Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia."

Transcript

1 Richiami essenziali: Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Tasso di sconto intertemporale soggettivo ( è il tasso che l agente usa per attualizzare l US. Dipende dalla psicologia (propensione alla parsimonia) Utilità attesa (UA) attiene alla scelta/allocazione tra rischio e certezza (i.e. portafoglio ottimo). Elemento psicologico: propensione al rischio. Variabile casuale variabile che assume uno tra un certo numero di valori ciascuno caratterizzato da una certa probabilità. Lotteria è una variabile casuale i cui valori sono somme monetarie. Una lotteria si dice equa se il suo valore monetario atteso è pari al costo di partecipazione. Valore atteso (VA o EV) di una lotteria è il valore che in media ci si aspetta di vincere e si calcola come media ponderata dei diversi valori, con pesi dati dalle corrispondenti probabilità. Non dipende dalla psicologia dell agente e, graficamente, è una retta che va confrontata con la curvatura della funzione di utilità. Funzione di utilità ci dice quale livello(=numero) di utilità corrisponde al possesso di ogni possibile somma monetaria. Nel modello dell UA l utilità è una variabile casuale e dipende anche dalla psicologia (propensione al rischio). Massimizzando: l agente vuole il massimo dell UA, non del reddito/consumo. Propensione al rischio è l elemento psicologico che piega la funzione di utilità. Equivalente certo (EC o ce) è quel valore, certo, che rende l agente indifferente tra il partecipare o meno alla lotteria. Dipende dalla psicologia dell agente: per dato VA, maggiore avversione => minore EC (=> maggiore PR). Premio per il rischio = PR = VA EC. Pertanto, il PR è il risultato del confronto tra elementi oggettivi (VA) e soggettivi (EC). In termini di utilità: PR=U(VA)-VA; Avverso al rischio: U(VA)>VA; VA>EC => PR>0. Se deve scegliere tra una lotteria ½200+½0 e un reddito certo di 100, pur matematicamente equivalenti, sceglie 100. Neutrale al rischio: U(VA)=VA; VA=EC => PR=0. Per lui il rischio non conta nulla.

2 Analisi grafica Consideriamo un soggetto che abbia una funzione di utilità concava. Supponiamo che costui possa scegliere se partecipare ad una lotteria equa i cui due esiti monetari, alto e basso, sono indicati nella seguente figura come OA e OB. Il valore monetario atteso, OX, si situa a metà strada fra OB e OA poiché ipotizziamo che le probabilità dei due esiti siano ½ e OX è anche il costo di partecipazione alla lotteria. Se l agente decide di non partecipare, risparmia OX euro, che si ritrova in tasca per certo e che gli garantiscono un utilità pari a U(OX), come vediamo dalla figura. Se invece decide di partecipare, il nostro decisore potrà ottenere due diversi livelli di utilità, ciascuno con probabilità ½ a seconda dell esito monetario. Se la vincita monetaria è quella più alta, l utilità ottenuta sarà U(OA), altrimenti sarà U(OB). Ciò che conta ai fini della decisione è l utilità attesa UA, cioè la media fra U(OA) e U(OB): siccome le probabilità di ottenere questi due livelli di utilità sono pari a ½, l utilità attesa si trova a metà strada fra i due (in verticale!) e corrisponde all altezza della linea continua riportata in figura. Siccome l utilità attesa di partecipare alla lotteria, UA, è chiaramente inferiore all utilità di non partecipare, U(OX), questo soggetto decide di non partecipare.

