a nutrizione eterotrofa, per ingestione) Ø Regno vegetale (autotrofi pluricellulari a nutrizione

Dettagli

Introduzione alla logica booleana Autore: Antonello Urso (01/07/11)

Introduzione alla logica booleana Autore: Antonello Urso (01/07/11) Introduzione alla logica booleana utore: ntonello Urso (/7/) www.pianetagalileo.eu - (ultimo aggiornamento: 2//3) (SS) . Urso Introduzione alla logica booleana Introduzione E' facile accorgersi del fatto

Dettagli

Proposizioni e verità

Proposizioni e verità Proposizioni e verità Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Parte Istituzionale A.A. 2007-08 Contents 1 Proposizione.......................................... 3 2 Verità...............................................

Dettagli

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono:

Le variabili logiche possono essere combinate per mezzo di operatori detti connettivi logici. I principali sono: Variabili logiche Una variabile logica (o booleana) è una variable che può assumere solo uno di due valori: Connettivi logici True (vero identificato con 1) False (falso identificato con 0) Le variabili

Dettagli

sempre vere sempre false

sempre vere sempre false Logica: elementi I principi della logica sono innanzitutto i seguenti: Identità: a=a (ogni cosa è cioè identica a se stessa) Non contraddizione: non (a e non a). E impossibile che la stessa cosa sia e

Dettagli

APPUNTI DI ANALISI MATEMATICA Parte Prima

APPUNTI DI ANALISI MATEMATICA Parte Prima APPUNTI DI ANALISI MATEMATICA Parte Prima Versione preliminare del 24 settembre 2008 Pierpaolo Omari Dipartimento di Matematica e Informatica Università degli Studi di Trieste Maurizio Trombetta Dipartimento

Dettagli

Elementi di Logica Le forme del ragionamento

Elementi di Logica Le forme del ragionamento Elementi di Logica Le forme del ragionamento Corso di Logica e Filosofia della scienza, a.a. 2015-2016 Il principale oggetto di studio della logica è il ragionamento, con particolare attenzione per il

Dettagli

Proposizioni. 1) Tra le seguenti frasi riconoscere le proposizioni, e stabilirne poi il valore di verità:

Proposizioni. 1) Tra le seguenti frasi riconoscere le proposizioni, e stabilirne poi il valore di verità: Si ricorda: - L'oggetto della logica sono le proposizioni, o enunciati (i due termini sono sinonimi); - Una proposizione è una espressione dotata di senso compiuto alla quale si può attribuire in modo

Dettagli

I circuiti elementari

I circuiti elementari I circuiti elementari Nel lavoro diprogrammazione con il computer si fa largo uso della logica delle proposizioni e delle regole dell algebra delle proposizioni o algebra di Boole. L algebra di Boole ha

Dettagli