3 Un modo alternativo per rappresentare il fatto che un soggetto è avverso o propenso al rischio è valutare quanto sarebbe disposto a pagare (se avverso), prenderebbe di incassare (se propenso) per privarsi del rischio: pagare e incassare sono da intendersi in termini di valore monetario atteso. Consideriamo nuovamente la situazione di un avverso al rischio. Di fronte alla solita lotteria con esiti possibili B e A, ciascuno di probabilità ½ sempre per semplicità (e dunque il valore monetario atteso è X), l utilità attesa è UA. Ci chiediamo ora qual è il valore monetario certo che darebbe a questo soggetto la medesima utilità (attesa) della lotteria: si tratta ovviamente del valore EC, che è detto equivalente certo della lotteria in questione. Se questo soggetto potesse disporre di EC starebbe altrettanto bene di quanto starebbe disponendo della lotteria. Ovvero, sarebbe disposto a rinunciare ad un ammontare di valore atteso monetario pari a (X EC) a patto che EC sia certo (una lotteria il cui valore atteso è EC stesso). La differenza (X EC) si chiama premio per il rischio che, quindi, è una misura di quanto quel soggetto è disposto a pagare per essere privato dell incertezza. Infine due ultime note: la retta è oggettiva : è uguale per tutti; la curva è soggettiva : dipende dalla propensione al rischio; PR, EC e VA sono tutte quantità monetarie (=> ascisse) da trasformare in utilità

4 Utilità Scontata ESERCIZIO 1 L'agente vive due periodi e ha: m t =reddito=10, x t =consumo, preferenze=lnx t + lnx t+1, <1 r=tasso di interesse Domande: i) Scrivete il problema di massimizzazione dell'agente e le condizioni del primo ordine (FOC) ii) Supponiamo che non esistano mercati finanziari, i.e., l'agente non può risparmiare/prendere a prestito: Scrivete il vincolo di bilancio.

5 SOLUZIONI i) Scriviamo il vincolo di bilancio Insieme alle preferenze, il vincolo ci dà il lagrangiano: da cui le FOC (=le derivate di tutti gli argomenti del lagrangiano uguali a zero)

6 ii) Non potendo risparmiare, s=0 e quindi l'agente è costretto a consumare quanto guadagna in ogni periodo (i.e. 10): Notate che, come atteso, x t = x t+1 = 10

7 ESERCIZIO 2 Tizio deve decidere cosa fare da grande e ha le seguenti preferenze: U(X)=X. Ha di fronte a sé tre periodi (studio, lavoro, pensione) e due soluzioni (atleta professionista, professore). Tizio sa che: come professore ha una borsa di studio di , poi lavora e guadagna , infine va in pensione con come atleta deve pagarsi gli allenamenti: Poi gioca e guadagna ; poi va in pensione con (es: pur guadagnando di più ha meno tempo per versare i contributi) A) Quale carriera sceglierà se il suo tasso di sconto intertemporale, è 25%? B) Cambierebbe scelta se avesse =5%? Se cambia, perché lo fa?

8 SOLUZIONE A) US prof = /(1.25) /(1.25)^2 = US atleta = /(1.25) /(1.25)^2 = Sceglierà la carriera sportiva. B) US prof = /(1.05) /(1.05)^2 = US atleta = /(1.05) /(1.05)^2 = Sceglierà la carriera accademica poiché con =5% invece di 25% l agente è meno impaziente (maggiore è, maggiore è il peso dato al presente)

9 UTILITA ATTESA ESERCIZIO 1 Tizio ha una funzione di utilità u=1000x 1/2, dove x è il reddito. Egli può effettuare un investimento che produce un reddito pari a 60 con probabilità ½ e pari a 400 con probabilità ½. a) Dopo averne dato la definizione, si determini il valore dell Equivalente Certo (EC) del reddito incerto di Tizio. b) Dopo averne dato la definizione, si determini il valore del Premio per il Rischio (PR) di Tizio. NB METODOLOGICO: CHIAMERO IN MODI DISPARATI, MA EQUIVALENTI, LE VARIABILI IN GIOCO. PER ESEMPIO, VALORE ATTESO=VA=EV; UTILITA ATTESA=UA=EU; ECC E PER AUMENTARE LA VOSTRA ELASTICITA MENTALE

10 SOLUZIONE a) L Equivalente Certo (EC) è la somma di denaro che dà a Tizio un utilità pari all utilità attesa (EU) del reddito incerto. Si deve avere, cioè: U(EC) = EU. Dunque: EU = ½[1000(60)1/2] + ½ [1000(400)1/2] = 3.872, = ,5 (utilità attesa) U(EC) = 1000(EC) 1/2 ; EU = 1000(EC) 1/2 = ,5 EC = (13,8725) 2 = 192,44 (=somma certa che mi dà la stessa utilità attesa della lotteria) b) Il Premio al Rischio è la differenza tra il valore atteso (VA) di un reddito incerto e il suo EC; cioè è la somma di denaro con cui si deve compensare un individuo per indurlo ad accettare un reddito incerto al posto di uno certo. PR = VA EC VA = ½(60) + ½(400) = = 230 PR = ,44 = 37,56

11 ESERCIZIO 2 Un agente la cui funzione di utilità è 100x 0,3 (x è il reddito) può scegliere tra due diversi investimenti, S e T. Da S può ottenere, sostenendo un costo di 20, un reddito lordo pari a 40 oppure pari ad 80, ciascuno con probabilità ½. Da T può ottenere, con un costo pari a 12, un reddito lordo pari a 20 oppure pari a 100 ciascuno con probabilità ½. a) Quale dei due progetti presenta l utilità attesa più elevata? b) Determinare il valore dell equivalente certo dell investimento scelto dall agente.

12 SOLUZIONE a) Il reddito netto dei due progetti: S1=40-20=20; S2=80-20=60; T1= 20-12=8; T2=100-12=88. Trasformiamo il reddito atteso in utilità attesa: EU S = ½ [100(20) 0,3 ]+ ½ [100(60) 0,3 ]= ½(245,6)+ ½ (341,5)=293,55 EU T = 1/2 [100(8) 0,3 ]+ ½ [100(88) 0,3 ]= ½ 186,6 + ½ 383,1 =284,85 Verrà scelto il progetto S poiché presenta l utilità attesa più elevata. b) U(EC S )=EU S EC S =293,55 100(EC S ) 0,3 =293,55 EC S =36,22 = valore dell equivalente certo dell investimento dell agente

13 ESERCIZIO 3 L agente ha una funzione di utilità pari a U(X) = X 1/2. Ci sono due possibili stati del mondo equiprobabili. Il primo comporta per l agente un reddito pari a 16. Il secondo un reddito pari a Determinare l utilità attesa (EU) e il valore atteso (EV) della scommessa. 3.2 Determinare sia analiticamente che graficamente la propensione dell agente rispetto al rischio.

14 SOLUZIONE 3.1) EU = ½U(16) + ½U(64) = = ½ ½ = 6 EV = ½16 + ½*64 = ) Analiticamente: L agente è avverso al rischio U poiché U > 0 e U <0. Più esplicitamente: U = U = -0.25X -1.5 Graficamente: La funzione di utilità è una radice quadrata che è una funzione concava che genera CI convesse. Dato che l avverso al rischio ha CI convesse l agente è avverso.

15 ESERCIZIO 4 Ci sono due possibili stati del mondo equiprobabili Nel primo l agente ha un reddito pari a X1 = 144; Nel secondo l agente ha un reddito pari a X2 = 36. Una compagnia assicuratrice è disposta ad assicurare il soggetto contro il rischio di una possibile perdita economica = d = X1 X2 = 108 e propone il seguente contratto: La compagnia rimborserà l agente se si verifica lo stato 2 (i.e. pagherà d) e in cambio il soggetto pagherà un premio assicurativo p=60 qualunque sia lo stato del mondo. Rispondere alle seguenti questioni: 4.1) Qual è la prospettiva corrispondente al contratto offerto dalla compagnia e la prospettiva in assenza di assicurazione? 4.2) Se il soggetto è neutrale al rischio, accetterà o rifiuterà il contratto? 4.3) Se la funzione di utilità di VNM del soggetto è U =X 0.5, quale sarà la sua decisione? 4.4) Definire e calcolare il premio assicurativo attuarialmente equo. Stabilire, inoltre, se il soggetto è disposto ad accettare questo nuovo contratto.

16 SOLUZIONI 4.1 Senza assicurazione EV = ½144 + ½36 = 90 Con assicurazione EV = ½ (144 p) + ½ (36 p + d) = ½ (84) + ½ (84) = 84 Assicurandosi, indipendentemente dallo stato del mondo per il soggetto non c è rischio sul reddito futuro. Ma, ovviamente, il reddito atteso è minore: la certezza non è gratis. 4.2 Se il soggetto è neutrale al rischio allora ordinerà le prospettive in base al valore atteso (e non all EU). Poiché il EV è maggiore senza assicurazione, l agente preferisce non assicurarsi. 4.3 L agente ha una utilità attesa pari a: senza assicurazione, EU = ½U(144) + ½U(36) = 9 con assicurazione, EU = ½U(144 p) + ½U(36 p + d) = = 9.16 Dato che 9.16 > 9 l agente accetterà il contratto assicurativo. Tale scelta è coerente con il fatto che dalla concavità della funzione di utilità sappiamo che l agente è avverso al rischio. 4.4 Un contratto assicurativo è attuarialmente equo se il premio assicurativo (p) è uguale all indennità attesa. L indennità attesa che l assicurazione pagherà è ½108 + ½0 = 54 => Il premio attuarialmente equo è p=54 Se è neutrale al rischio l agente è indifferente tra effettuare o non effettuare l assicurazione perché le due prospettive hanno lo stesso valore atteso: Senza assicurazione EV = ½144 + ½36 = 90 Con assicurazione EV = ½ (144 54) + ½ ( ) = 90 Se è avverso al rischio, per definizione preferisce un reddito certo pari al valore atteso della prospettiva stessa. Quindi accetterà il contratto.

17 ESERCIZIO 5 Tizio e Caio devono capire se fare un investimento che rende: 100 con probabilità=0.5 0 con probabilità=0.5 Essi hanno le seguenti funzioni di utilità (reddito=x): U T = X U C = X ) Dovessero decidere di comprare, quale è la commissione massima che questi agenti sono disposti a pagare al broker? 5.2) Qual è il premio per il rischio richiesto dai nostri agenti?

18 SOLUZIONE 5.1) Si tratta di trovare l equivalente certo. Infatti, il prezzo massimo che i due agenti sono disposti a pagare è quello che gli rende indifferente l atto di investire o meno. Ovvero, bisogna trovare quel prezzo per il quale investire o meno fa rimanere gli agenti con la medesima utilità. Quindi, Utilità Attesa (EU) per: Tizio: EU T (X) = ½U(100) + ½U(0) = ½100 + ½0 = 50 Caio: EU C (X) = ½U(100) + ½U(0) = ½(100) ½U(0) 0.5 = 5 Equivalente Certo (y) per: Tizio: U T (y) = EU T (X) = 50; y T = 50 Caio: U C (y) = EU(X) = 5; y 0.5 = 5 => y C = 25 Dunque, - Per Tizio l equivalente certo (pari a 50) è uguale al valore atteso dell investimento: y T = E(X)= ½100 + ½0 = 50 Ciò si ha poiché Tizio è neutrale al rischio. Perché è neutrale? Risp. Perché la sua funzione di utilità è lineare: U T =X. E ovvio che E(X)=retta coincida con EU T (X)=retta. - Caio, invece, ha una funzione di utilità concava. Perciò è avverso al rischio e perciò è disposto a pagare cifre inferiori per partecipare ad un investimento rischioso: y T =50 > y C =25 6.2) Sostituendo i valori già trovati si ha per Tizio: PR T = VA EC = = 0. (è neutrale: perché pagare?) Caio: PR C = VA EC = = 25.

19 ESERCIZIO 6 Tizio ha una ricchezza iniziale (W) di 20 e gli viene chiesto di partecipare ad una lotteria (L) con la quale può perdere 8 euro e vincere 20 euro con probabilità 0.5. Egli ha una funzione di utilità Von Neumann-Morgenstern del tipo U(W) = ln(w) Parteciperà alla lotteria? 6.2. Qual è l equivalente certo e il premio per il rischio della lotteria sopra descritta per Tizio?

20 SOLUZIONE 6.1. Partecipando alla lotteria l utilità attesa di Tizio è E(U) = 0.5ln(20-8) + 0.5ln(20+20) = Non partecipando alla lotteria, l utilità attesa di Tizio è U(W) = ln(20) = E(U)>U(W) => Partecipa. 6.2 L equivalente certo della lotteria, EC(L), è quella somma certa che aggiunta alla ricchezza iniziale di Tizio forma una ricchezza tale che la sua utilità è proprio pari all utilità attesa che gli deriva dal partecipare alla lotteria (che è pari a E(U)=3.087). Bisogna quindi risolvere la seguente equazione: ln(20 + EC(L)) = Esplicitando, si ottiene EC(L) = Il premio per il rischio è la differenza tra la vincita attesa dalla lotteria e l equivalente certo della lotteria: PR(L) = = 4.09.

21 ESERCIZIO 7 Ad uno studente di Economia viene chiesto di decidere se partecipare ad un Corso di Perfezionamento dal quale può successivamente ottenere un reddito (X) di 20 con probabilità 1/5 e una perdita di 6 con probabilità 4/5. Lo studente partecipa solo se il Corso è una scommessa equa : parteciperà?

22 SOLUZIONE Il reddito atteso derivante dall operazione è: E(X) = 4/5*(-6) + 1/5*20 = -4/5 La scommessa è quindi iniqua (infatti il valore atteso non è nullo). Lo studente (walrasiano) non parteciperà.

23 ESERCIZIO 8 Un concorrente del programma Affari tuoi ha di fronte la possibilità di vincere 500 mila euro oppure 10 mila euro (in assenza di altre informazioni si può supporre che la probabilità di ciascun esito sia pari a 0.5). In alternativa alla continuazione del gioco, al concorrente è offerta una somma di 100 mila euro con certezza. Calcolate: a) il valore atteso di continuare a giocare b) la scelta che farebbe un giocatore neutrale al rischio (spiegando il perché) c) la scelta che farebbe un giocatore con una funzione di utilità U = X 0.5 d) il valore minimo che quest ultimo giocatore sarebbe disposto ad accettare invece di continuare a giocare.

24 SOLUZIONE a) VA di continuare a giocare: E(X) = 0.5* *10000 = b) Un individuo neutrale al rischio sceglierebbe di continuare a giocare poiché il relativo valore atteso (255000) è maggiore della somma offerta per fermarsi (100000). c) L utilità attesa per un giocatore con utilità U = X 0.5 è: L utilità di accettare è invece: UA(X) = 0.5* * = UA(X) = = Nonostante l avversione al rischio il giocatore preferisce continuare a giocare poiché, in termini di utilità, l offerta è inferiore al valore atteso. L avverso è prudente, non irrazionale. Però, se il concorrente fosse particolarmente prudente, allora avrebbe una funzione di utilità particolarmente concava e allora il rischio avrebbe il sopravvento sull opportunità. d) Il valore minimo che il giocatore è disposto ad accettare è quello che gli garantisce la stessa utilità di continuare a giocare (i.e., l equivalente certo): C 0.5 = => C = Cioè, il giocatore avverso è indifferente tra una offerta di euro e continuare a giocare. Per farlo giocare gli devono dare più di euro, ovvero più dei euro che sarebbero più che sufficienti per un tipo neutrale.

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1 Effetti delle imposte nel mercato internazionale dei capitali Economia dei tributi_polin 1 Allocazione internazionale del capitale Si possono definire due principi di neutralità della tassazione del capitale

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

Capitolo 1 CRITERI DI VALUTAZIONE IN CONDIZIONI DI INCERTEZZA

Capitolo 1 CRITERI DI VALUTAZIONE IN CONDIZIONI DI INCERTEZZA Capitolo 1 CRITERI DI VALUTAZIONE IN CONDIZIONI DI INCERTEZZA 1.1 Introduzione Fino ad ora abbiamo esaminato prevalentemente criteri di valutazione e scelte di investimenti nell ipotesi di operare in condizione

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi il risparmio, dove lo ora? metto le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi Vademecum del risparmiatore le principali domande emerse da una recente ricerca di mercato 1

Dettagli

guida introduttiva alla previdenza complementare

guida introduttiva alla previdenza complementare COVIP Commissione di Vigilanza sui Fondi Pensione COVIP Commissione di Vigilanza sui Fondi Pensione Con questa Guida la COVIP intende illustrarti, con un linguaggio semplice e l aiuto di alcuni esempi,

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

guida introduttiva alla previdenza complementare

guida introduttiva alla previdenza complementare 1 COVIP Commissione di Vigilanza sui Fondi Pensione guida introduttiva alla previdenza complementare www.covip.it 3 Questa Guida è stata realizzata dalla COVIP Indice grafica e illustrazioni Studio Marabotto

Dettagli

CELTA IUSTA. Cosa, come, quando, quanto e perché: quello che dovresti sapere per investire i tuoi risparmi

CELTA IUSTA. Cosa, come, quando, quanto e perché: quello che dovresti sapere per investire i tuoi risparmi ONDI OMUNI: AI A CELTA IUSTA Cosa, come, quando, quanto e perché: quello che dovresti sapere per investire i tuoi risparmi CONOSCERE I FONDI D INVESTIMENTO, PER FARE SCELTE CONSAPEVOLI I fondi comuni sono

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 6: Equilibrio economico generale (part 2) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Grafici di redditività BREAK-EVEN ANALYSIS

Grafici di redditività BREAK-EVEN ANALYSIS Grafici di redditività BREAK-EVEN ANALYSIS 1 Analisi del punto di equilibrio o di pareggio Consiste nella determinazione grafica o matematica del quantitativo di vendita al quale i costi totali e i ricavi

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

ANALISI DEGLI INVESTIMENTI INDUSTRIALI

ANALISI DEGLI INVESTIMENTI INDUSTRIALI ANALISI DEGLI INVESTIMENTI INDUSTRIALI Università degli Studi di Parma Dipartimento di Economia Testo di riferimento: Analisi Finanziaria, McGraw-Hill, 2002 Obiettivi della lezione Capire i profili di

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Principio contabile internazionale n. 12 Imposte sul reddito

Principio contabile internazionale n. 12 Imposte sul reddito Principio contabile internazionale n. 12 Imposte sul reddito Finalità La finalità del presente Principio è quella di definire il trattamento contabile delle imposte sul reddito. L aspetto principale della

Dettagli

Capitolo 5. Il mercato della moneta

Capitolo 5. Il mercato della moneta Capitolo 5 Il mercato della moneta 5.1 Che cosa è moneta In un economia di mercato i beni non si scambiano fra loro, ma si scambiano con moneta: a fronte di un flusso reale di prodotti e di servizi sta

Dettagli

Redditi diversi Prof. Maurizio Sebastiano Messina. Redditi diversi

Redditi diversi Prof. Maurizio Sebastiano Messina. Redditi diversi Redditi diversi Redditi diversi - art. 67 Sono redditi diversi se non costituiscono redditi di capitale, ovvero se non sono conseguiti nell esercizio di arti e professioni o di imprese commerciali, o da

Dettagli

Analisi della comunicazione del gioco nella sua evoluzione

Analisi della comunicazione del gioco nella sua evoluzione Nel nostro Paese il gioco ha sempre avuto radici profonde - Caratteristiche degli italiani in genere - Fattori difficilmente riconducibili a valutazioni precise (dal momento che propensione al guadagno

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

I contributi pubblici nello IAS 20

I contributi pubblici nello IAS 20 I contributi pubblici nello IAS 20 di Paolo Moretti Il principio contabile internazionale IAS 20 fornisce le indicazioni in merito alle modalità di contabilizzazione ed informativa dei contributi pubblici,

Dettagli

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA CENNI DI RICERCA OPERATIVA ALESSANDRO BOCCONI Indice 1 La ricerca operativa 2 1.1 Introduzione......................................... 2 1.2 Le fasi della ricerca operativa...............................

Dettagli

Equilibrio economico generale e benessere

Equilibrio economico generale e benessere Scambio Equilibrio economico generale e benessere Equilibrio economico generale e benessere (KR 12 + NS 8) Dipartimento di Economia Politica Università di Milano Bicocca Outline Scambio 1 Scambio 2 3 4

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

I CRITERI DI VALUTAZIONE DELLE POSTE DI BILANCIO: una breve disamina sul fair value

I CRITERI DI VALUTAZIONE DELLE POSTE DI BILANCIO: una breve disamina sul fair value I CRITERI DI VALUTAZIONE DELLE POSTE DI BILANCIO: una breve disamina sul fair value A cura Alessio D'Oca Premessa Nell ambito dei principi che orientano la valutazione del bilancio delle società uno dei

Dettagli

Economia e Finanza delle. Assicurazioni. Introduzione al corso. Mario Parisi. Università di Macerata Facoltà di Economia

Economia e Finanza delle. Assicurazioni. Introduzione al corso. Mario Parisi. Università di Macerata Facoltà di Economia Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di Economia Mario Parisi Introduzione al corso 1 Inquadramento del corso 1996: Gruppo di ricerca sulle metodologie di analisi, sugli

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Il monitoraggio della gestione finanziaria dei fondi pensione

Il monitoraggio della gestione finanziaria dei fondi pensione Il monitoraggio della gestione finanziaria nei fondi pensione Prof. Università di Cagliari micocci@unica.it Roma, 4 maggio 2004 1 Caratteristiche tecnico - attuariali dei fondi pensione Sistema finanziario

Dettagli

Economia del Lavoro 2010

Economia del Lavoro 2010 Economia del Lavoro 2010 Capitolo 1-3 Offerta di lavoro -Le preferenze del lavoratore 1 Offerta di lavoro Le preferenze del lavoratore Il comportamento dell offerta di lavoro è analizzato dagli economisti

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Introduzione alla Teoria dei Giochi

Introduzione alla Teoria dei Giochi Introduzione alla Teoria dei Giochi A. Agnetis Questi appunti presentano alcuni concetti introduttivi fondamentali di Teoria dei Giochi. Si tratta di appunti pensati per studenti di Ingegneria Gestionale

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Contratto di assicurazione mista a premio unico con rivalutazione del capitale e cedola annua (Tariffa 21CM)

Contratto di assicurazione mista a premio unico con rivalutazione del capitale e cedola annua (Tariffa 21CM) Certezza Più Contratto di assicurazione mista a premio unico con rivalutazione del capitale e cedola annua (Tariffa 21CM) Il presente Fascicolo Informativo, contenente la Scheda Sintetica, la Nota Informativa,

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

IL COSTO DEL LAVORO DIPENDENTE

IL COSTO DEL LAVORO DIPENDENTE CICLO DI LEZIONI SPERIMENTALI PER GLI STUDENTI DEGLI ITC IL COSTO DEL LAVORO DIPENDENTE A cura del prof. Santino Furlan Castellanza, 2 marzo 2001 Il costo del lavoro dipendente Le voci che compongono il

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO Le capacità cognitive richieste per far fronte alle infinite modalità di risoluzione dei problemi motori e di azioni di gioco soprattutto

Dettagli

IL MERCATO FINANZIARIO

IL MERCATO FINANZIARIO IL MERCATO FINANZIARIO Prima della legge bancaria del 1936, in Italia, era molto diffusa la banca mista, ossia un tipo di banca che erogava sia prestiti a breve che a medio lungo termine. Ma nel 1936 il

Dettagli

LA PENSIONE DI VECCHIAIA

LA PENSIONE DI VECCHIAIA Le pensioni di vecchiaia e di invalidità specifica per i lavoratori dello spettacolo (Categorie elencate nei numeri da 1 a 14 dell art. 3 del Dlgs CPS n.708/1947) Questa scheda vuole essere un primo contributo

Dettagli

Qual è il fine dell azienda?

Qual è il fine dell azienda? CORSO DI FINANZA AZIENDALE SVILUPPO DELL IMPRESA E CREAZIONE DI VALORE Testo di riferimento: Analisi Finanziaria (a cura di E. Pavarani) - McGraw-Hill - 2001 Cap. 9 1 Qual è il fine dell azienda? Massimizzare

Dettagli

Il bilancio con dati a scelta. Classe V ITC

Il bilancio con dati a scelta. Classe V ITC Il bilancio con dati a scelta Classe V ITC Il metodo da seguire Premesso che per la costruzione di un bilancio con dati a scelta si possono seguire diversi metodi, tutti ugualmente validi, negli esempi

Dettagli

Le reverse convertible. Cosa sono e quali rischi comportano per chi le acquista. Ottobre 2012. Consob Divisione Tutela del Consumatore

Le reverse convertible. Cosa sono e quali rischi comportano per chi le acquista. Ottobre 2012. Consob Divisione Tutela del Consumatore Le reverse convertible Cosa sono e quali rischi comportano per chi le acquista Ottobre 2012 Consob Divisione Tutela del Consumatore Indice Introduzione 3 Le reverse convertible 4 Cos è una reverse convertible

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Suggerimenti sulla distribuzione del montepremi nei tornei

Suggerimenti sulla distribuzione del montepremi nei tornei Suggerimenti sulla distribuzione del montepremi nei tornei Scopo del documento Questo documento si propone di fornire alcuni suggerimenti agli organizzatori sulla distribuzione del montepremi nei tornei.

Dettagli

L apertura di una economia ha 3 dimensioni

L apertura di una economia ha 3 dimensioni Lezione 19 (BAG cap. 6.1 e 6.3 e 18.1-18.4) Il mercato dei beni in economia aperta: moltiplicatore politica fiscale e deprezzamento Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Economia

Dettagli

Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti.

Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti. Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti. LINEA INVESTIMENTO GUIDA AI PRODOTTI Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti!

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

credito alle aziende Finanziamenti improntati alla semplicità e alla trasparenza

credito alle aziende Finanziamenti improntati alla semplicità e alla trasparenza credito alle aziende Finanziamenti improntati alla semplicità e alla trasparenza chiarezza e trasparenza State progettando un investimento? Oppure desiderate semplicemente conoscere quali possibilità vi

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

Lezione 8. Ciclo gestionale e sintesi economico-patrimoniale

Lezione 8. Ciclo gestionale e sintesi economico-patrimoniale Lezione 8 Ciclo gestionale e sintesi economico-patrimoniale L AZIENDA SVOLGE UN PROCESSO DI TRASFORMAZIONE RISORSE PROCESSO DI PRODOTTI E SERVIZI TRASFORMAZIONE Valore di mercato delle risorse impiegate

Dettagli

DIVISIONE DELLE CONTRIBUZIONI DEDUZIONI PER FIGLI AGLI STUDI (ART. 34 LT) Pag. 1. Presupposti 2

DIVISIONE DELLE CONTRIBUZIONI DEDUZIONI PER FIGLI AGLI STUDI (ART. 34 LT) Pag. 1. Presupposti 2 5.2.4 DIVISIONE DELLE CONTRIBUZIONI Bellinzona, gennaio 2009 CIRCOLARE N. 4/2008 Abroga la circolare n. 4/2007 del gennaio 2008 DEDUZIONI PER FIGLI AGLI STUDI (ART. 34 LT) Pag. 1. Presupposti 2 2. Scuole

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

Capitale raccomandato

Capitale raccomandato Aggiornato in data 1/9/212 Advanced 1-212 Capitale raccomandato da 43.8 a 6.298 Descrizioni e specifiche: 1. E' una combinazione composta da 3 Trading System automatici 2. Viene consigliata per diversificare

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli